-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfmat.c
211 lines (187 loc) · 6.16 KB
/
infmat.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "infmat_miss.c"
static int getInfMat(struct InputData* seg, struct MixtureComp* comps, int32_t nComp, double* infMat)
{
int32_t NF = seg->P.e - seg->P.s;
int32_t NR = seg->N.e - seg->N.s;
int32_t dim = 5*nComp-1;
memset(infMat, 0, sizeof(double)*dim*dim);
double scoreObsBarF[dim];
memset(scoreObsBarF, 0, sizeof(double)*dim);
int r,c;
int i,j;
for(i = 0; i < NF; i++) {
double rF[nComp];
double ruyF[nComp];
double qWoF[nComp];
double qMuoF[nComp];
double qSigmaoF[nComp];
double rFSum = 0;
for(j = 0; j < nComp; j++) {
struct MixtureComp* c = comps + j;
double fMu = c->mu - c->delta/2;
double sigma = sqrt(c->sigmaSqF);
double yNormF = (seg->P.s[i] - fMu)/sigma;
rF[j] = c->w * tdist4(yNormF) /sigma;
rFSum += rF[j];
}
for(j = 0; j < nComp; j++) {
rF[j] /= rFSum;
struct MixtureComp* c = comps + j;
double fMu = c->mu - c->delta/2;
double sigma = sqrt(c->sigmaSqF);
double yNormF = (seg->P.s[i] - fMu)/sigma;
ruyF[j] = rF[j] * 5.0/(4 + yNormF*yNormF);
qWoF[j] = rF[j] / c->w;
qMuoF[j] = ruyF[j]*yNormF/sigma;
qSigmaoF[j] = c->sigmaSqF/2.*(rF[j]-ruyF[j]*yNormF*yNormF);
}
double scoreObsF[dim];
memset(scoreObsF, 0, sizeof scoreObsF);
for(j=1;j<nComp;j++)
scoreObsF[j-1] = qWoF[j];
for(j=0;j<nComp;j++)
{
scoreObsF[nComp-1+j] = qMuoF[j];
scoreObsF[2*nComp-1+j] = -qMuoF[j]/2.;
scoreObsF[3*nComp-1+j] = qSigmaoF[j];
}
for(r=0;r<dim;r++)
scoreObsBarF[r] += scoreObsF[r];
for(r=0;r<dim;r++)
for(c=0;c<=r;c++)
infMat[r*dim+c] += scoreObsF[r]*scoreObsF[c];
}
for(r=0;r<dim;r++)
for(c=0;c<=r;c++)
infMat[r*dim+c] -= scoreObsBarF[r]*scoreObsBarF[c]/NF;
double scoreObsBarR[dim];
memset(scoreObsBarR, 0, sizeof(double)*dim);
for(i = 0; i < NR; i++) {
double rR[nComp];
double ruyR[nComp];
double qWoR[nComp];
double qMuoR[nComp];
double qSigmaoR[nComp];
double rRSum = 0;
for(j = 0; j < nComp; j++) {
struct MixtureComp* c = comps + j;
double rMu = c->mu + c->delta/2;
double sigma = sqrt(c->sigmaSqR);
double yNormR = (seg->N.s[i] - rMu)/sigma;
rR[j] = c->w * tdist4(yNormR) /sigma;
rRSum += rR[j];
}
for(j = 0; j < nComp; j++) {
rR[j] /= rRSum;
struct MixtureComp* c = comps + j;
double rMu = c->mu + c->delta/2;
double sigma = sqrt(c->sigmaSqR);
double yNormR = (seg->N.s[i] - rMu)/sigma;
ruyR[j] = rR[j] * 5.0/(4 + yNormR*yNormR);
qWoR[j] = rR[j] / c->w;
qMuoR[j] = ruyR[j]*yNormR/sigma;
qSigmaoR[j] = c->sigmaSqR/2.*(rR[j]-ruyR[j]*yNormR*yNormR);
}
double scoreObsR[dim];
memset(scoreObsR, 0, sizeof scoreObsR);
for(j=1;j<nComp;j++)
scoreObsR[j-1] = qWoR[j];
for(j=0;j<nComp;j++)
{
scoreObsR[nComp-1+j] = qMuoR[j];
scoreObsR[2*nComp-1+j] = qMuoR[j]/2.;
scoreObsR[4*nComp-1+j] = qSigmaoR[j];
}
for(r=0;r<dim;r++)
scoreObsBarR[r] += scoreObsR[r];
for(r=0;r<dim;r++)
for(c=0;c<=r;c++)
infMat[r*dim+c] += scoreObsR[r]*scoreObsR[c];
}
for(r=0;r<dim;r++)
for(c=0;c<=r;c++)
infMat[r*dim+c] -= scoreObsBarR[r]*scoreObsBarR[c]/NR;
double infMatPri[dim*dim];
memset(infMatPri, 0, sizeof(double)*dim*dim);
for(j=0;j<nComp;j++)
{
struct MixtureComp c = comps[j];
infMatPri[(2*nComp-1+j)*dim+2*nComp-1+j] = PriorParams.rho*(1./c.sigmaSqF+1./c.sigmaSqR);
infMatPri[(3*nComp-1+j)*dim+3*nComp-1+j] = (PriorParams.alpha-1./2.)*c.sigmaSqF*c.sigmaSqF;
infMatPri[(4*nComp-1+j)*dim+4*nComp-1+j] = (PriorParams.alpha-1./2.)*c.sigmaSqR*c.sigmaSqR;
infMatPri[(2*nComp-1+j)*dim+3*nComp-1+j] = (c.delta-PriorParams.xi)*PriorParams.rho;
infMatPri[(2*nComp-1+j)*dim+4*nComp-1+j] = (c.delta-PriorParams.xi)*PriorParams.rho;
infMatPri[(3*nComp-1+j)*dim+2*nComp-1+j] = (c.delta-PriorParams.xi)*PriorParams.rho;
infMatPri[(4*nComp-1+j)*dim+2*nComp-1+j] = (c.delta-PriorParams.xi)*PriorParams.rho;
}
if(nComp>1)
{
infMatPri[(nComp)*dim+nComp] = 0;
infMatPri[(2*nComp-1)*dim+2*nComp-1] = 0;
for(j=1;j<(nComp-1);j++)
infMatPri[(nComp+j)*dim+nComp+j] = 0;
for(j=0;j<(nComp-1);j++)
{
infMatPri[(nComp+j+1)*dim+nComp+j] = 0;
infMatPri[(nComp+j)*dim+nComp+j+1] = 0;
}
}
for(r=0;r<dim;r++)
for(c=0;c<dim;c++)
infMat[r*dim+c] += infMatPri[r*dim+c];
if(seg->U.s != seg->U.e) {
addInfMatMissF(seg, comps, nComp, infMat);
addInfMatMissR(seg, comps, nComp, infMat);
}
gsl_matrix_view gslInfMat = gsl_matrix_view_array(infMat, dim, dim);
int flag = gsl_linalg_cholesky_decomp(&gslInfMat.matrix);
if(flag==GSL_EDOM)
return(flag);
gsl_matrix *M=gsl_matrix_calloc(dim, dim);
gsl_matrix_set_identity(M);
/* Compute the inverse of I^{-1/2} */
/* Compute L'^{-1} */
flag=gsl_blas_dtrsm(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, 1.0, &gslInfMat.matrix, M);
if(flag!=0)
return flag;
gsl_vector *A=gsl_vector_calloc(dim);
for(j=0;j<nComp;j++)
{
struct MixtureComp* c = comps+j;
gsl_vector_set_zero(A);
gsl_vector_set(A,nComp-1+j,1);
/* Compute L'^{-1} A */
flag=gsl_blas_dtrmv(CblasUpper, CblasNoTrans, CblasNonUnit, M, A);
if(flag!=0)
return flag;
/* Compute the norm of that vector */
c->se = gsl_blas_dnrm2(A);
// Make sure it's a number
if(gsl_finite(c->se)==0)
return 1;
gsl_vector_set_zero(A);
gsl_vector_set(A,nComp-1+j,1);
gsl_vector_set(A,nComp-1+nComp+j,-0.5);
flag=gsl_blas_dtrmv(CblasUpper, CblasNoTrans, CblasNonUnit, M, A);
if(flag!=0)
return flag;
c->seF = gsl_blas_dnrm2(A);
if(gsl_finite(c->seF)==0)
return 1;
gsl_vector_set_zero(A);
gsl_vector_set(A,nComp-1+j,1);
gsl_vector_set(A,nComp-1+nComp+j,0.5);
flag=gsl_blas_dtrmv (CblasUpper, CblasNoTrans, CblasNonUnit, M, A);
if(flag!=0)
return flag;
c->seR = gsl_blas_dnrm2(A);
if(gsl_finite(c->seR)==0)
return 1;
}
// Copy infMat in M
// So that I don't have to recompute the inverse of L'
gsl_matrix_memcpy(&gslInfMat.matrix, M);
gsl_vector_free(A);
gsl_matrix_free(M);
return(flag);
}