-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_R.py
108 lines (92 loc) · 3.71 KB
/
app_R.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import torch
from transformers import RagRetriever, RagSequenceForGeneration
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset_path = "./sample/my_knowledge_dataset"
index_path = "./sample/my_knowledge_dataset_hnsw_index.faiss"
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
passages_path = dataset_path,
index_path = index_path,
n_docs = 5)
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
rag_model.retriever.init_retrieval()
rag_model.to(device)
def strip_title(title):
if title.startswith('"'):
title = title[1:]
if title.endswith('"'):
title = title[:-1]
return title
def retrieved_info(query, rag_model = rag_model):
# Tokenize query
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
[query],
return_tensors="pt",
padding=True,
truncation=True,
)["input_ids"].to(device)
# Retrieve documents
question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids)
question_enc_pool_output = question_enc_outputs[0]
result = rag_model.retriever(
retriever_input_ids,
question_enc_pool_output.cpu().detach().to(torch.float32).numpy(),
prefix=rag_model.rag.generator.config.prefix,
n_docs=rag_model.config.n_docs,
return_tensors="pt",
)
# Display retrieved documents including URLs
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
retrieved_context = []
for docs in all_docs:
titles = [strip_title(title) for title in docs["title"]]
texts = docs["text"]
for title, text in zip(titles, texts):
retrieved_context.append(f"{title}: {text}")
answer = retrieved_context
return answer
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens ,
temperature,
top_p,
):
if message: # If there's a user query
response = retrieved_info(message) # Get the answer from local FAISS and Q&A model
return response[0]
# In case no message, return an empty string
return ""
# Custom title and description
title = "🧠 Welcome to Your AI Knowledge Assistant"
description = """
HI!!, I am your loyal assistant, My functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
"""
demo = gr.ChatInterface(
respond,
type = 'messages',
additional_inputs=[
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title=title,
description=description,
submit_btn = True,
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
examples=[["✨Future of AI"], ["📱App Development"]],
#example_icons=["🤖", "📱"],
theme="compact",
)
if __name__ == "__main__":
demo.launch(share = True )