-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
212 lines (178 loc) · 8.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import time
import argparse
import torch
import os
import copy
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb
import logging
from typing import Tuple
from conf import settings
from utils import (get_model, get_dataloader, setup_logging, torch_set_random_seed,
WarmUpLR, MODELS, DATASETS)
def main():
""" Train model and save model using early stop on test dataset """
global args
global epoch
global warmup_epoch
args = get_args()
model_name = args.model
dataset_name = args.dataset
random_seed = args.random_seed
experiment_id = int(time.time())
device = args.device
setup_logging(log_dir=args.log_dir,
experiment_id=experiment_id,
random_seed=random_seed,
args=args,
model_name=args.model,
dataset_name=args.dataset,
action='train',
use_wandb=args.use_wandb)
torch_set_random_seed(random_seed)
logging.info(f'Start with random seed: {random_seed}')
print(f"Start with random seed: {random_seed}")
train_loader, _, test_loader, num_classes = get_dataloader(args.dataset,
batch_size=args.batch_size,
num_workers=args.num_worker)
model = get_model(args.model, num_classes).to(device)
loss_function = nn.CrossEntropyLoss()
warmup_epoch = int(args.epoch * args.warmup_ratio)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=args.epoch - warmup_epoch,
eta_min= args.min_lr,
last_epoch=-1)
lr_scheduler_warmup = WarmUpLR(optimizer, warmup_epoch * len(train_loader))
best_acc = 0.0
with tqdm(total=args.epoch, desc=f'Training', unit='epoch') as pbar:
for epoch in range(1, args.epoch + 1):
train_loss = train(model,
train_loader,
loss_function,
optimizer,
lr_scheduler_warmup,
device)
top1_acc, top5_acc, _ = evaluate(model,
test_loader,
loss_function,
device)
for param_group in optimizer.param_groups:
lr = param_group['lr']
if epoch > warmup_epoch:
lr_scheduler.step()
if best_acc < top1_acc:
best_acc = top1_acc
best_model = copy.deepcopy(model)
logging.info(f'Epoch: {epoch}, Train Loss: {train_loss}, "lr": {lr}, '
f'Top1 Accuracy: {top1_acc}, Top5 Accuracy: {top5_acc}, '
f'Best top1 acc: {best_acc}')
wandb.log({"epoch": epoch, "train_loss": train_loss, "lr": lr,
"top1_acc": top1_acc, "top5_acc": top5_acc,
"best top1 acc": best_acc})
pbar.set_postfix({'Train loss': train_loss, 'Best top1 acc': best_acc, 'Top1 acc': top1_acc})
pbar.update(1)
os.makedirs(f"{args.output_dir}", exist_ok=True)
output_pth = f"{args.output_dir}/{model_name}_{dataset_name}_pretrained.pth"
torch.save(best_model, output_pth)
logging.info(f"Pretrained model saved at {output_pth}")
print(f"Pretrained model saved at {output_pth}")
wandb.finish()
def train(model: nn.Module,
train_loader: DataLoader,
loss_function: nn.Module,
optimizer: optim.Optimizer,
lr_scheduler_warmup: WarmUpLR,
device: str) -> float:
""" Train model and save using early stop on test dataset """
model.train()
train_loss = 0.0
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
if isinstance(outputs, tuple):
outputs = outputs[0]
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
if epoch <= warmup_epoch:
lr_scheduler_warmup.step()
train_loss /= len(train_loader)
return train_loss
@torch.no_grad()
def evaluate(model: nn.Module,
eval_loader: DataLoader,
loss_function: nn.Module,
device: str) -> Tuple[float, float, float]:
""" Evaluate model """
model.eval()
correct_1 = 0.0
correct_5 = 0.0
eval_loss = 0.0
for images, labels in eval_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
if isinstance(outputs, tuple):
outputs = outputs[0]
eval_loss += loss_function(outputs, labels).item()
_, preds = outputs.topk(5, 1, largest=True, sorted=True)
correct_1 += (preds[:, :1] == labels.unsqueeze(1)).sum().item()
top5_correct = labels.view(-1, 1).expand_as(preds) == preds
correct_5 += top5_correct.any(dim=1).sum().item()
top1_acc = correct_1 / len(eval_loader.dataset)
top5_acc = correct_5 / len(eval_loader.dataset)
eval_loss /= len(eval_loader)
return top1_acc, top5_acc, eval_loss
def get_args():
parser = argparse.ArgumentParser(description='train given model under given dataset')
parser.add_argument('--model', '-m', type=str, default=None,
help='the type of model to train')
parser.add_argument('--dataset', '-ds', type=str, default=None,
help='the dataset to train on')
parser.add_argument('--lr', type=float, default=settings.T_LR_SCHEDULER_INITIAL_LR,
help='initial learning rate')
parser.add_argument('--min_lr', type=float, default=settings.T_LR_SCHEDULER_MIN_LR,
help='minimal learning rate')
parser.add_argument('--batch_size', '-b', type=int, default=settings.T_BATCH_SIZE,
help='batch size for dataloader')
parser.add_argument('--num_worker', '-n', type=int, default=settings.T_NUM_WORKER,
help='number of workers for dataloader')
parser.add_argument('--epoch', '-e', type=int, default=settings.T_EPOCH,
help='total epoch to train')
parser.add_argument('--warmup_ratio', '-wr', type=int, default=settings.T_WARMUP_RATIO,
help='the ratio of warmup epoch number over total epoch number for lr scheduler')
parser.add_argument('--device', '-dev', type=str, default='cpu',
help='device to use')
parser.add_argument('--random_seed', '-rs', type=int, default=1,
help='the random seed for the training')
parser.add_argument('--use_wandb', action='store_true', default=False,
help='use wandb to track the experiment')
parser.add_argument('--log_dir', '-log', type=str, default='log',
help='the directory containing logging text')
parser.add_argument('--output_dir', '-opth', type=str, default='pretrained_model',
help='the directory to store output model')
args = parser.parse_args()
check_args(args)
return args
def check_args(args: argparse.Namespace):
if args.model is None:
raise TypeError(f"the specific type of model should be provided, "
f"please select one of {MODELS}")
elif args.model not in MODELS:
raise TypeError(f"the specific model {args.model} is not supported, "
f"please select one of {MODELS}")
if args.dataset is None:
raise ValueError(f"the specific type of dataset to train on should be provided, "
f"please select one of {DATASETS}")
elif args.dataset not in DATASETS:
raise ValueError(f"the provided dataset {args.dataset} is not supported, "
f"please select one of {DATASETS}")
if __name__ == '__main__':
main()