-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
467 lines (326 loc) · 15.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
try:
import matplotlib.pyplot as plt
except Exception:
print('Could not import matplotlib. Plotting functions will not be available')
try:
from scipy.stats import f_oneway
import scipy
except:
print("Could not import scipy. Data analysis will not be available")
try:
import numpy as np
except:
print("Could not import numpy. Data analysis will not be available")
try:
import scikit_posthocs as sp
except Exception:
print('Could not import scikit_posthocs. Data analysis will not be available')
import os, math, stat, subprocess
class DataPoint:
def __init__(self):
pass
class FileReader:
def __init__(self, filename, isTCP = True):
self.filename = filename
self.fd = open(filename)
self.queries_sent = []
self.queries_completed = []
self.queries_lost = []
self.queries_per_sec = []
self.avg_latency = []
self.std_latency = []
self.reconnections = []
self.connection_avg_latency = []
self.connection_std_latency = []
self.isTCP = isTCP
# Actually load the data
self.read(filename)
def read_data_point(self):
try:
line = self.fd.readline() # Read a blank line
if not line: return False # if the file is empty return false
self.queries_sent += [ int(self.fd.readline().split(':')[1]) ]
self.queries_completed += [ int(self.fd.readline().split()[2]) ]
self.queries_lost += [ int(self.fd.readline().split()[2]) ]
self.fd.readline() # read blank line
self.fd.readline() # read response codes line
self.fd.readline() # read avg packet size
self.fd.readline() # read run time
self.queries_per_sec += [ float(self.fd.readline().split()[3]) ]
self.fd.readline() # read blank line
self.avg_latency += [ float(self.fd.readline().split()[3]) ]
self.std_latency += [ float(self.fd.readline().split()[3]) ]
if self.isTCP:
self.fd.readline() # read blank line
self.fd.readline() # read Conection Statitics header
self.fd.readline() # read blank line
self.reconnections += [ int(self.fd.readline().split()[1]) ]
self.fd.readline() # read blank line
self.connection_avg_latency += [ float(self.fd.readline().split()[3]) ]
self.connection_std_latency += [ float(self.fd.readline().split()[3]) ]
self.fd.readline() # read blank line
# self.fd.readline() # read blank line
except Exception as e:
print("Error loading file: ", self.filename)
return True
def read(self, filename = None):
if filename is None: filename = self.filename
while self.read_data_point():
continue
def avg(self, metric):
if metric == 'sent':
if len(self.queries_sent) == 0: return 0
return sum(self.queries_sent) / len(self.queries_sent)
elif metric == 'completed':
if len(self.queries_completed) == 0: return 0
return sum(self.queries_completed) / len(self.queries_completed)
elif metric == 'lost':
if len(self.queries_lost) == 0: return 0
return sum(self.queries_lost) / len(self.queries_lost)
elif metric == 'qps':
if len(self.queries_per_sec) == 0: return 0
return sum(self.queries_per_sec) / len(self.queries_per_sec)
elif metric == 'latency':
if len(self.avg_latency) == 0: return 0
return sum(self.avg_latency) / len(self.avg_latency)
elif metric == 'std':
if len(self.std_latency) == 0: return 0
return sum(self.std_latency) / len(self.std_latency)
elif metric == 'conn latency':
if len(self.connection_avg_latency) == 0: return 0
return sum(self.connection_avg_latency) / len(self.connection_avg_latency)
elif metric == 'conn std':
if len(self.connection_std_latency) == 0: return 0
return sum(self.connection_std_latency) / len(self.connection_std_latency)
else:
return 0
def data(self, metric):
if metric == 'sent':
return self.queries_sent
elif metric == 'completed':
return self.queries_completed
elif metric == 'lost':
return self.queries_lost
elif metric == 'qps':
return self.queries_per_sec
elif metric == 'latency':
return self.avg_latency
elif metric == 'std':
return self.std_latency
elif metric == 'conn latency':
return self.connection_avg_latency
elif metric == 'conn std':
return self.connection_std_latency
else:
return []
class TrialEvaluator:
def __init__(self, files, isTCP = True):
if type(files) is not list: files = [ files ]
self.filenames = files
self.isTCP = isTCP
self.readers = []
for name in self.filenames:
try:
self.readers += [ FileReader(name, self.isTCP) ]
except Exception as e:
print('Failed to read file: ', name)
raise e
# self.readers = [ FileReader(name, self.isTCP) for name in self.filenames ]
def axis_name(self, metric):
if metric == 'sent':
return 'Queries Sent (int)'
elif metric == 'completed':
return 'Queries Completed (int)'
elif metric == 'lost':
return 'Queries Lost (int)'
elif metric == 'qps':
return 'Queries Per Second (q/s)'
elif metric == 'latency':
return "Average Latency (s)"
elif metric == 'std':
return 'Standard Dev of Latency (s)'
elif metric == 'conn latency':
return 'Average Latency of Connection (s)'
elif metric == 'conn std':
return 'Standard Dev of Connection (s)'
else:
return None
def build_data(self, metric, showAverages = True, sortByAvg = True, even = False):
all_latencies = [ x.data(metric) for x in self.readers ]
avgs = [ x.avg(metric) for x in self.readers ]
file_names = [ x.split('/')[-1] for x in self.filenames]
# This order is actually necessary. Plz don't be stupid
if showAverages:
for i, avg in enumerate(avgs):
all_latencies[i] += [ avg ]
if sortByAvg:
all_latencies = [x for _, x in sorted(zip(avgs, all_latencies))]
file_names = [x for _, x in sorted(zip(avgs, file_names))]
if even: # Make sure all the data has the same number of data points in them
shortest = len(all_latencies[0])
for latency in all_latencies:
if shortest > len(latency): shortest = len(latency)
for i in range(0, len(all_latencies)):
all_latencies[i] = all_latencies[i][:shortest]
return all_latencies, file_names
def render_plot(self, plt, metric, xlabel = 'Trial file names', ylabel = None, bottom = 0.3, vertical = True):
if ylabel is None:
plt.ylabel(self.axis_name(metric), fontsize = 15)
else:
plt.ylabel(ylabel, fontsize = 15)
plt.xlabel(xlabel, fontsize = 15)
# plt.rcParams.update({'figure.autolayout': True})
if vertical:
plt.xticks(rotation='vertical')
plt.subplots_adjust(bottom=bottom)
plt.show()
def boxplot(self, metric, showAverages = True, sortByAvg = True):
all_latencies, file_names = self.build_data(metric, showAverages, sortByAvg)
plt.boxplot(all_latencies)
self.render_plot(plt, metric)
def histogram(self, metric, sortByAvg = True, histtype=u'bar'):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg)
for latency in all_latencies:
plt.hist(latency, histtype=histtype)
self.render_plot(plt, metric, xlabel = self.axis_name(metric), ylabel="Number of Occurances")
def log_histogram(self, metric, sortByAvg = True, histtype=u'bar'):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg)
for latency in all_latencies:
latency = [math.log(x) for x in latency]
plt.hist(latency, histtype=histtype)
self.render_plot(plt, metric, xlabel = self.axis_name(metric), ylabel="Number of Occurances")
def scatter(self, metric, showAverages = True, sortByAvg = True, even = False, baseline_name='baseline.res', vertical = True):
all_latencies, file_names = self.build_data(metric, showAverages, sortByAvg, even)
# Need to unpack the data to have 1 array of names and 1 array of latencies with the same length
x = []
y = []
baseline_data = []
for i, latency_array in enumerate(all_latencies):
for latency in latency_array:
if file_names[i] == baseline_name:
baseline_data += [ latency ]
x += [ file_names[i] ]
y += [ latency ]
plt.scatter(x, y)
if len(baseline_data): # Needs to happen after so they cover
plt.scatter([baseline_name for _ in range(0, len(baseline_data))], baseline_data, color='orange')
if showAverages:
for i, name in enumerate(file_names):
plt.scatter(name, all_latencies[i][-1], color='red') # if show averages, the last entry is the avg
self.render_plot(plt, metric, vertical = vertical)
def wilcoxon(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
for i, latency in enumerate(all_latencies):
if i is not baseline_index:
res = scipy.stats.wilcoxon(baseline_latency, latency)
print(file_names[i], res)
def ranksum(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
for i, latency in enumerate(all_latencies):
if i is not baseline_index:
res = scipy.stats.ranksums(baseline_latency, latency)
print(file_names[i], res)
def anova(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
for i, latency in enumerate(all_latencies):
if i is not baseline_index:
res = f_oneway(baseline_latency, latency)
print(file_names[i], res)
def kruskal(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
res = scipy.stats.kruskal(*all_latencies)
print('Kruskal results: ', res)
def tukey_hsd(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
res = scipy.stats.tukey_hsd(*all_latencies)
conf = res.confidence_interval(confidence_level=.99)
for ((i, j), l) in np.ndenumerate(conf.low):
# filter out self comparisons
if i != j:
h = conf.high[i,j]
print(f"({i} - {j}) {l:>6.3f} {h:>6.3f}")
def dunns(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
data = [x for x in all_latencies]
res = sp.posthoc_dunn(data, p_adjust = 'fdr_tsbky')
larger = np.array(res <= 0.15)
found_any_true = False
for i in range(0,len(larger)):
for j in range(0,len(larger[0])):
if larger[i][j]:
print('good metric found between: ', '\n\t', file_names[i], '\n\t', file_names[j])
found_any_true = True
if not found_any_true:
print('No statistical significance found')
def tukey(self, metric, sortByAvg = False):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg, even = True)
baseline_index = file_names.index('baseline.res')
baseline_latency = all_latencies[ baseline_index ]
data = [x for x in all_latencies]
res = sp.posthoc_tukey(data, val_col='values', group_col='groups')
larger = np.array(res <= 0.15)
found_any_true = False
for i in range(0,len(larger)):
for j in range(0,len(larger[0])):
if larger[i][j]:
print('good metric found between: ', '\n\t', file_names[i], '\n\t', file_names[j])
found_any_true = True
if not found_any_true:
print('No statistical significance found')
def avg(self, metric, sortByAvg = True):
all_latencies, file_names = self.build_data(metric, showAverages = False, sortByAvg = sortByAvg)
for i in range(0, len(all_latencies)):
print(file_names[i] + ': ', sum(all_latencies[i]) / len(all_latencies[i]))
print()
class Collector:
def __init__(self, server_ip, num_tests = 20, time=300, in_flight=100, clients = 12, threads = 12, loop=99, mode = 'tcp', local_addr = '127.0.0.1'):
self.server_ip = str(server_ip)
self.num_tests = str(num_tests)
self.time = str(time)
self.in_flight = str(in_flight)
self.clients = str(clients)
self.threads = str(threads)
self.loop = str(loop)
self.mode = str(mode)
self.stats = str(5)
self.local_addr = str(local_addr)
def run(self, datafile, savefile = 'trial.res'):
lines_length = 20 if self.mode == 'tcp' else 13
cmd = '#!/bin/bash\n' + \
'cmd="dnsperf -S ' + self.stats + ' ' + \
'-s ' + self.server_ip + ' ' + \
'-m ' + self.mode + ' ' + \
'-d ' + str(datafile) + ' ' + \
'-q ' + self.in_flight + ' ' + \
'-n ' + self.loop + ' ' + \
'-l ' + self.time + ' ' + \
'-a ' + self.local_addr + ' ' + \
'-c ' + self.clients + ' ' + \
'-T ' + self.threads + ' ' + \
'"; \n' + \
'eval $cmd | tail -' + str(lines_length) + ' >> "' + str(savefile) + '";'
# Write to file and make it exe cause life is annoying
f = open('tmp.sh', 'a')
f.write(cmd)
f.close()
st = os.stat('./tmp.sh')
os.chmod('./tmp.sh', st.st_mode | stat.S_IEXEC)
for i in range(0, int(self.num_tests)):
process = subprocess.Popen('./tmp.sh', stdout=subprocess.PIPE)
output, error = process.communicate()
print('finished trial: ', i)
if output:
print('output: ', output.decode())
if error:
print('error: ', error.decode())
os.remove('./tmp.sh')