This repository has been archived by the owner on Jul 5, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imageTest.py
95 lines (77 loc) · 2.88 KB
/
imageTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import cv2
import numpy as np
from targeting import mark_center, drw_line, detect
import sys
# Load Yolo
net = cv2.dnn.readNet("yolov3_training_last.weights", "yolotest.cfg")
HOGCV = cv2.HOGDescriptor()
HOGCV.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
classes = ["Fire"]
img_path = sys.argv[1]
vid = cv2.imread(f"{img_path}")
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
threshold = 0.15
while True:
# reading from video frame
#_, frame = vid.read()
frame = vid
frame = cv2.resize(frame, None, fx=0.4, fy=0.4)
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > threshold:
# Object detected
print(class_id)
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
print(indexes)
print(confidences)
font = cv2.FONT_HERSHEY_PLAIN
# Todo reverse image shape for showing
fr_x, fr_y, _ = frame.shape
fr_center = (int(fr_y/2), int(fr_x/2))
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 0)
cv2.putText(frame, "ates", (x, y + 30), font, 1, color, 0)
# center coordinats for detected fires
center_te = (int(x+(w/2)), int(y+(h/2)))
print(center_te)
radius = 4
thickness = 2
frame = cv2.circle(frame, center_te, radius=4, thickness=2, color=(0, 0, 255))
drw_line(frame, center_te, fr_center)
mark_center(frame, fr_center)
#frame = detect(frame)
image = cv2.resize(frame, (800, 640), interpolation=cv2.INTER_AREA)
cv2.imshow("Image", image)
# key = cv2.waitKey(0)
if cv2.waitKey(10) & 0xFF == ord('q'):
# break out of the while loop
break
cv2.destroyAllWindows()