diff --git a/wrapping/python/docs/source/DataObjects.rst b/wrapping/python/docs/source/DataObjects.rst index e484cd0b2b..0959e33467 100644 --- a/wrapping/python/docs/source/DataObjects.rst +++ b/wrapping/python/docs/source/DataObjects.rst @@ -406,3 +406,136 @@ Geometry ---------- Please see the :ref:`Geometry` documentation. + +Pipeline +-------- + + The Pipeline object holds a collections of filters. This collection can come from loading a .d3dpipeline file, + or from programmatically appending filters into a `nx.Pipeline` object. + +.. attention:: + + This API is still in development so expect some changes + + +.. py:class:: Pipeline + + This class holds a DREAM3D-NX pipeline which consists of a number of Filter instances. + + :ivar dtype: The type of Data stored in the DataStore + + .. py:method:: from_file(file_path) + + :ivar file_path: PathLike: The filepath to the input pipeline file + + .. py:method:: to_file(name, output_file_path) + + :ivar name: str: The name of the pipeline. Can be different from the file name + :ivar output_file_path: PathLike: The filepath to the output pipeline file + + .. py:method:: execute(data_structure) + + :ivar data_structure: nx.DataStructure: + :return: The result of executing the pipeline + :rtype: nx.IFilter.ExecuteResult + + .. py:method:: size() + + :return: The number of filters in the pipeline + + .. py:method:: insert(index, filter, parameters) + + Inserts a new filter at the index specified with the specified argument dictionary + + :ivar index: The index to insert the filter at. (Zero based indexing) + :ivar filter: The filter to insert + :ivar parameters: Dictionary: The dictionary of arguments (parameters) that the filter will use when it is executed. + + .. py:method:: append(filter, parameters) + + :ivar filter: nx.IFilter: The filter to append to the pipeline + :ivar parameters: Dictionary: The dictionary of arguments (parameters) that the filter will use when it is executed. + + .. py:method:: clear() + + Removes all filters from the pipeline + + .. py:method:: remove(index) + + Removes a filter at the given index (Zero based indexing) + + .. code:: python + + # Shows modifying a pipeline that is read in from disk + # Create the DataStructure instance + data_structure = nx.DataStructure() + # Read the pipeline file + pipeline = nx.Pipeline().from_file( 'Pipelines/lesson_2.d3dpipeline') + + create_data_array_args:dict = { + "data_format": "", + "component_count":1, + "initialization_value":"0", + "numeric_type":nx.NumericType.int8, + "output_data_array":nx.DataPath("Geometry/Cell Data/data"), + "advanced_options": False, + "tuple_dimensions": [[10,20,30]] + } + pipeline[1].set_args(create_data_array_args) + # Execute the modified pipeline + result = pipeline.execute(data_structure) + nxutility.check_pipeline_result(result=result) + # Save the modified pipeline to a file. + pipeline.to_file( "Modified Pipeline", "Output/lesson_2b_modified_pipeline.d3dpipeline") + +.. py:class:: PipelineFilter + + This class represents a filter in a Pipeline object. It can be modified in place with a new + set of parameters and the pipeline run again. + + .. py:method:: get_args() + + Returns the dictionary of parameters for a filter + + :return: The parameter dictionary for the filter + :rtype: Dictionary + + + .. py:method:: set_args(parameter_dictionary) + + Sets the dictionary of parameters that a filter will use. + + :ivar parameter_dictionary: Dictionary: The dictionary of parameter arguments for the filter. + + .. py:method:: get_filter() + + Returns the nx.IFilter object + + .. code:: python + + """ + This shows how to loop on a pipeline making changes each loop. + Filter [0] is the ReadAngDataFilter which we will need to adjust the input file + Filter [5] is the image writing filter where we need to adjust the output file + """ + + for i in range(1, 6): + # Create the DataStructure instance + data_structure = nx.DataStructure() + # Read the pipeline file + pipeline = nx.Pipeline().from_file( 'Pipelines/lesson_2_ebsd.d3dpipeline') + # Get the parameter dictionary for the first filter and + # modify the input file. Then set the modified dictionary back into + # the pipeine at the same location + read_ang_parameters = pipeline[0].get_args() + read_ang_parameters["input_file"] = f"Data/Small_IN100/Slice_{i}.ang" + pipeline[0].set_args(read_ang_parameters) + + # Do the same modification here for the 5th filter in the pipeline + write_image_parameters = pipeline[5].get_args() + write_image_parameters["file_name"] = f"Output/Edax_IPF_Colors/Small_IN100_Slice_{i}.png" + pipeline[5].set_args(write_image_parameters) + + # Execute the modified pipeline + result = pipeline.execute(data_structure) + nxutility.check_pipeline_result(result=result) diff --git a/wrapping/python/docs/source/Overview.rst b/wrapping/python/docs/source/Overview.rst index dcfa6e18a1..22b8d51c02 100644 --- a/wrapping/python/docs/source/Overview.rst +++ b/wrapping/python/docs/source/Overview.rst @@ -163,6 +163,7 @@ scales, allowing for connections and correlations to be assessed. :target: path Mapping between AttributeMatrix using **Cell Data** "FeatureIds" to link to the feature data and **Cell Data** "Phases" to link to the Ensemble Data + -------------- .. figure:: Images/Elements_Features_Ensembles.png