forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
53_hopper_gemm_permute.cu
979 lines (855 loc) · 44.3 KB
/
53_hopper_gemm_permute.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Hopper GEMM+permute example.
This example demonstrates the fusion of tensor permutation operations with a Hopper GEMM kernel.
It is similar in spirit to example 39_gemm_permute, but uses CUTLASS 3 CollectiveBuilder API to
construct kernels that make use of Hopper architecture features: Tensor Memory Accelerator (TMA)
units and warpgroup-level MMA instructions.
Background
----------
While a GEMM kernel computes a product of two matrices (rank-2 tensors), the source data may
come from higher-rank tensors by combining some if its modes (dimensions) into the row and column
modes of the matrix. These tensors are often outputs from previous layers of a network, and the
data may sometimes need to be reordered in memory before a GEMM is computed. Similarly, the output
of a GEMM may need to be reordered before a subsequent operation can be executed.
Consider this sample PyTorch code:
# Forward pass
D = torch.mm(A, B).view(M/D1, D1, D2, N/D2).permute(0, 2, 1, 3)
# Backward pass
grad_A = torch.mm(grad_D.permute(0, 2, 1, 3).view(M, N), B)
Executing the reordering as a separate operation requires committing intermediate tensor to memory
and increases the latency and memory footprint of the model. By fusing the permutation with either
reading of A/B matrices or writing of D matrix, we can avoid the unnecessary global memory traffic
and kernel launch overhead.
Implementation
--------------
The approach relies on two things:
- The ability of CUTLASS 3 to naturally perform general tensor contractions (GETT) owing to the
flexibility of CuTe's hierarchical layouts (see example 51_hopper_gett for more details).
- The harware capabilities of Hopper TMA units that allow for loading multidimensional tensors with
(almost) arbitrary strides, which can be used to represent a permuted view of the data.
In this example we reuse the permutation classes of examples 39_gemm_permute as operation tags.
For each tag, a specialization of struct PermuteTraits<> provides the necessary information about
the target tensor shape and ordering of modes. The main class, ExampleRunner, then figures out the
overall (hierarchical) shape of the GEMM operation and computes the shape and strides for each
tensor taking into account the permutation applied. We highlight the importance of specifying
consistent multidimensional shapes for all tensors (even those that are not permuted), as well as
choosing hierarchical GEMM tile sizes that best fit those shapes (in cases where some tensor
dimensions are known at compile time).
In addition, this example implements a standalone permutation kernel that is used to both verify
correctness of the fused kernel and benchmark the fused kernel against an unfused version that
writes intermediate tensor to memory.
*/
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/layout/permute.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "helper.h"
#include "permute_kernel.cuh"
#include "permute_traits.hpp"
namespace example
{
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
struct Options {
bool help;
cutlass::gemm::BatchedGemmCoord problem_size;
float alpha;
float beta;
bool reference_check;
int iterations;
bool verbose;
Options():
help(false),
problem_size({2048, 2048, 2048, 8}),
alpha(1.0),
beta(1.0),
reference_check(true),
iterations(20),
verbose(false) { }
bool valid() const {
return problem_size.m() > 0
&& problem_size.n() > 0
&& problem_size.k() > 0
&& problem_size.batch() > 0
&& iterations > 0;
}
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
}
cmd.get_cmd_line_argument("m", problem_size.m());
cmd.get_cmd_line_argument("n", problem_size.n());
cmd.get_cmd_line_argument("k", problem_size.k());
cmd.get_cmd_line_argument("batch_size", problem_size.batch());
cmd.get_cmd_line_argument("alpha", alpha);
cmd.get_cmd_line_argument("beta", beta);
cmd.get_cmd_line_argument("check", reference_check, true);
cmd.get_cmd_line_argument("iterations", iterations);
cmd.get_cmd_line_argument("verbose", verbose, false);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out <<
"53_hopper_gemm_permute example\n"
"\n"
" This example uses the CUTLASS Library to fuse permute() on input/output tensors with GEMM\n"
"\n"
"Options:\n"
" --help If specified, displays this usage statement.\n"
" --m=<int> GEMM M dimension\n"
" --n=<int> GEMM N dimension\n"
" --k=<int> GEMM K dimension\n"
" --alpha=<float> GEMM alpha parameter\n"
" --beta=<float> GEMM beta parameter\n"
" --iterations=<int> Number of profiling iterations to perform.\n"
" --check=<bool> Validate results against a reference (unfused) imlementation"
" --verbose=<bool> Enable verbose output"
"\n"
"Examples:\n"
"\n"
"$ ./examples/53_hopper_gemm_permute/53_hopper_gemm_permute --m=4096 --n=2048 --k=3072 --batch_size=8\n";
return out;
}
};
using namespace cute;
// Check the shapes assigned to the same mode of different tensors,
// ensure all permuted shapes are the same and return that shape.
template<class ... Shapes>
auto
select_mode_shape(Shapes const & ... shapes) {
auto permuted_shapes = filter_tuple(cute::make_tuple(shapes...), [](auto shape) {
if constexpr (cute::rank(shape) > 1) {
return cute::make_tuple(shape);
}
else {
return cute::make_tuple();
}
});
if constexpr (cute::rank(permuted_shapes) == 0) {
return get<0>(cute::make_tuple(shapes...));
}
else {
auto ref_shape = get<0>(permuted_shapes);
for_each(permuted_shapes, [&](auto shape) {
// This static assert fails to compile on GCC 7.5
// static_assert(is_same<decltype(shape), decltype(ref_shape)>::value, "Inconsistent shapes for the same mode");
// This runtime check can be skipped if all permutations are required to be static.
if (shape != ref_shape)
{
print("Inconsistent shapes for the same mode: ");
print(ref_shape); print(" and "); print(shape); print("\n");
exit(EXIT_FAILURE);
}
});
return ref_shape;
}
}
template<class Shape, class StrideOrig>
auto
compute_default_stride(Shape const & shape, StrideOrig const & stride_orig) {
// Only supports column-major and row-major, batch stride always comes last
if constexpr (is_constant<1, decltype(get<0>(stride_orig))>::value) {
return compact_col_major(shape);
}
else
{
return compact_order(shape, Step<_1,_0,_2>{});
}
}
// Divide a static scalar TileSize into static modes of Shape until either:
// - a dynamic mode is encountered
// - we run out of size to divide
// - no longer divisible by next shape
// Examples:
// select_tile_shape(_128, (_8,_16)) -> (_8,_16)
// select_tile_shape(_128, (_8,_32)) -> (_8,_16)
// select_tile_shape(_128, (_8, _4)) -> (_8,_4,_4)
// select_tile_shape(_128, (_8, 4)) -> (_8,_16)
template<class TileSize, class Shape>
auto
select_tile_shape(TileSize size, Shape const& shape)
{
static_assert(is_static<TileSize>::value, "Tile size must be static");
if constexpr (cute::rank(Shape{}) == 0) {
return cute::make_tuple(size);
}
else {
if constexpr (is_static<tuple_element_t<0, Shape>>::value) {
auto div = front(shape);
if constexpr (size > div and size % div == 0) {
return prepend(select_tile_shape(size / div, take<1,tuple_size_v<Shape>>(shape)), div);
}
else {
return cute::make_tuple(size);
}
}
else {
return cute::make_tuple(size);
}
}
}
template<class ElementA, class LayoutA, class PermuteA,
class ElementB, class LayoutB, class PermuteB,
class ElementC, class LayoutC, class PermuteC,
class ElementD, class LayoutD, class PermuteD,
class ElementAccumulator, class ElementEpilogue,
class TileShape, class ClusterShape>
class ExampleRunner
{
private:
// Define shapes for each operand and original GEMM problem as a whole.
using MatrixShape = Shape<int,int,int>; // [M,N,L]/[M,K,L]/[N,K,L]
using ProblemShape = Shape<int,int,int,int>; // [M,N,K,L]
// Determine the CuTe stride for each of the four operands.
using StrideA = cutlass::gemm::TagToStrideA_t<LayoutA>;
using StrideB = cutlass::gemm::TagToStrideB_t<LayoutB>;
using StrideC = cutlass::gemm::TagToStrideC_t<LayoutC>;
using StrideD = cutlass::gemm::TagToStrideC_t<LayoutD>;
// Flags to check which operands will be permuted.
static constexpr bool DoPermuteA = not cutlass::layout::is_trivial_permute<PermuteA>;
static constexpr bool DoPermuteB = not cutlass::layout::is_trivial_permute<PermuteB>;
static constexpr bool DoPermuteC = not cutlass::layout::is_trivial_permute<PermuteC>;
static constexpr bool DoPermuteD = not cutlass::layout::is_trivial_permute<PermuteD>;
// For input operands, we must use inverse of the permutation operation
// to read data that is stored in original (un-permuted) order.
using PermuteAReal = typename cutlass::layout::InversePermute<PermuteA>::type;
using PermuteBReal = typename cutlass::layout::InversePermute<PermuteB>::type;
using PermuteCReal = typename cutlass::layout::InversePermute<PermuteC>::type;
using PermuteDReal = PermuteD;
// Get permutation layout for each operand.
// A permutation layout is a rank-3 layout in the usual CuTe mode ordering,
// but each mode may have a nested shape corresponding to the reshaping of
// the matrix into a multidimensional tensor, and the strides are computed
// taking the desired permutation into account.
template<class Permute, class Stride, bool Transpose>
using LayoutPermute = remove_cvref_t<decltype(make_permute_layout<Permute, Transpose>(make_layout(MatrixShape{}, Stride{})))>;
using LayoutAP = LayoutPermute<PermuteAReal, StrideA, false>;
using LayoutBP = LayoutPermute<PermuteBReal, StrideB, true >;
using LayoutCP = LayoutPermute<PermuteCReal, StrideC, false>;
using LayoutDP = LayoutPermute<PermuteDReal, StrideD, false>;
// Now we want to build the unified problem shape for permute-GEMM.
// To do this, we check the corresponding mode in each tensor that has it.
// If at least one tensor has a mode that has been reshaped (i.e. rank > 1),
// its shape will be used as the reference shape for that mode in all tensors.
// If multiple tensors have reshaped mode, we additionally check that their
// shapes for that mode match. Otherwise, we can't define a consistent GEMM shape.
using ShapeM = decltype(select_mode_shape(shape<0>(LayoutAP{}), shape<0>(LayoutCP{}), shape<0>(LayoutDP{})));
using ShapeN = decltype(select_mode_shape(shape<0>(LayoutBP{}), shape<1>(LayoutCP{}), shape<1>(LayoutDP{})));
using ShapeK = decltype(select_mode_shape(shape<1>(LayoutAP{}), shape<1>(LayoutBP{})));
using ShapeL = decltype(select_mode_shape(shape<2>(LayoutAP{}), shape<2>(LayoutBP{}), shape<2>(LayoutCP{}), shape<2>(LayoutDP{})));
using ProblemShapePermute = Shape<ShapeM, ShapeN, ShapeK, ShapeL>;
using ShapeAPermute = Shape<ShapeM, ShapeK, ShapeL>;
using ShapeBPermute = Shape<ShapeN, ShapeK, ShapeL>;
using ShapeCPermute = Shape<ShapeM, ShapeN, ShapeL>;
using ShapeDPermute = Shape<ShapeM, ShapeN, ShapeL>;
// Next, we must define the strides for each tensor.
// If the tensor is permuted, we take the strides produced by the permutation function.
// Otherwise, we compute default strides induced by the new (multidimensional) shape of the tensor.
//
// This won't always work in general if multiple tensors are permuted: e.g. if PermuteA affects
// modes M and K, and PermuteB affects modes N and L, the single stride for mode L of tensor A
// computed by PermuteA will be non-congruent with it's shape that is changed by PermuteB.
// To handle this correctly, a more complicated logic is needed to reconstruct multi-mode strides.
// This is not addressed here, as it's not a common requirement to permute multiple tensors in one GEMM.
using StrideAPermute = conditional_t<DoPermuteA, remove_cvref_t<decltype(stride(LayoutAP{}))>, decltype(compute_default_stride(ShapeAPermute{}, StrideA{}))>;
using StrideBPermute = conditional_t<DoPermuteB, remove_cvref_t<decltype(stride(LayoutBP{}))>, decltype(compute_default_stride(ShapeBPermute{}, StrideB{}))>;
using StrideCPermute = conditional_t<DoPermuteC, remove_cvref_t<decltype(stride(LayoutCP{}))>, decltype(compute_default_stride(ShapeCPermute{}, StrideC{}))>;
using StrideDPermute = conditional_t<DoPermuteD, remove_cvref_t<decltype(stride(LayoutDP{}))>, decltype(compute_default_stride(ShapeDPermute{}, StrideD{}))>;
// We need to select optimal tile shape based on the tile size specified by the user.
// This is done by dividing the tile size in each mode by the mode shape as much
// as possible (i.e. until we run out of tile size or encounter a dynamic sub-shape).
using TileMPermute = decltype(select_tile_shape(get<0>(TileShape{}), ShapeM{}));
using TileNPermute = decltype(select_tile_shape(get<1>(TileShape{}), ShapeN{}));
using TileKPermute = decltype(select_tile_shape(get<2>(TileShape{}), ShapeK{}));
using TileShapePermute = Shape<TileMPermute, TileNPermute, TileKPermute>;
// Now we are ready to define the GEMM kernel types for both fused permute and reference paths.
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShape, ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementEpilogue,
ElementC, StrideC, 128 / cutlass::sizeof_bits<ElementC>::value,
ElementD, StrideD, 128 / cutlass::sizeof_bits<ElementD>::value,
cutlass::epilogue::collective::EpilogueScheduleAuto
>::CollectiveOp;
using CollectiveEpiloguePermute = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShapePermute, ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementEpilogue,
ElementC, StrideCPermute, 128 / cutlass::sizeof_bits<ElementC>::value,
ElementD, StrideDPermute, 128 / cutlass::sizeof_bits<ElementD>::value,
cutlass::epilogue::collective::EpilogueScheduleAuto
>::CollectiveOp;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementA, StrideA, 128 / cutlass::sizeof_bits<ElementA>::value,
ElementB, StrideB, 128 / cutlass::sizeof_bits<ElementB>::value,
ElementAccumulator,
TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
cutlass::gemm::collective::KernelScheduleAuto
>::CollectiveOp;
using CollectiveMainloopPermute = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementA, StrideAPermute, 128 / cutlass::sizeof_bits<ElementA>::value,
ElementB, StrideBPermute, 128 / cutlass::sizeof_bits<ElementB>::value,
ElementAccumulator,
TileShapePermute, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(sizeof(typename CollectiveEpiloguePermute::SharedStorage))>,
cutlass::gemm::collective::KernelScheduleAuto
>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
ProblemShape,
CollectiveMainloop,
CollectiveEpilogue
>;
using GemmKernelPermute = cutlass::gemm::kernel::GemmUniversal<
ProblemShapePermute,
CollectiveMainloopPermute,
CollectiveEpiloguePermute
>;
using GemmReference = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using GemmPermute = cutlass::gemm::device::GemmUniversalAdapter<GemmKernelPermute>;
// Data members
cutlass::gemm::BatchedGemmCoord problem_size;
ProblemShape problem_shape;
cutlass::KernelHardwareInfo hw_info;
ElementEpilogue alpha;
ElementEpilogue beta;
MatrixShape shape_A;
MatrixShape shape_B;
MatrixShape shape_C;
MatrixShape shape_D;
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
LayoutAP layout_AP;
LayoutBP layout_BP;
LayoutCP layout_CP;
LayoutDP layout_DP;
ShapeM shape_M;
ShapeN shape_N;
ShapeK shape_K;
ShapeL shape_L;
ProblemShapePermute problem_shape_permute;
ShapeAPermute shape_A_permute;
ShapeBPermute shape_B_permute;
ShapeCPermute shape_C_permute;
ShapeDPermute shape_D_permute;
StrideAPermute stride_A_permute;
StrideBPermute stride_B_permute;
StrideCPermute stride_C_permute;
StrideDPermute stride_D_permute;
cutlass::device_memory::allocation<ElementA> tensor_a;
cutlass::device_memory::allocation<ElementB> tensor_b;
cutlass::device_memory::allocation<ElementC> tensor_c;
cutlass::device_memory::allocation<ElementD> tensor_d;
cutlass::device_memory::allocation<ElementA> tensor_a_permuted;
cutlass::device_memory::allocation<ElementB> tensor_b_permuted;
cutlass::device_memory::allocation<ElementC> tensor_c_permuted;
cutlass::device_memory::allocation<ElementD> tensor_d_unpermuted;
cutlass::device_memory::allocation<ElementD> tensor_d_reference;
cutlass::gemm::GemmUniversalMode gemm_mode;
GemmPermute gemm_permute;
typename GemmPermute::Arguments arguments_permute;
cutlass::device_memory::allocation<uint8_t> workspace_permute;
GemmReference gemm_reference;
typename GemmReference::Arguments arguments_reference;
cutlass::device_memory::allocation<uint8_t> workspace_reference;
public:
ExampleRunner(Options const & options, cutlass::KernelHardwareInfo const & hw_info)
: problem_size(options.problem_size),
problem_shape(problem_size.m(), problem_size.n(), problem_size.k(), problem_size.batch()),
hw_info(hw_info),
alpha(options.alpha),
beta(options.beta),
shape_A(make_shape(problem_size.m(), problem_size.k(), problem_size.batch())),
shape_B(make_shape(problem_size.n(), problem_size.k(), problem_size.batch())),
shape_C(make_shape(problem_size.m(), problem_size.n(), problem_size.batch())),
shape_D(make_shape(problem_size.m(), problem_size.n(), problem_size.batch())),
stride_A(cutlass::make_cute_packed_stride(StrideA{}, shape_A)),
stride_B(cutlass::make_cute_packed_stride(StrideB{}, shape_B)),
stride_C(cutlass::make_cute_packed_stride(StrideC{}, shape_C)),
stride_D(cutlass::make_cute_packed_stride(StrideD{}, shape_D)),
layout_AP(make_permute_layout<PermuteAReal, false>(make_layout(shape_A, stride_A))),
layout_BP(make_permute_layout<PermuteBReal, true >(make_layout(shape_B, stride_B))),
layout_CP(make_permute_layout<PermuteCReal, false>(make_layout(shape_C, stride_C))),
layout_DP(make_permute_layout<PermuteDReal, false>(make_layout(shape_D, stride_D))),
shape_M(select_mode_shape(shape<0>(layout_AP), shape<0>(layout_CP), shape<0>(layout_DP))),
shape_N(select_mode_shape(shape<0>(layout_BP), shape<1>(layout_CP), shape<1>(layout_DP))),
shape_K(select_mode_shape(shape<1>(layout_AP), shape<1>(layout_BP))),
shape_L(select_mode_shape(shape<2>(layout_AP), shape<2>(layout_BP), shape<2>(layout_CP), shape<2>(layout_DP))),
problem_shape_permute(shape_M, shape_N, shape_K, shape_L),
shape_A_permute(make_shape(shape_M, shape_K, shape_L)),
shape_B_permute(make_shape(shape_N, shape_K, shape_L)),
shape_C_permute(make_shape(shape_M, shape_N, shape_L)),
shape_D_permute(make_shape(shape_M, shape_N, shape_L)),
stride_A_permute(conditional_return<DoPermuteA>(layout_AP.stride(), compute_default_stride(shape_A_permute, stride_A))),
stride_B_permute(conditional_return<DoPermuteB>(layout_BP.stride(), compute_default_stride(shape_B_permute, stride_B))),
stride_C_permute(conditional_return<DoPermuteC>(layout_CP.stride(), compute_default_stride(shape_C_permute, stride_C))),
stride_D_permute(conditional_return<DoPermuteD>(layout_DP.stride(), compute_default_stride(shape_D_permute, stride_D))),
tensor_a(problem_size.m() * problem_size.k() * problem_size.batch()),
tensor_b(problem_size.k() * problem_size.n() * problem_size.batch()),
tensor_c(problem_size.m() * problem_size.n() * problem_size.batch()),
tensor_d(problem_size.m() * problem_size.n() * problem_size.batch()),
tensor_a_permuted(problem_size.m() * problem_size.k() * problem_size.batch()),
tensor_b_permuted(problem_size.k() * problem_size.n() * problem_size.batch()),
tensor_c_permuted(problem_size.m() * problem_size.n() * problem_size.batch()),
tensor_d_unpermuted(problem_size.m() * problem_size.n() * problem_size.batch()),
tensor_d_reference(problem_size.m() * problem_size.n() * problem_size.batch()),
gemm_mode(problem_size.batch() > 1 ? cutlass::gemm::GemmUniversalMode::kBatched : cutlass::gemm::GemmUniversalMode::kGemm),
arguments_permute{
gemm_mode,
problem_shape_permute,
{
tensor_a.get(), stride_A_permute,
tensor_b.get(), stride_B_permute,
},
{
{ alpha, beta },
tensor_c.get(), stride_C_permute,
tensor_d.get(), stride_D_permute
},
hw_info
},
workspace_permute(GemmPermute::get_workspace_size(arguments_permute)),
arguments_reference{
gemm_mode,
problem_shape,
{
DoPermuteA ? tensor_a_permuted.get() : tensor_a.get(), stride_A,
DoPermuteB ? tensor_b_permuted.get() : tensor_b.get(), stride_B
},
{
{ alpha, beta },
DoPermuteC ? tensor_c_permuted.get() : tensor_c.get(), stride_C,
DoPermuteD ? tensor_d_unpermuted.get() : tensor_d_reference.get(), stride_D
},
hw_info
},
workspace_reference(GemmReference::get_workspace_size(arguments_reference))
{
if (options.verbose) {
print("Original GEMM problem:\n");
print(" Problem shape: "); print(problem_shape); print("\n");
print(" Layout A: "); print(make_layout(shape_A, stride_A)); print("\n");
print(" Layout B: "); print(make_layout(shape_B, stride_B)); print("\n");
print(" Layout C: "); print(make_layout(shape_C, stride_C)); print("\n");
print(" Layout D: "); print(make_layout(shape_D, stride_D)); print("\n");
print(" Tile shape: "); print(TileShape{}); print("\n");
print("With fused permutations:\n");
print(" Problem shape: "); print(problem_shape_permute); print("\n");
print(" Layout A: "); print(make_layout(shape_A_permute, stride_A_permute)); print("\n");
print(" Layout B: "); print(make_layout(shape_B_permute, stride_B_permute)); print("\n");
print(" Layout C: "); print(make_layout(shape_C_permute, stride_C_permute)); print("\n");
print(" Layout D: "); print(make_layout(shape_D_permute, stride_D_permute)); print("\n");
print(" Tile shape: "); print(TileShapePermute{}); print("\n");
}
cutlass::reference::device::BlockFillRandomUniform(tensor_a.get(), tensor_a.size(), 1, ElementA(7), ElementA(-8), 0);
cutlass::reference::device::BlockFillRandomUniform(tensor_b.get(), tensor_b.size(), 2, ElementB(7), ElementB(-8), 0);
cutlass::reference::device::BlockFillRandomUniform(tensor_c.get(), tensor_c.size(), 3, ElementC(7), ElementC(-8), 0);
cutlass::reference::device::BlockFillSequential(tensor_d.get(), tensor_d.size(), ElementD(0), ElementD(0));
auto const gemm_init = [](auto & gemm, auto const & arguments, auto & workspace) {
cutlass::Status status = gemm.can_implement(arguments);
if (status != cutlass::Status::kSuccess) {
std::cerr << "Requested GEMM kernel cannot be used for this problem.\n"
<< "Check problem sizes and alignment requirements." << std::endl;
exit(EXIT_FAILURE);
}
status = gemm.initialize(arguments, workspace.get());
CUTLASS_CHECK(status);
};
gemm_init(gemm_permute, arguments_permute, workspace_permute );
gemm_init(gemm_reference, arguments_reference, workspace_reference);
}
void debug_output(std::ostream & os)
{
auto print_tensor = [](std::ostream &os, char const * name, auto const & data, auto shape, auto stride)
{
std::vector<remove_cvref_t<decltype(*data.get())>> h_data(data.size());
data.copy_to_host(h_data.data());
Tensor t = make_tensor(h_data.data(), shape, stride);
os << "\n" << name << ": " << std::setw(4) << t << std::endl;
};
auto [M,N,K,L] = problem_shape;
print_tensor(os, "A", tensor_a, make_shape(M,K,L), stride_A);
print_tensor(os, "B", tensor_b, make_shape(N,K,L), stride_B);
print_tensor(os, "C", tensor_c, make_shape(M,N,L), stride_C);
print_tensor(os, "D", tensor_d, make_shape(M,N,L), stride_D);
print_tensor(os, "D reference", tensor_d_reference, make_shape(M,N,L), stride_D);
}
template<bool DoTime, class Gemm>
static float
run_gemm(Gemm &gemm)
{
GpuTimer timer;
if constexpr (DoTime) timer.start();
cutlass::Status status = gemm.run();
CUTLASS_CHECK(status);
if constexpr (DoTime) timer.stop();
if constexpr (DoTime) return timer.elapsed_millis();
else return 0;
}
template<bool DoTime, class Permute, class Element, class Shape, class Stride>
static float
run_permute(cutlass::device_memory::allocation<Element> const & input,
cutlass::device_memory::allocation<Element> & output,
Layout<Shape, Stride> const& layout,
cutlass::KernelHardwareInfo const & hw_info)
{
auto idx = find_if(layout.stride(), [](auto x){ return not is_constant<1, decltype(x)>{}; });
auto stride = get<decltype(idx)::value>(layout.stride());
GpuTimer timer;
if constexpr (DoTime) timer.start();
permute<PermuteTraits<Permute>::kBatched, Permute>(input.get(),
output.get(),
size(take<0,2>(layout)),
static_cast<int>(stride),
shape<2>(layout),
hw_info);
if constexpr (DoTime) timer.stop();
if constexpr (DoTime) return timer.elapsed_millis();
else return 0;
};
template<bool DoTime, class Gemm2>
auto run_reference(Gemm2 &gemm)
{
float permute_time = 0.f;
if constexpr (DoPermuteA) {
auto orig_layout = make_original_layout<PermuteAReal, false>(make_layout(shape_A, stride_A));
permute_time += run_permute<DoTime, PermuteA>(tensor_a, tensor_a_permuted, orig_layout, hw_info);
}
if constexpr (DoPermuteB) {
auto orig_layout = make_original_layout<PermuteBReal, true>(make_layout(shape_B, stride_B));
permute_time += run_permute<DoTime, PermuteB>(tensor_b, tensor_b_permuted, select<1,0,2>(orig_layout), hw_info);
}
if constexpr (DoPermuteC) {
auto orig_layout = make_original_layout<PermuteCReal, false>(make_layout(shape_C, stride_C));
permute_time += run_permute<DoTime, PermuteC>(tensor_c, tensor_c_permuted, orig_layout, hw_info);
}
float gemm_time = run_gemm<DoTime>(gemm);
if constexpr (DoPermuteD) {
auto orig_layout = make_layout(shape_D, stride_D);
permute_time += run_permute<DoTime, PermuteD>(tensor_d_unpermuted, tensor_d_reference, orig_layout, hw_info);
}
return cute::make_tuple(gemm_time, permute_time);
}
bool verify()
{
run_gemm<false>(gemm_permute);
run_reference<false>(gemm_reference);
return cutlass::reference::device::BlockCompareEqual(tensor_d.get(), tensor_d_reference.get(), tensor_d.size());
}
bool run(Options const &options)
{
if (options.reference_check) {
if (!verify()) {
std::cout << "Failed validation" << std::endl;
#if 1
debug_output(std::cout);
#endif
return false;
}
else {
std::cout << "Passed validation" << std::endl;
}
}
//
// Run profiling loop
//
auto const benchmark = [&](auto name, auto func)
{
GpuTimer timer;
timer.start();
for (int iter = 0; iter < options.iterations; ++iter) {
func();
}
timer.stop();
double runtime = timer.elapsed_millis() / double(options.iterations);
double gflops = 2 * double(problem_size.product()) / 1e6 / runtime; // Two flops per multiply-add
std::cout << name << ":\n";
std::cout << " Runtime: " << runtime << " ms\n";
std::cout << " GFLOPs: " << gflops << "\n";
};
benchmark("Fused GEMM+permute", [&](){ run_gemm<false>(gemm_permute); });
benchmark("Unfused GEMM+permute", [&](){ run_reference<false>(gemm_reference); });
benchmark("Standalone GEMM only", [&](){ run_gemm<false>(gemm_reference); });
std::cout << "\n";
return true;
}
};
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
} // namespace example
int main(int argc, char const **argv)
{
bool notSupported = false;
// CUDA 12 minimum required
if (__CUDACC_VER_MAJOR__ < 12) {
std::cerr << "This example requires CUDA Toolkit version 12 or later.\n";
notSupported = true;
}
cudaDeviceProp props;
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
if (props.major < 9) {
std::cerr << "This example requires a device with compute capability 90 or higher.\n";
notSupported = true;
}
if (notSupported) {
return EXIT_SUCCESS; // Do not fail CI checks on unsupported systems
}
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
example::Options options;
options.parse(argc, argv);
if (options.help) {
options.print_usage(std::cout) << "\n";
return EXIT_SUCCESS;
}
if (!options.valid()) {
std::cerr << "Invalid arguments." << "\n";
return EXIT_FAILURE;
}
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = 0;
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
using namespace cute;
// Define the data types
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementD = cutlass::half_t;
using ElementAccumulator = float;
using ElementEpilogue = float;
// M=64 for TMA epilogue
using TileShape = Shape<_128,_128,_64>;
// Cluster launch with TMA multicast for better perf
using ClusterShape = Shape<_2,_2,_1>;
bool result = true;
#define COMPILE_ALL_EXAMPLES 0
// REGULAR GEMMS
{
print("===================================================\n");
print("Tensor A: RowMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::Tensor4DPermute0213RowMajor<8, 16>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#if COMPILE_ALL_EXAMPLES
{
print("===================================================\n");
print("Tensor A: ColumnMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::ColumnMajor, cutlass::layout::Tensor4DPermute0213ColumnMajor<8, 16>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
{
print("===================================================\n");
print("Tensor B: RowMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::ColumnMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::Tensor4DPermute0213RowMajor<8, 16>,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#endif
{
print("===================================================\n");
print("Tensor B: ColumnMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::ColumnMajor, cutlass::layout::Tensor4DPermute0213ColumnMajor<8, 16>,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
{
print("===================================================\n");
print("Tensor D: RowMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::Tensor4DPermute0213RowMajor<8, 16>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#if COMPILE_ALL_EXAMPLES
{
print("===================================================\n");
print("Tensor D: ColumnMajor, Tensor4DPermute0213<8,16>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::ColumnMajor, cutlass::layout::Tensor4DPermute0213ColumnMajor<8, 16>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#endif
{
print("===================================================\n");
print("Tensor A: RowMajor, Tensor5DPermute20314<16,8,4>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::Tensor5DPermute20314RowMajor<16,8,4>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#if COMPILE_ALL_EXAMPLES
{
print("===================================================\n");
print("Tensor A: ColumnMajor, Tensor5DPermute02413<16,8,4>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::ColumnMajor, cutlass::layout::Tensor5DPermute02413ColumnMajor<16,8,4>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#endif
{
print("===================================================\n");
print("Tensor D: RowMajor, Tensor5DPermute20314<16,8,4>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::Tensor5DPermute20314RowMajor<16,8,4>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#if COMPILE_ALL_EXAMPLES
{
print("===================================================\n");
print("Tensor D: ColumnMajor, Tensor5DPermute02413<16,8,4>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::ColumnMajor, cutlass::layout::Tensor5DPermute02413ColumnMajor<16,8,4>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#endif
// BATCHED GEMMS
{
print("===================================================\n");
print("Tensor A: RowMajor, Tensor4DPermuteBMM0213<8>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::Tensor4DPermuteBMM0213RowMajor<8>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
{
print("===================================================\n");
print("Tensor D: RowMajor, Tensor4DPermuteBMM0213<8>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::Tensor4DPermuteBMM0213RowMajor<8>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#if COMPILE_ALL_EXAMPLES
{
print("===================================================\n");
print("Tensor A: ColumnMajor, Tensor4DPermuteBMM0321<8>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::ColumnMajor, cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<8>,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
{
print("===================================================\n");
print("Tensor D: RowMajor, Tensor4DPermuteBMM0321<8>\n");
using Runner = example::ExampleRunner<ElementA, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementB, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementC, cutlass::layout::RowMajor, cutlass::layout::NoPermute,
ElementD, cutlass::layout::ColumnMajor, cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<8>,
ElementAccumulator, ElementEpilogue,
TileShape, ClusterShape>;
Runner runner(options, hw_info);
result &= runner.run(options);
}
#endif
return result ? EXIT_SUCCESS : EXIT_FAILURE;
#endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
}