forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svhn-digit-convnet.py
executable file
·112 lines (89 loc) · 3.78 KB
/
svhn-digit-convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: svhn-digit-convnet.py
# Author: Yuxin Wu
import argparse
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils.summary import *
"""
A very small SVHN convnet model (only 0.8m parameters).
About 2.3% validation error after 70 epochs. 2.15% after 150 epochs.
Each epoch iterates over the whole training set (4721 iterations), and takes about 24s on a P100.
"""
class Model(ModelDesc):
def inputs(self):
return [tf.TensorSpec([None, 40, 40, 3], tf.float32, 'input'),
tf.TensorSpec([None], tf.int32, 'label')]
def build_graph(self, image, label):
image = image / 128.0 - 1
with argscope(Conv2D, activation=BNReLU, use_bias=False):
logits = (LinearWrap(image)
.Conv2D('conv1', 24, 5, padding='VALID')
.MaxPooling('pool1', 2, padding='SAME')
.Conv2D('conv2', 32, 3, padding='VALID')
.Conv2D('conv3', 32, 3, padding='VALID')
.MaxPooling('pool2', 2, padding='SAME')
.Conv2D('conv4', 64, 3, padding='VALID')
.Dropout('drop', rate=0.5)
.FullyConnected('fc0', 512,
bias_initializer=tf.constant_initializer(0.1),
activation=tf.nn.relu)
.FullyConnected('linear', units=10)())
tf.nn.softmax(logits, name='output')
accuracy = tf.cast(tf.nn.in_top_k(logits, label, 1), tf.float32)
add_moving_summary(tf.reduce_mean(accuracy, name='accuracy'))
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wd_cost = regularize_cost('fc.*/W', l2_regularizer(0.00001))
add_moving_summary(cost, wd_cost)
add_param_summary(('.*/W', ['histogram', 'rms'])) # monitor W
return tf.add_n([cost, wd_cost], name='cost')
def optimizer(self):
lr = tf.train.exponential_decay(
learning_rate=1e-3,
global_step=get_global_step_var(),
decay_steps=4721 * 60,
decay_rate=0.2, staircase=True, name='learning_rate')
tf.summary.scalar('lr', lr)
return tf.train.AdamOptimizer(lr)
def get_data():
d1 = dataset.SVHNDigit('train')
d2 = dataset.SVHNDigit('extra')
data_train = RandomMixData([d1, d2])
data_test = dataset.SVHNDigit('test', shuffle=False)
augmentors = [
imgaug.Resize((40, 40)),
imgaug.Brightness(30),
imgaug.Contrast((0.5, 1.5)),
]
data_train = AugmentImageComponent(data_train, augmentors)
data_train = BatchData(data_train, 128)
data_train = PrefetchData(data_train, 5, 5)
augmentors = [imgaug.Resize((40, 40))]
data_test = AugmentImageComponent(data_test, augmentors)
data_test = BatchData(data_test, 128, remainder=True)
return data_train, data_test
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.auto_set_dir()
data_train, data_test = get_data()
config = TrainConfig(
model=Model(),
data=QueueInput(data_train),
callbacks=[
ModelSaver(),
InferenceRunner(data_test,
ScalarStats(['cost', 'accuracy']))
],
max_epoch=350,
session_init=SaverRestore(args.load) if args.load else None
)
launch_train_with_config(config, SimpleTrainer())