forked from nhatnguyen12/Deep-Learning-For-Computer-Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_monitor.py
53 lines (38 loc) · 1.61 KB
/
cifar10_monitor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import matplotlib
matplotlib.use("Agg")
from pyimagesearch.callbacks.trainingmonitor import TrainingMonitor
from sklearn.preprocessing import LabelBinarizer
from pyimagesearch.nn.conv.minivggnet import MiniVGGNet
from keras.optimizers import SGD
from keras.datasets import cifar10
import argparse
import os
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True,
help="path to the output directory")
args = vars(ap.parse_args())
#show information on the process ID
print("[INFO process ID: {}".format(os.getpid()))
print("[INFO] loading CIFAR-10 data...")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
labelNames = ["airplane", "automobile", "birds", "cat", "deer", "dog", "frog",
"frog", "horse", "ship", "truck"]
print("[INFO] compiling model")
opt = SGD(lr=0.01, momentum=0.9, nesterov=True)
model = MiniVGGNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt,
metrics=["accuracy"])
# construct the set of callbacks
figPath = os.path.sep.join([args["output"], "{}.png".format(os.getpid())])
jsonPath = os.path.sep.join([args["output"], "{}.json".format(os.getpid())])
callbacks = [TrainingMonitor(figPath, jsonPath=jsonPath)]
# train the network
print("[INFO] training network...")
model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=64,
epochs=100, callbacks=callbacks, verbose=1)