forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vgg16.py
executable file
·163 lines (134 loc) · 5.89 KB
/
vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: vgg16.py
import argparse
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.tfutils import argscope
from tensorpack.tfutils.summary import *
from tensorpack.utils.gpu import get_num_gpu
from imagenet_utils import ImageNetModel, fbresnet_augmentor, get_imagenet_dataflow
def GroupNorm(x, group, gamma_initializer=tf.constant_initializer(1.)):
"""
https://arxiv.org/abs/1803.08494
More code that reproduces the paper can be found at https://github.com/ppwwyyxx/GroupNorm-reproduce/.
"""
shape = x.get_shape().as_list()
ndims = len(shape)
assert ndims == 4, shape
chan = shape[1]
assert chan % group == 0, chan
group_size = chan // group
orig_shape = tf.shape(x)
h, w = orig_shape[2], orig_shape[3]
x = tf.reshape(x, tf.stack([-1, group, group_size, h, w]))
mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
new_shape = [1, group, group_size, 1, 1]
beta = tf.get_variable('beta', [chan], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
gamma = tf.get_variable('gamma', [chan], initializer=gamma_initializer)
gamma = tf.reshape(gamma, new_shape)
out = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-5, name='output')
return tf.reshape(out, orig_shape, name='output')
def convnormrelu(x, name, chan):
x = Conv2D(name, x, chan, 3)
if args.norm == 'bn':
x = BatchNorm(name + '_bn', x)
elif args.norm == 'gn':
with tf.variable_scope(name + '_gn'):
x = GroupNorm(x, 32)
x = tf.nn.relu(x, name=name + '_relu')
return x
class Model(ImageNetModel):
weight_decay = 5e-4
def get_logits(self, image):
with argscope(Conv2D, kernel_initializer=tf.variance_scaling_initializer(scale=2.)), \
argscope([Conv2D, MaxPooling, BatchNorm], data_format='channels_first'):
logits = (LinearWrap(image)
.apply(convnormrelu, 'conv1_1', 64)
.apply(convnormrelu, 'conv1_2', 64)
.MaxPooling('pool1', 2)
# 112
.apply(convnormrelu, 'conv2_1', 128)
.apply(convnormrelu, 'conv2_2', 128)
.MaxPooling('pool2', 2)
# 56
.apply(convnormrelu, 'conv3_1', 256)
.apply(convnormrelu, 'conv3_2', 256)
.apply(convnormrelu, 'conv3_3', 256)
.MaxPooling('pool3', 2)
# 28
.apply(convnormrelu, 'conv4_1', 512)
.apply(convnormrelu, 'conv4_2', 512)
.apply(convnormrelu, 'conv4_3', 512)
.MaxPooling('pool4', 2)
# 14
.apply(convnormrelu, 'conv5_1', 512)
.apply(convnormrelu, 'conv5_2', 512)
.apply(convnormrelu, 'conv5_3', 512)
.MaxPooling('pool5', 2)
# 7
.FullyConnected('fc6', 4096,
kernel_initializer=tf.random_normal_initializer(stddev=0.001))
.tf.nn.relu(name='fc6_relu')
.Dropout('drop0', rate=0.5)
.FullyConnected('fc7', 4096,
kernel_initializer=tf.random_normal_initializer(stddev=0.001))
.tf.nn.relu(name='fc7_relu')
.Dropout('drop1', rate=0.5)
.FullyConnected('fc8', 1000,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))())
add_param_summary(('.*', ['histogram', 'rms']))
return logits
def get_data(name, batch):
isTrain = name == 'train'
augmentors = fbresnet_augmentor(isTrain)
return get_imagenet_dataflow(args.data, name, batch, augmentors)
def get_config():
nr_tower = max(get_num_gpu(), 1)
batch = args.batch
total_batch = batch * nr_tower
assert total_batch >= 256 # otherwise the learning rate warmup is wrong.
BASE_LR = 0.01 * (total_batch / 256.)
logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
dataset_train = get_data('train', batch)
dataset_val = get_data('val', batch)
infs = [ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')]
callbacks = [
ModelSaver(),
GPUUtilizationTracker(),
EstimatedTimeLeft(),
ScheduledHyperParamSetter(
'learning_rate',
[(0, 0.01), (3, max(BASE_LR, 0.01))], interp='linear'),
ScheduledHyperParamSetter(
'learning_rate',
[(30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2), (80, BASE_LR * 1e-3)]),
DataParallelInferenceRunner(
dataset_val, infs, list(range(nr_tower))),
]
input = QueueInput(dataset_train)
input = StagingInput(input, nr_stage=1)
return TrainConfig(
model=Model(),
data=input,
callbacks=callbacks,
steps_per_epoch=1281167 // total_batch,
max_epoch=100,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--batch', type=int, default=32, help='batch per GPU')
parser.add_argument('--norm', choices=['none', 'bn', 'gn'], default='none')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.set_logger_dir(os.path.join('train_log', 'vgg16-norm={}'.format(args.norm)))
config = get_config()
nr_tower = max(get_num_gpu(), 1)
trainer = SyncMultiGPUTrainerReplicated(nr_tower)
launch_train_with_config(config, trainer)