diff --git a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureCentroids.cpp b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureCentroids.cpp index 5312f86045..554ea7e194 100644 --- a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureCentroids.cpp +++ b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureCentroids.cpp @@ -9,23 +9,20 @@ using namespace nx::core; namespace { - class ComputeFeatureCentroidsImpl1 { public: - ComputeFeatureCentroidsImpl1(ComputeFeatureCentroids* filter, double* sum, double* center, size_t* count, std::array dims, const nx::core::ImageGeom& imageGeom, - const Int32Array& featureIds) - : m_Filter(filter) - , m_Sum(sum) + ComputeFeatureCentroidsImpl1(double* sum, double* center, size_t* count, std::array dims, const nx::core::ImageGeom& imageGeom, const Int32AbstractDataStore& featureIds) + : m_Sum(sum) , m_Center(center) , m_Count(count) , m_Dims(dims) , m_ImageGeom(imageGeom) - , m_FeatureIds(featureIds.getDataStoreRef()) + , m_FeatureIds(featureIds) { } ~ComputeFeatureCentroidsImpl1() = default; - void compute(int64_t minFeatureId, int64_t maxFeatureId) const + void compute(usize minFeatureId, usize maxFeatureId) const { for(size_t i = 0; i < m_Dims[2]; i++) { @@ -35,7 +32,7 @@ class ComputeFeatureCentroidsImpl1 size_t yStride = j * m_Dims[0]; for(size_t k = 0; k < m_Dims[0]; k++) { - int32_t featureId = m_FeatureIds[zStride + yStride + k]; // Get the current FeatureId + int32 featureId = m_FeatureIds[zStride + yStride + k]; // Get the current FeatureId if(featureId < minFeatureId || featureId >= maxFeatureId) { continue; @@ -76,11 +73,9 @@ class ComputeFeatureCentroidsImpl1 } private: - ComputeFeatureCentroids* m_Filter = nullptr; double* m_Sum = nullptr; double* m_Center = nullptr; size_t* m_Count = nullptr; - size_t m_TotalFeatures = 0; std::array m_Dims = {0, 0, 0}; const nx::core::ImageGeom& m_ImageGeom; const Int32AbstractDataStore& m_FeatureIds; @@ -111,16 +106,15 @@ const std::atomic_bool& ComputeFeatureCentroids::getCancel() Result<> ComputeFeatureCentroids::operator()() { // Input Cell Data - const auto& featureIds = m_DataStructure.getDataRefAs(m_InputValues->FeatureIdsArrayPath); + const auto& featureIds = m_DataStructure.getDataAs(m_InputValues->FeatureIdsArrayPath)->getDataStoreRef(); // Output Feature Data - auto& centroidsArray = m_DataStructure.getDataRefAs(m_InputValues->CentroidsArrayPath); - auto& centroids = centroidsArray.getDataStoreRef(); + auto& centroids = m_DataStructure.getDataAs(m_InputValues->CentroidsArrayPath)->getDataStoreRef(); // Required Geometry const auto& imageGeom = m_DataStructure.getDataRefAs(m_InputValues->ImageGeometryPath); - size_t totalFeatures = centroidsArray.getNumberOfTuples(); + size_t totalFeatures = centroids.getNumberOfTuples(); size_t xPoints = imageGeom.getNumXCells(); size_t yPoints = imageGeom.getNumYCells(); @@ -138,7 +132,7 @@ Result<> ComputeFeatureCentroids::operator()() // by the total number of cores/threads and do a ParallelTask Algorithm instead // we might see some speedup. dataAlg.setParallelizationEnabled(false); - dataAlg.execute(ComputeFeatureCentroidsImpl1(this, sum.data(), center.data(), count.data(), {xPoints, yPoints, zPoints}, imageGeom, featureIds)); + dataAlg.execute(ComputeFeatureCentroidsImpl1(sum.data(), center.data(), count.data(), {xPoints, yPoints, zPoints}, imageGeom, featureIds)); // Here we are only looping over the number of features so let this just go in serial mode. for(size_t featureId = 0; featureId < totalFeatures; featureId++) diff --git a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.cpp b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.cpp index f729c4229f..a1647877a4 100644 --- a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.cpp +++ b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.cpp @@ -5,6 +5,7 @@ #include "simplnx/DataStructure/NeighborList.hpp" #include +#include using namespace nx::core; @@ -34,14 +35,12 @@ std::vector GenerateRandomDistribution(float32 minDistance, float32 max freq.resize(static_cast(currentNumBins + 1)); - std::random_device randomDevice; // Will be used to obtain a seed for the random number engine - std::mt19937_64 generator(randomDevice()); // Standard mersenne_twister_engine seeded with rd() - generator.seed(userSeedValue); + std::mt19937_64 generator(userSeedValue); // Standard mersenne_twister_engine seeded std::uniform_real_distribution distribution(0.0, 1.0); randomCentroids.resize(largeNumber * 3); - // Generating all of the random points and storing their coordinates in randomCentroids + // Generating all the random points and storing their coordinates in randomCentroids for(usize i = 0; i < largeNumber; i++) { const auto featureOwnerIdx = static_cast(distribution(generator) * totalPoints); @@ -61,7 +60,7 @@ std::vector GenerateRandomDistribution(float32 minDistance, float32 max distanceList.resize(largeNumber); - // Calculating all of the distances and storing them in the distance list + // Calculating all the distances and storing them in the distance list for(size_t i = 1; i < largeNumber; i++) { const float32 x = randomCentroids[3 * i]; @@ -132,17 +131,25 @@ const std::atomic_bool& ComputeFeatureClustering::getCancel() Result<> ComputeFeatureClustering::operator()() { const auto& imageGeometry = m_DataStructure.getDataRefAs(m_InputValues->ImageGeometryPath); - const auto& equivalentDiameters = m_DataStructure.getDataRefAs(m_InputValues->EquivalentDiametersArrayPath); - const auto& featurePhases = m_DataStructure.getDataRefAs(m_InputValues->FeaturePhasesArrayPath); - const auto& centroids = m_DataStructure.getDataRefAs(m_InputValues->CentroidsArrayPath); + const auto& featurePhasesStore = m_DataStructure.getDataAs(m_InputValues->FeaturePhasesArrayPath)->getDataStoreRef(); + const auto& centroidsStore = m_DataStructure.getDataAs(m_InputValues->CentroidsArrayPath)->getDataStoreRef(); auto& clusteringList = m_DataStructure.getDataRefAs>(m_InputValues->ClusteringListArrayName); - auto& rdf = m_DataStructure.getDataRefAs(m_InputValues->RDFArrayName); - auto& minMaxDistances = m_DataStructure.getDataRefAs(m_InputValues->MaxMinArrayName); - BoolArray* biasedFeatures = nullptr; + auto& rdfStore = m_DataStructure.getDataAs(m_InputValues->RDFArrayName)->getDataStoreRef(); + auto& minMaxDistancesStore = m_DataStructure.getDataAs(m_InputValues->MaxMinArrayName)->getDataStoreRef(); + std::unique_ptr maskCompare; if(m_InputValues->RemoveBiasedFeatures) { - biasedFeatures = m_DataStructure.getDataAs(m_InputValues->BiasedFeaturesArrayPath); + try + { + maskCompare = InstantiateMaskCompare(m_DataStructure, m_InputValues->BiasedFeaturesArrayPath); + } catch(const std::out_of_range& exception) + { + // This really should NOT be happening as the path was verified during preflight BUT we may be calling this from + // somewhere else that is NOT going through the normal nx::core::IFilter API of Preflight and Execute + std::string message = fmt::format("Mask Array DataPath does not exist or is not of the correct type (Bool | UInt8) {}", m_InputValues->BiasedFeaturesArrayPath.toString()); + return MakeErrorResult(-54070, message); + } } float32 x = 0.0f, y = 0.0f, z = 0.0f; @@ -154,13 +161,12 @@ Result<> ComputeFeatureClustering::operator()() int32 totalPptFeatures = 0; float32 min = std::numeric_limits::max(); float32 max = 0.0f; - float32 value = 0.0f; std::vector> clusters; std::vector oldCount(m_InputValues->NumberOfBins); std::vector randomRDF; - const usize totalFeatures = featurePhases.getNumberOfTuples(); + const usize totalFeatures = featurePhasesStore.getNumberOfTuples(); SizeVec3 dims = imageGeometry.getDimensions(); FloatVec3 spacing = imageGeometry.getSpacing(); @@ -175,7 +181,7 @@ Result<> ComputeFeatureClustering::operator()() for(usize i = 1; i < totalFeatures; i++) { - if(featurePhases[i] == m_InputValues->PhaseNumber) + if(featurePhasesStore[i] == m_InputValues->PhaseNumber) { totalPptFeatures++; } @@ -185,24 +191,24 @@ Result<> ComputeFeatureClustering::operator()() for(usize i = 1; i < totalFeatures; i++) { - if(featurePhases[i] == m_InputValues->PhaseNumber) + if(featurePhasesStore[i] == m_InputValues->PhaseNumber) { if(i % 1000 == 0) { m_MessageHandler(IFilter::Message::Type::Info, fmt::format("Working on Feature {} of {}", i, totalPptFeatures)); } - x = centroids[3 * i]; - y = centroids[3 * i + 1]; - z = centroids[3 * i + 2]; + x = centroidsStore[3 * i]; + y = centroidsStore[3 * i + 1]; + z = centroidsStore[3 * i + 2]; for(usize j = i + 1; j < totalFeatures; j++) { - if(featurePhases[i] == featurePhases[j]) + if(featurePhasesStore[i] == featurePhasesStore[j]) { - xn = centroids[3 * j]; - yn = centroids[3 * j + 1]; - zn = centroids[3 * j + 2]; + xn = centroidsStore[3 * j]; + yn = centroidsStore[3 * j + 1]; + zn = centroidsStore[3 * j + 2]; r = sqrtf((x - xn) * (x - xn) + (y - yn) * (y - yn) + (z - zn) * (z - zn)); @@ -215,11 +221,10 @@ Result<> ComputeFeatureClustering::operator()() for(usize i = 1; i < totalFeatures; i++) { - if(featurePhases[i] == m_InputValues->PhaseNumber) + if(featurePhasesStore[i] == m_InputValues->PhaseNumber) { - for(usize j = 0; j < clusters[i].size(); j++) + for(auto value : clusters[i]) { - value = clusters[i][j]; if(value > max) { max = value; @@ -234,27 +239,49 @@ Result<> ComputeFeatureClustering::operator()() const float32 stepSize = (max - min) / m_InputValues->NumberOfBins; - minMaxDistances[(m_InputValues->PhaseNumber * 2)] = max; - minMaxDistances[(m_InputValues->PhaseNumber * 2) + 1] = min; + minMaxDistancesStore[(m_InputValues->PhaseNumber * 2)] = max; + minMaxDistancesStore[(m_InputValues->PhaseNumber * 2) + 1] = min; - for(usize i = 1; i < totalFeatures; i++) + if(m_InputValues->RemoveBiasedFeatures && maskCompare != nullptr) { - if(featurePhases[i] == m_InputValues->PhaseNumber) + for(usize i = 1; i < totalFeatures; i++) { - if(m_InputValues->RemoveBiasedFeatures && (*biasedFeatures)[i]) + if(featurePhasesStore[i] == m_InputValues->PhaseNumber) { - continue; - } + if(maskCompare->isTrue(i)) + { + continue; + } - for(usize j = 0; j < clusters[i].size(); j++) + for(usize j = 0; j < clusters[i].size(); j++) + { + ensemble = featurePhasesStore[i]; + bin = (clusters[i][j] - min) / stepSize; + if(bin >= m_InputValues->NumberOfBins) + { + bin = m_InputValues->NumberOfBins - 1; + } + rdfStore[(m_InputValues->NumberOfBins * ensemble) + bin]++; + } + } + } + } + else + { + for(usize i = 1; i < totalFeatures; i++) + { + if(featurePhasesStore[i] == m_InputValues->PhaseNumber) { - ensemble = featurePhases[i]; - bin = (clusters[i][j] - min) / stepSize; - if(bin >= m_InputValues->NumberOfBins) + for(usize j = 0; j < clusters[i].size(); j++) { - bin = m_InputValues->NumberOfBins - 1; + ensemble = featurePhasesStore[i]; + bin = (clusters[i][j] - min) / stepSize; + if(bin >= m_InputValues->NumberOfBins) + { + bin = m_InputValues->NumberOfBins - 1; + } + rdfStore[(m_InputValues->NumberOfBins * ensemble) + bin]++; } - rdf[(m_InputValues->NumberOfBins * ensemble) + bin]++; } } } @@ -269,15 +296,12 @@ Result<> ComputeFeatureClustering::operator()() // Scale the random distribution by the number of distances in this particular instance const float32 normFactor = totalPptFeatures * (totalPptFeatures - 1); - for(usize i = 0; i < randomRDF.size(); i++) - { - randomRDF[i] *= normFactor; - } + std::transform(randomRDF.begin(), randomRDF.end(), randomRDF.begin(), [normFactor](float32 value) { return value * normFactor; }); for(usize i = 0; i < m_InputValues->NumberOfBins; i++) { - oldCount[i] = rdf[(m_InputValues->NumberOfBins * m_InputValues->PhaseNumber) + i]; - rdf[(m_InputValues->NumberOfBins * m_InputValues->PhaseNumber) + i] = oldCount[i] / randomRDF[i + 1]; + oldCount[i] = rdfStore[(m_InputValues->NumberOfBins * m_InputValues->PhaseNumber) + i]; + rdfStore[(m_InputValues->NumberOfBins * m_InputValues->PhaseNumber) + i] = oldCount[i] / randomRDF[i + 1]; } for(usize i = 1; i < totalFeatures; i++) diff --git a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.hpp b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.hpp index c244c6054c..791ef7f6d5 100644 --- a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.hpp +++ b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/Algorithms/ComputeFeatureClustering.hpp @@ -17,7 +17,6 @@ struct SIMPLNXCORE_EXPORT ComputeFeatureClusteringInputValues int32 PhaseNumber; bool RemoveBiasedFeatures; uint64 SeedValue; - DataPath EquivalentDiametersArrayPath; DataPath FeaturePhasesArrayPath; DataPath CentroidsArrayPath; DataPath BiasedFeaturesArrayPath; diff --git a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.cpp b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.cpp index a18effc39d..4d90e3aecb 100644 --- a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.cpp +++ b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.cpp @@ -71,15 +71,13 @@ Parameters ComputeFeatureClusteringFilter::parameters() const params.insert(std::make_unique(k_SeedArrayName_Key, "Stored Seed Value Array Name", "Name of array holding the seed value", "ComputeFeatureClustering SeedValue")); params.insertSeparator(Parameters::Separator{"Input Feature Data"}); - params.insert(std::make_unique(k_EquivalentDiametersArrayPath_Key, "Equivalent Diameters", "Diameter of a sphere with the same volume as the Feature", DataPath{}, - ArraySelectionParameter::AllowedTypes{DataType::float32}, ArraySelectionParameter::AllowedComponentShapes{{1}})); params.insert(std::make_unique(k_FeaturePhasesArrayPath_Key, "Phases", "Specifies to which Ensemble each Feature belongs", DataPath{}, ArraySelectionParameter::AllowedTypes{DataType::int32}, ArraySelectionParameter::AllowedComponentShapes{{1}})); params.insert(std::make_unique(k_CentroidsArrayPath_Key, "Centroids", "X, Y, Z coordinates of Feature center of mass", DataPath{}, ArraySelectionParameter::AllowedTypes{DataType::float32}, ArraySelectionParameter::AllowedComponentShapes{{3}})); params.insert(std::make_unique(k_BiasedFeaturesArrayPath_Key, "Biased Features", - "Specifies which features are biased and therefor should be removed if the Remove Biased Features option is on", DataPath{}, - ArraySelectionParameter::AllowedTypes{DataType::boolean}, ArraySelectionParameter::AllowedComponentShapes{{1}})); + "Specifies which features are biased and therefor should be removed if the Remove Biased Features option is on; True values removed", + DataPath{}, ArraySelectionParameter::AllowedTypes{DataType::boolean, DataType::uint8}, ArraySelectionParameter::AllowedComponentShapes{{1}})); params.insertSeparator(Parameters::Separator{"Input Ensemble Data"}); params.insert(std::make_unique(k_CellEnsembleAttributeMatrixPath_Key, "Cell Ensemble Attribute Matrix", "The path to the cell ensemble attribute matrix where the RDF and RDF min and max distance arrays will be stored", DataPath{})); @@ -108,7 +106,6 @@ IFilter::PreflightResult ComputeFeatureClusteringFilter::preflightImpl(const Dat { auto pNumberOfBinsValue = filterArgs.value(k_NumberOfBins_Key); auto pRemoveBiasedFeaturesValue = filterArgs.value(k_RemoveBiasedFeatures_Key); - auto pEquivalentDiametersArrayPathValue = filterArgs.value(k_EquivalentDiametersArrayPath_Key); auto pFeaturePhasesArrayPathValue = filterArgs.value(k_FeaturePhasesArrayPath_Key); auto pCentroidsArrayPathValue = filterArgs.value(k_CentroidsArrayPath_Key); auto pCellEnsembleAttributeMatrixNameValue = filterArgs.value(k_CellEnsembleAttributeMatrixPath_Key); @@ -123,7 +120,7 @@ IFilter::PreflightResult ComputeFeatureClusteringFilter::preflightImpl(const Dat nx::core::Result resultOutputActions; std::vector preflightUpdatedValues; - std::vector featureDataArrays = {pEquivalentDiametersArrayPathValue, pFeaturePhasesArrayPathValue, pCentroidsArrayPathValue}; + std::vector featureDataArrays = {pFeaturePhasesArrayPathValue, pCentroidsArrayPathValue}; if(pRemoveBiasedFeaturesValue) { featureDataArrays.push_back(filterArgs.value(k_BiasedFeaturesArrayPath_Key)); @@ -181,7 +178,6 @@ Result<> ComputeFeatureClusteringFilter::executeImpl(DataStructure& dataStructur inputValues.PhaseNumber = filterArgs.value(k_PhaseNumber_Key); inputValues.RemoveBiasedFeatures = filterArgs.value(k_RemoveBiasedFeatures_Key); inputValues.SeedValue = seed; - inputValues.EquivalentDiametersArrayPath = filterArgs.value(k_EquivalentDiametersArrayPath_Key); inputValues.FeaturePhasesArrayPath = filterArgs.value(k_FeaturePhasesArrayPath_Key); inputValues.CentroidsArrayPath = filterArgs.value(k_CentroidsArrayPath_Key); inputValues.BiasedFeaturesArrayPath = filterArgs.value(k_BiasedFeaturesArrayPath_Key); @@ -226,8 +222,6 @@ Result ComputeFeatureClusteringFilter::FromSIMPLJson(const nlohmann:: results.push_back(SIMPLConversion::ConvertParameter(args, json, SIMPL::k_RandomSeedValueKey, k_SeedValue_Key)); results.push_back( SIMPLConversion::ConvertParameter(args, json, SIMPL::k_EquivalentDiametersArrayPathKey, k_SelectedImageGeometryPath_Key)); - results.push_back( - SIMPLConversion::ConvertParameter(args, json, SIMPL::k_EquivalentDiametersArrayPathKey, k_EquivalentDiametersArrayPath_Key)); results.push_back(SIMPLConversion::ConvertParameter(args, json, SIMPL::k_FeaturePhasesArrayPathKey, k_FeaturePhasesArrayPath_Key)); results.push_back(SIMPLConversion::ConvertParameter(args, json, SIMPL::k_CentroidsArrayPathKey, k_CentroidsArrayPath_Key)); results.push_back(SIMPLConversion::ConvertParameter(args, json, SIMPL::k_BiasedFeaturesArrayPathKey, k_BiasedFeaturesArrayPath_Key)); diff --git a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.hpp b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.hpp index 18794c8a51..b82f5718fa 100644 --- a/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.hpp +++ b/src/Plugins/SimplnxCore/src/SimplnxCore/Filters/ComputeFeatureClusteringFilter.hpp @@ -31,7 +31,6 @@ class SIMPLNXCORE_EXPORT ComputeFeatureClusteringFilter : public IFilter static inline constexpr StringLiteral k_SetRandomSeed_Key = "set_random_seed"; static inline constexpr StringLiteral k_SeedValue_Key = "seed_value"; static inline constexpr StringLiteral k_SeedArrayName_Key = "seed_array_name"; - static inline constexpr StringLiteral k_EquivalentDiametersArrayPath_Key = "equivalent_diameters_array_path"; static inline constexpr StringLiteral k_FeaturePhasesArrayPath_Key = "feature_phases_array_path"; static inline constexpr StringLiteral k_CentroidsArrayPath_Key = "centroids_array_path"; static inline constexpr StringLiteral k_BiasedFeaturesArrayPath_Key = "biased_features_array_path";