-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathupdate_theta.m
44 lines (41 loc) · 1.47 KB
/
update_theta.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function THETA=update_theta(X,Z,a0,b0)
%UPDATE_THETA Perform Gibbs update on the allele emission probabilities.
% THETA=UPDATE_THETA(X,Z,a0,b0), returns a new vector of allele emission
% probabilities given the current population assignments of the
% individuals in the population, and also the parameters for the
% prior on the allele emission probabilities.
%
% Inputs:
% X NxT. Allele matrix for the population.
%
% Z NxT. Population assignments for the individuals in the
% population. Here, Z(i,j) is the population assignment
% of the ith individual at the jth locus.
%
% a0, b0 1xT. Prior pseudo observations for the allele emission
% probabilities. The prior allele emission probabilities
% at locus j follow the law of a Beta random variable
% with parameters a0(j) and b0(j).
%
% Outputs:
% THETA. A draw from the conditional distriution of THETA
% conditioned on X, Z, a0 and b0.
% Copyright (c) 2015, Maria De Iorio, Lloyd T. Elliott, Stefano Favaro
% and Yee Whye Teh.
[~,T]=size(X);
z=unique(Z);
K=length(z);
THETA=zeros(T,K);
for k=1:K
apost=a0;
bpost=b0;
for i=1:T
L=Z(:,i)==z(k);
nsnp=sum(L);
x=X(L,i);
s=sum(x);
apost(i)=apost(i)+s;
bpost(i)=bpost(i)+nsnp-s;
end
THETA(:,k)=betarnd(apost,bpost);
end