-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
34 lines (23 loc) · 1.11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from llama_index import SimpleDirectoryReader, GPTSimpleVectorIndex, LLMPredictor, ServiceContext
from langchain import OpenAI
import gradio as gr
import os
# os.environ["OPENAI_API_KEY"] = '---your open ai key --'
def construct_index(directory_path):
num_outputs = 512
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=num_outputs, verbose=True))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
docs = SimpleDirectoryReader(directory_path).load_data()
index = GPTSimpleVectorIndex.from_documents(docs, service_context=service_context)
index.save_to_disk('index.json')
return index
def chatbot(input_text):
index = GPTSimpleVectorIndex.load_from_disk('index.json')
response = index.query(input_text, response_mode="compact")
return response.response
iface = gr.Interface(fn=chatbot,
inputs=gr.inputs.Textbox(lines=7, label="Enter your text"),
outputs="text",
title="Custom-trained AI Chatbot")
index = construct_index("data")
iface.launch(share=True)