-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
291 lines (249 loc) · 8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import math
import os
import random
import torch
import torch.utils.data
import numpy as np
from librosa.util import normalize
from librosa.filters import mel as librosa_mel_fn
import librosa
import torchaudio
import torch.nn as nn
from pghipy import pghi
def load_wav(full_path, sample_rate):
data, _ = librosa.load(full_path, sr=sample_rate, mono=True)
return data
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_window = {}
inv_mel_window = {}
def param_string(sampling_rate, n_fft, num_mels, fmin, fmax, win_size, device):
return f"{sampling_rate}-{n_fft}-{num_mels}-{fmin}-{fmax}-{win_size}-{device}"
def mel_spectrogram(
y,
n_fft,
num_mels,
sampling_rate,
hop_size,
win_size,
fmin,
fmax,
center=True,
in_dataset=False,
):
global mel_window
device = torch.device("cpu") if in_dataset else y.device
ps = param_string(sampling_rate, n_fft, num_mels, fmin, fmax, win_size, device)
if ps in mel_window:
mel_basis, hann_window = mel_window[ps]
# print(mel_basis, hann_window)
# mel_basis, hann_window = mel_basis.to(y.device), hann_window.to(y.device)
else:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis = torch.from_numpy(mel).float().to(device)
hann_window = torch.hann_window(win_size).to(device)
mel_window[ps] = (mel_basis.clone(), hann_window.clone())
spec = torch.stft(
y.to(device),
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window.to(device),
center=True,
return_complex=True,
)
spec = mel_basis.to(device) @ spec.abs()
spec = spectral_normalize_torch(spec)
return spec # [batch_size,n_fft/2+1,frames]
def inverse_mel(
mel,
n_fft,
num_mels,
sampling_rate,
hop_size,
win_size,
fmin,
fmax,
in_dataset=False,
):
global inv_mel_window, mel_window
device = torch.device("cpu") if in_dataset else mel.device
ps = param_string(sampling_rate, n_fft, num_mels, fmin, fmax, win_size, device)
if ps in inv_mel_window:
inv_basis = inv_mel_window[ps]
else:
if ps in mel_window:
mel_basis, _ = mel_window[ps]
else:
mel_np = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis = torch.from_numpy(mel_np).float().to(device)
hann_window = torch.hann_window(win_size).to(device)
mel_window[ps] = (mel_basis.clone(), hann_window.clone())
inv_basis = mel_basis.pinverse()
inv_mel_window[ps] = inv_basis.clone()
return inv_basis.to(device) @ spectral_de_normalize_torch(mel.to(device))
def amp_pha_specturm(y, n_fft, hop_size, win_size):
hann_window = torch.hann_window(win_size).to(y.device)
stft_spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=True,
return_complex=True,
) # [batch_size, n_fft//2+1, frames, 2]
log_amplitude = torch.log(
stft_spec.abs() + 1e-5
) # [batch_size, n_fft//2+1, frames]
phase = stft_spec.angle() # [batch_size, n_fft//2+1, frames]
return log_amplitude, phase, stft_spec.real, stft_spec.imag
def get_dataset_filelist(input_training_wav_list, input_validation_wav_list):
training_files = []
filelist = os.listdir(input_training_wav_list)
for files in filelist:
src = os.path.join(input_training_wav_list, files)
training_files.append(src)
validation_files = []
filelist = os.listdir(input_validation_wav_list)
for files in filelist:
src = os.path.join(input_validation_wav_list, files)
validation_files.append(src)
return training_files, validation_files
class Dataset(torch.utils.data.Dataset):
def __init__(
self,
training_files,
segment_size,
n_fft,
num_mels,
hop_size,
win_size,
sampling_rate,
fmin,
fmax,
meloss,
split=True,
shuffle=True,
n_cache_reuse=1,
device=None,
inv_mel=False,
use_pghi=False,
):
self.audio_files = training_files
random.seed(1234)
if shuffle:
random.shuffle(self.audio_files)
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.meloss = meloss
self.inv_mel = inv_mel
self.pghi = use_pghi
def __getitem__(self, index):
filename = self.audio_files[index]
if self._cache_ref_count == 0:
audio = load_wav(filename, self.sampling_rate)
self.cached_wav = audio
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.FloatTensor(audio) # [T]
audio = audio.unsqueeze(0) # [1,T]
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start : audio_start + self.segment_size] # [1,T]
else:
audio = torch.nn.functional.pad(
audio, (0, self.segment_size - audio.size(1)), "constant"
)
mel = mel_spectrogram(
audio,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax,
center=True,
in_dataset=True,
)
meloss1 = mel_spectrogram(
audio,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.meloss,
center=True,
in_dataset=True,
)
log_amplitude, phase, rea, imag = amp_pha_specturm(
audio, self.n_fft, self.hop_size, self.win_size
) # [1,n_fft/2+1,frames]
inv_mel = (
inverse_mel(
mel,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax,
)
.abs()
.clamp_min(1e-5)
.squeeze()
if self.inv_mel
else torch.tensor([0])
)
if self.pghi:
pghid = torch.tensor(
pghi(inv_mel.squeeze(0).T.numpy(), self.win_size, self.hop_size)
).T
pghid = torch.polar(torch.ones_like(pghid), pghid).angle()
else:
pghid = torch.tensor([0])
# print(pghid)
return (
mel.squeeze(),
log_amplitude.squeeze(),
phase.squeeze(),
rea.squeeze(),
imag.squeeze(),
audio.squeeze(0),
meloss1.squeeze(),
inv_mel,
pghid,
)
def __len__(self):
return len(self.audio_files)