-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinference.py
115 lines (89 loc) · 3.27 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from __future__ import absolute_import, division, print_function, unicode_literals
import glob
import os
import argparse
import json
import torch
from utils import AttrDict
from dataset import mel_spectrogram, load_wav
from models import Generator
import soundfile as sf
import librosa
import numpy as np
import time
h = None
device = None
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def get_mel(x):
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '*')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return ''
return sorted(cp_list)[-1]
def inference(h):
generator = Generator(h).to(device)
state_dict_g = load_checkpoint(h.checkpoint_file_load, device)
generator.load_state_dict(state_dict_g['generator'])
filelist = sorted(os.listdir(h.test_input_mels_dir if h.test_mel_load else h.test_input_wavs_dir))
os.makedirs(h.test_output_dir, exist_ok=True)
generator.eval()
l=0
with torch.no_grad():
starttime = time.time()
for i, filename in enumerate(filelist):
# if h.test_mel_load:
if 1:
mel = np.load(os.path.join(h.test_input_wavs_dir, filename))
x = torch.FloatTensor(mel).to(device)
x=x.transpose(1,2)
else:
raw_wav, _ = librosa.load(os.path.join(h.test_input_wavs_dir, filename), sr=h.sampling_rate, mono=True)
raw_wav = torch.FloatTensor(raw_wav).to(device)
x = get_mel(raw_wav.unsqueeze(0))
logamp_g, pha_g, _, _, y_g = generator(x)
audio = y_g.squeeze()
# logamp = logamp_g.squeeze()
# pha = pha_g.squeeze()
audio = audio.cpu().numpy()
# logamp = logamp.cpu().numpy()
# pha = pha.cpu().numpy()
audiolen=len(audio)
sf.write(os.path.join(h.test_output_dir, filename.split('.')[0]+'.wav'), audio, h.sampling_rate,'PCM_16')
# print(pp)
l+=audiolen
# write(output_file, h.sampling_rate, audio)
# print(output_file)
end=time.time()
print(end-starttime)
print(l/22050)
print(l/22050/(end-starttime))
# np.save(os.path.join(h.test_output_dir, filename.split('.')[0]+'_logamp.npy'), logamp)
# np.save(os.path.join(h.test_output_dir, filename.split('.')[0]+'_pha.npy'), pha)
# if i==9:
# break
def main():
print('Initializing Inference Process..')
config_file = 'config.json'
with open(config_file) as f:
data = f.read()
global h
json_config = json.loads(data)
h = AttrDict(json_config)
torch.manual_seed(h.seed)
global device
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda')
else:
device = torch.device('cpu')
device = torch.device('cpu')
inference(h)
if __name__ == '__main__':
main()