-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (68 loc) · 2.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import torch
import random
import numpy as np
import argparse
import importlib
from processor import Processor
supported_models = ['clip']
supported_datasets = ['emotion', 'situation', 'topic', 'agnews', 'snips', 'trec', 'subj', 'atis']
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='clip', choices=supported_models)
# parser.add_argument('--image_text_prompt', action='store_true', default=False)
parser.add_argument('--dataset', type=str, default='snips', choices=supported_datasets)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--plm_lr', type=float, default=0)
parser.add_argument('--n_tokens', type=int, default=5)
parser.add_argument('--ensemble_size', type=int, default=0)
parser.add_argument('--threshold', type=float, default=0.28)
parser.add_argument('--multi_threshold', type=float, default=0.225)
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--clip_dir', type=str, default='ViT-B/32')
parser.add_argument('--cache_dir', type=str, default='./outputs')
parser.add_argument('--use_cache', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--max_input_length', type=int, default=77)
def fix_random_seed(random_seed: int):
torch.manual_seed(random_seed)
torch.random.manual_seed(random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
np.random.seed(random_seed)
random.seed(random_seed)
print('Fix random seed to %d' % random_seed)
def main():
args = parser.parse_args()
if args.dataset == 'emotion':
args.key_score = 'weighted_f1'
args.model = f'{args.model}_ood'
elif args.dataset == 'situation':
args.key_score = 'weighted_f1'
args.model = f'{args.model}_multi'
else:
args.key_score = 'acc'
args.model = f'{args.model}_single'
# if args.image_text_prompt:
prompt_desc = 'LABCLIP'
# if args.ensemble_size == 0:
args.ensemble_size = 2
# else:
# prompt_desc = 'no_image_text_prompt'
# if args.ensemble_size == 0:
# args.ensemble_size = 1
args.name = f'{args.model}_{args.dataset}_{prompt_desc}'
args.Model = importlib.import_module(f'model.{args.model}').Model
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.makedirs(args.cache_dir, exist_ok=True)
fix_random_seed(args.seed)
processor = Processor(args)
if args.test:
processor.eval('test')
print(vars(args))
if __name__ == '__main__':
main()