-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnano-webgl-pow.js
339 lines (285 loc) · 11.8 KB
/
nano-webgl-pow.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// nano-webgl-pow
// Nano Currency Proof of Work Value generation using WebGL2
// Author: numtel <[email protected]>
// License: MIT
// window.nanoWebglPow(hashHex, callback, progressCallback, threshold);
// @param hashHex String Previous Block Hash as Hex String
// @param callback Function Called when work value found
// Receives single string argument, work value as hex
// @param progressCallback Function Optional
// Receives single argument: n, number of frames so far
// Return true to abort
// @param threshold Number|String Optional difficulty threshold (default=0xFFFFFFF8 since v21)
(function() {
function array_hex(arr, index, length) {
let out='';
for (let i=length - 1; i>-1; i--) {
out+=(arr[i] > 15 ? '' : '0') + arr[i].toString(16);
}
return out;
}
function hex_reverse(hex) {
let out='';
for (let i=hex.length; i>0; i-=2) {
out+=hex.slice(i-2, i);
}
return out;
}
function calculate(hashHex, callback, progressCallback, threshold = '0xFFFFFFF8') {
if (typeof threshold === 'number') threshold = '0x' + threshold.toString(16);
const canvas = document.createElement('canvas');
canvas.width = window.nanoWebglPow.width;
canvas.height = window.nanoWebglPow.height;
const gl = canvas.getContext('webgl2');
if (!gl) {
throw new Error('webgl2_required');
}
if (!/^[A-F-a-f0-9]{64}$/.test(hashHex)) {
throw new Error('invalid_hash');
}
gl.clearColor(0, 0, 0, 1);
const reverseHex = hex_reverse(hashHex);
// Vertext Shader
const vsSource = `#version 300 es
precision highp float;
layout (location=0) in vec4 position;
layout (location=1) in vec2 uv;
out vec2 uv_pos;
void main() {
uv_pos = uv;
gl_Position = position;
}`;
// Fragment shader
const fsSource = `#version 300 es
precision highp float;
precision highp int;
in vec2 uv_pos;
out vec4 fragColor;
// Random work values
// First 2 bytes will be overwritten by texture pixel position
// Second 2 bytes will be modified if the canvas size is greater than 256x256
uniform uvec4 u_work0;
// Last 4 bytes remain as generated externally
uniform uvec4 u_work1;
// Defined separately from uint v[32] below as the original value is required
// to calculate the second uint32 of the digest for threshold comparison
#define BLAKE2B_IV32_1 0x6A09E667u
// Both buffers represent 16 uint64s as 32 uint32s
// because that's what GLSL offers, just like Javascript
// Compression buffer, intialized to 2 instances of the initialization vector
// The following values have been modified from the BLAKE2B_IV:
// OUTLEN is constant 8 bytes
// v[0] ^= 0x01010000u ^ uint(OUTLEN);
// INLEN is constant 40 bytes: work value (8) + block hash (32)
// v[24] ^= uint(INLEN);
// It's always the "last" compression at this INLEN
// v[28] = ~v[28];
// v[29] = ~v[29];
uint v[32] = uint[32](
0xF2BDC900u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
0xADE682D1u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
0xFB41BD6Bu, 0x1F83D9ABu, 0x137E2179u, 0x5BE0CD19u,
0xF3BCC908u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
0xADE682F9u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
0x04BE4294u, 0xE07C2654u, 0x137E2179u, 0x5BE0CD19u
);
// Input data buffer
uint m[32];
// These are offsets into the input data buffer for each mixing step.
// They are multiplied by 2 from the original SIGMA values in
// the C reference implementation, which refered to uint64s.
const int SIGMA82[192] = int[192](
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,28,20,8,16,18,30,26,12,2,24,
0,4,22,14,10,6,22,16,24,0,10,4,30,26,20,28,6,12,14,2,18,8,14,18,6,2,26,
24,22,28,4,12,10,20,8,0,30,16,18,0,10,14,4,8,20,30,28,2,22,24,12,16,6,
26,4,24,12,20,0,22,16,6,8,26,14,10,30,28,2,18,24,10,2,30,28,26,8,20,0,
14,12,6,18,4,16,22,26,22,14,28,24,2,6,18,10,0,30,8,16,12,4,20,12,30,28,
18,22,6,0,16,24,4,26,14,2,8,20,10,20,4,16,8,14,12,2,10,30,22,18,28,6,24,
26,0,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,28,20,8,16,18,30,26,12,
2,24,0,4,22,14,10,6
);
// 64-bit unsigned addition within the compression buffer
// Sets v[a,a+1] += b
// b0 is the low 32 bits of b, b1 represents the high 32 bits
void add_uint64 (int a, uint b0, uint b1) {
uint o0 = v[a] + b0;
uint o1 = v[a + 1] + b1;
if (v[a] > 0xFFFFFFFFu - b0) { // did low 32 bits overflow?
o1++;
}
v[a] = o0;
v[a + 1] = o1;
}
// Sets v[a,a+1] += v[b,b+1]
void add_uint64 (int a, int b) {
add_uint64(a, v[b], v[b+1]);
}
// G Mixing function
void B2B_G (int a, int b, int c, int d, int ix, int iy) {
add_uint64(a, b);
add_uint64(a, m[ix], m[ix + 1]);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
uint xor0 = v[d] ^ v[a];
uint xor1 = v[d + 1] ^ v[a + 1];
v[d] = xor1;
v[d + 1] = xor0;
add_uint64(c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor0 >> 24) ^ (xor1 << 8);
v[b + 1] = (xor1 >> 24) ^ (xor0 << 8);
add_uint64(a, b);
add_uint64(a, m[iy], m[iy + 1]);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
xor0 = v[d] ^ v[a];
xor1 = v[d + 1] ^ v[a + 1];
v[d] = (xor0 >> 16) ^ (xor1 << 16);
v[d + 1] = (xor1 >> 16) ^ (xor0 << 16);
add_uint64(c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor1 >> 31) ^ (xor0 << 1);
v[b + 1] = (xor0 >> 31) ^ (xor1 << 1);
}
void main() {
int i;
uint uv_x = uint(uv_pos.x * ${canvas.width - 1}.);
uint uv_y = uint(uv_pos.y * ${canvas.height - 1}.);
uint x_pos = uv_x % 256u;
uint y_pos = uv_y % 256u;
uint x_index = (uv_x - x_pos) / 256u;
uint y_index = (uv_y - y_pos) / 256u;
// First 2 work bytes are the x,y pos within the 256x256 area, the next
// two bytes are modified from the random generated value, XOR'd with
// the x,y area index of where this pixel is located
m[0] = (x_pos ^ (y_pos << 8) ^ ((u_work0.b ^ x_index) << 16) ^ ((u_work0.a ^ y_index) << 24));
// Remaining bytes are un-modified from the random generated value
m[1] = (u_work1.r ^ (u_work1.g << 8) ^ (u_work1.b << 16) ^ (u_work1.a << 24));
// Block hash
m[2] = 0x${reverseHex.slice(56, 64)}u;
m[3] = 0x${reverseHex.slice(48, 56)}u;
m[4] = 0x${reverseHex.slice(40, 48)}u;
m[5] = 0x${reverseHex.slice(32, 40)}u;
m[6] = 0x${reverseHex.slice(24, 32)}u;
m[7] = 0x${reverseHex.slice(16, 24)}u;
m[8] = 0x${reverseHex.slice(8, 16)}u;
m[9] = 0x${reverseHex.slice(0, 8)}u;
// twelve rounds of mixing
for(i=0;i<12;i++) {
B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
}
// Threshold test, first 4 bytes not significant,
// only calculate digest of the second 4 bytes
if((BLAKE2B_IV32_1 ^ v[1] ^ v[17]) > ` + threshold + `u) {
// Success found, return pixel data so work value can be constructed
fragColor = vec4(
float(x_index + 1u)/255., // +1 to distinguish from 0 (unsuccessful) pixels
float(y_index + 1u)/255., // Same as previous
float(x_pos)/255., // Return the 2 custom bytes used in work value
float(y_pos)/255. // Second custom byte
);
}
}`;
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vsSource);
gl.compileShader(vertexShader);
if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)) {
throw gl.getShaderInfoLog(vertexShader);
}
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fsSource);
gl.compileShader(fragmentShader);
if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS)) {
throw gl.getShaderInfoLog(fragmentShader);
}
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
throw gl.getProgramInfoLog(program);
}
gl.useProgram(program);
// Construct simple 2D geometry
const triangleArray = gl.createVertexArray();
gl.bindVertexArray(triangleArray);
// Vertex Positions, 2 triangles
const positions = new Float32Array([
-1, -1, 0, -1, 1, 0, 1, 1, 0,
1, -1, 0, 1, 1, 0, -1, -1, 0,
]);
const positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, positions, gl.STATIC_DRAW);
gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(0);
// Texture Positions
const uvPosArray = new Float32Array([
1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1,
]);
const uvBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, uvBuffer);
gl.bufferData(gl.ARRAY_BUFFER, uvPosArray, gl.STATIC_DRAW);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(1);
const work0Location = gl.getUniformLocation(program, 'u_work0');
const work1Location = gl.getUniformLocation(program, 'u_work1');
// Draw output until success or progressCallback says to stop
const work0 = new Uint8Array(4);
const work1 = new Uint8Array(4);
let n=0;
function draw() {
n++;
window.crypto.getRandomValues(work0);
window.crypto.getRandomValues(work1);
gl.uniform4uiv(work0Location, Array.from(work0));
gl.uniform4uiv(work1Location, Array.from(work1));
// Check with progressCallback every 100 frames
if (n%1===0 && typeof progressCallback === 'function' && progressCallback(n)) {
return;
}
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 6);
const pixels = new Uint8Array(gl.drawingBufferWidth * gl.drawingBufferHeight * 4);
gl.readPixels(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
// Check the pixels for any success
for (let i=0; i<pixels.length; i+=4) {
if (pixels[i] !== 0) {
// Return the work value with the custom bits
typeof callback === 'function' &&
callback(
array_hex(work1, 0, 4) +
array_hex([
pixels[i+2],
pixels[i+3],
work0[2] ^ (pixels[i]-1),
work0[3] ^ (pixels[i+1]-1),
], 0, 4), n);
return;
}
}
// Nothing found yet, try again
window.requestAnimationFrame(draw);
}
// Begin generation
window.requestAnimationFrame(draw);
}
window.nanoWebglPow = calculate;
// Both width and height must be multiple of 256, (one byte)
// but do not need to be the same,
// matching GPU capabilities is the aim
window.nanoWebglPow.width = 256 * 2;
window.nanoWebglPow.height = 256 * 2;
console.log('nanoWebglPow ready');
})();