From 14693b5e19a55bcb7ca10037b3a3d75a05397d41 Mon Sep 17 00:00:00 2001 From: Michael Jackson Date: Tue, 23 Apr 2024 18:19:01 -0400 Subject: [PATCH] Starting the 2nd tutorial. Signed-off-by: Michael Jackson --- wrapping/python/docs/generate_sphinx_docs.cpp | 4 +- wrapping/python/docs/index_template.rst | 1 + wrapping/python/docs/source/Tutorial_1.rst | 85 ++++++++++++++++--- wrapping/python/docs/source/Tutorial_2.rst | 13 +++ wrapping/python/docs/source/User_API.rst | 20 +++-- 5 files changed, 100 insertions(+), 23 deletions(-) create mode 100644 wrapping/python/docs/source/Tutorial_2.rst diff --git a/wrapping/python/docs/generate_sphinx_docs.cpp b/wrapping/python/docs/generate_sphinx_docs.cpp index 976e1e460d..33691d7bae 100644 --- a/wrapping/python/docs/generate_sphinx_docs.cpp +++ b/wrapping/python/docs/generate_sphinx_docs.cpp @@ -753,8 +753,8 @@ void GeneratePythonRstFiles() rstStream << ")\n\n"; rstStream << memberStream.str(); - rstStream << " :return: Returns a :ref:`Result ` object that holds any warnings and/or errors that were encountered during execution.\n"; - rstStream << " :rtype: :ref:`simplnx.Result `\n\n"; + rstStream << " :return: Returns a :ref:`nx.IFilter.ExecuteResult ` object that holds any warnings and/or errors that were encountered during execution.\n"; + rstStream << " :rtype: :ref:`nx.IFilter.ExecuteResult `\n\n"; rstStream << '\n'; } } diff --git a/wrapping/python/docs/index_template.rst b/wrapping/python/docs/index_template.rst index 023b7de630..fdcf0c43ef 100644 --- a/wrapping/python/docs/index_template.rst +++ b/wrapping/python/docs/index_template.rst @@ -56,6 +56,7 @@ How to use SIMPLNX from Python Python_Introduction User_API Tutorial_1 + Tutorial_2 .. toctree:: :maxdepth: 1 diff --git a/wrapping/python/docs/source/Tutorial_1.rst b/wrapping/python/docs/source/Tutorial_1.rst index b33903bd56..b4b3624529 100644 --- a/wrapping/python/docs/source/Tutorial_1.rst +++ b/wrapping/python/docs/source/Tutorial_1.rst @@ -1,9 +1,16 @@ -.. Tutorial 1: +.. _Tutorial_1: ===================================== Tutorial 1: Basic Python Integration ===================================== +This tutorial is meant to be a very basic introduction to interacting with the DREAM3D-NX underlying library called 'simplnx'. This +tutorial will cover environment setup, minimal import statements and executing a few basic filters. Once you understand how to +execute a filter, all filters are generally setup the same way. Use the search feature on the web site to find the filter +that you are interested in running. + +.. _Tutorial_1_Setup: + ################################### Anaconda Virtual Environment Setup ################################### @@ -12,9 +19,9 @@ Anaconda Virtual Environment Setup conda config --add channels conda-forge conda config --set channel_priority strict - conda create -n nxpython python=3.12 + conda create -c bluequartzsoftware -n nxpython python=3.12 dream3dnx conda activate nxpython - conda install -c bluequartzsoftware dream3dnx + ################################### Introduction @@ -63,7 +70,7 @@ A few caveats to take note of: First Steps: Create a Group in the DataStructure ################################################ -As in the user interface of DREAM3D-NX, you as the developer can execute any of filter from DREAM3D-NX using only Python codes. This is performed +As in the user interface of DREAM3D-NX, you as the developer can execute any of the filters from DREAM3D-NX using only Python codes. This is performed by instantiating the filter and then calling the `execute()` method with the appropriate parameters used in the call. With the current API, we are tending to inline instantiate the filter and execute it all in the same line. Some things to note with this small piece of code: @@ -112,7 +119,7 @@ And the output would look like the following: Result Objects ################################################ -Each time a filter is executed, it will return an `nx.ExecuteResult` object. This +Each time a filter is executed, it will return a :ref:`nx.IFilter.ExecuteResult ` object. This object can be interrogated for both warnings and errors that occured while the filter was executing. A typical function that can be written to properly error check the 'result' value is the following: @@ -127,15 +134,15 @@ check the 'result' value is the following: """ if len(result.warnings) != 0: for w in result.warnings: - print(f'Warning: ({w.code}) {w.message}') + print(f'Warning: ({w.code}) {w.message}') has_errors = len(result.errors) != 0 if has_errors: for err in result.errors: - print(f'Error: ({err.code}) {err.message}') - raise RuntimeError(result) - - print(f"{filter.name()} :: No errors running the filter") + print(f'Error: ({err.code}) {err.message}') + raise RuntimeError(result) + else: + print(f"{filter.name()} :: No errors running the filter") If you were to integrate this into your own code, then we would get the following when we wanted to execute a filter: @@ -153,7 +160,7 @@ Creating a DataArray Object Raw data is stored in a :ref:`DataArray` object within the :ref:`DataStructure`. The DREAM3D-NX python bindings only expose a subset of functionality from the :ref:`DataArray`, enough to get the name, tuple shape and component shape. **ALL** interactions to modify a :ref:`DataArray` are done via a `numpy view `_. Let us first create a :ref:`DataArray` object within the :ref:`DataStructure` by using the -:ref:`CreateDataArray` filter. Adding into the current python source file... +:ref:`CreateDataArray ` filter. Adding into the current python source file... .. code:: python @@ -244,6 +251,23 @@ And if you wanted to use `matplotlib `_ to view the dat :alt: MatPlotLib output +################################################ +Saving your Data to a .dream3d file +################################################ + +Most pipelines would want to save any modified data to a .dream3d file (if you are wanting the easiest compatibility with DREAM3D-NX). In order +to do this one would run the :ref:`WriteDREAM3DFilter `. Appending the following code will write the entire +:ref:`DataStructure` to a .dream3d file (which is a plain HDF5 file). + +.. code:: python + + # Use the WriteDREAM3DFilter to write out the modified DataStructure to disk + result = nx.WriteDREAM3DFilter.execute(data_structure=data_structure, + export_file_path="Output/lesson_4.dream3d", + write_xdmf_file=False) + check_filter_result( nx.WriteDREAM3DFilter(), result) + + ################################################ Complete Source Code ################################################ @@ -255,26 +279,52 @@ Complete Source Code import matplotlib.pyplot as plt import nxutility + + def check_filter_result(filter: nx.IFilter, result: nx.IFilter.ExecuteResult) -> None: + """ + This function will check the `result` for any errors. If errors do exist then a + `RuntimeError` will be thrown. Your own code to modify this to return something + else that doesn't just stop your script in its tracks. + """ + if len(result.warnings) != 0: + for w in result.warnings: + print(f'Warning: ({w.code}) {w.message}') + + has_errors = len(result.errors) != 0 + if has_errors: + for err in result.errors: + print(f'Error: ({err.code}) {err.message}') + raise RuntimeError(result) + else: + print(f"{filter.name()} :: No errors running the filter") + + + # ############################################################################# + # Script Starts Here + # ############################################################################# + # Create the DataStructure instance data_structure = nx.DataStructure() result = nx.CreateDataGroup.execute(data_structure=data_structure, data_object_path=nx.DataPath("Top Level Group")) + check_filter_result(nx.CreateDataGroup(), result) # Loop to create a bunch of DataGroups. for i in range(1, 6): current_data_group_path = nx.DataPath(f"Top Level Group {i}") result = nx.CreateDataGroup.execute(data_structure=data_structure, data_object_path=current_data_group_path) + check_filter_result(nx.CreateDataGroup(), result) - # Execute the filter + # Execute the CreateDataArray filter result = nx.CreateDataArray().execute(data_structure=data_structure, component_count=1, initialization_value_str="0", numeric_type_index=nx.NumericType.float32, output_array_path=nx.DataPath("Top Level Group/2D Array"), tuple_dimensions=[[4,5]]) - nxutility.check_filter_result( nx.CreateDataArray(), result) + check_filter_result(nx.CreateDataArray(), result) print(f'{data_structure.hierarchy_to_str()}') # Try to get the array from the DataStructure @@ -283,7 +333,7 @@ Complete Source Code except AttributeError as attrerr: print(f'{attrerr}') quit(1) # This is pretty harsh! Maybe something more elegant to unwind from this error - + # Fill the numpy data view with random numbers rng = np.random.default_rng() rng.standard_normal(out=array_view, dtype=np.float32) @@ -296,3 +346,10 @@ Complete Source Code plt.axis('off') # to turn off axes plt.show() + + # Use the WriteDREAM3DFilter to write out the modified DataStructure to disk + result = nx.WriteDREAM3DFilter.execute(data_structure=data_structure, + export_file_path="Output/tutorial_1.dream3d", + write_xdmf_file=False) + check_filter_result( nx.WriteDREAM3DFilter(), result) + diff --git a/wrapping/python/docs/source/Tutorial_2.rst b/wrapping/python/docs/source/Tutorial_2.rst new file mode 100644 index 0000000000..4b28fc2ff1 --- /dev/null +++ b/wrapping/python/docs/source/Tutorial_2.rst @@ -0,0 +1,13 @@ +.. _Tutorial_2: + +===================================== +Tutorial 2: Manipulating Pipelines +===================================== + +################################### +Introduction +################################### + +Setup your environment in the same way as from :ref:`Tutorial 1`. In this tutorial we will +be manipulating a basic pipeline + diff --git a/wrapping/python/docs/source/User_API.rst b/wrapping/python/docs/source/User_API.rst index e65dc9505e..fc91525197 100644 --- a/wrapping/python/docs/source/User_API.rst +++ b/wrapping/python/docs/source/User_API.rst @@ -1,8 +1,8 @@ -.. _UserAPIDocs: - SIMPLNX Python API =================== +.. _UserAPIDocs: + Error & Warning Reporting -------------------------- @@ -11,7 +11,7 @@ Error & Warning Reporting .. _Result: -.. py:class:: Result +.. py:class:: IFilter.ExecuteResult The object that encapsulates any warnings or errors from either preflighting or executing a simplnx.Filter object. It can be queried for the list of errors or warnings and thus printed if needed. @@ -23,11 +23,17 @@ Error & Warning Reporting input_type=0, output_orientation_array_name='Quaternions', output_type=2) - if len(result.errors) != 0: - print('Errors: {}', result.errors) - print('Warnings: {}', result.warnings) + if len(result.warnings) != 0: + for w in result.warnings: + print(f'Warning: ({w.code}) {w.message}') + + has_errors = len(result.errors) != 0 + if has_errors: + for err in result.errors: + print(f'Error: ({err.code}) {err.message}') + raise RuntimeError(result) else: - print("No errors running the ConvertOrientations") + print(f"{filter.name()} :: No errors running the filter") General Parameters ------------------