forked from blakeaw/GAlibrate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
galibrate_dimerization_model_GAlibrateIt_GaoIt.py
36 lines (31 loc) · 1.38 KB
/
galibrate_dimerization_model_GAlibrateIt_GaoIt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
'''
Generated by nestedsample_it
Gleipnir NS run script for dimerization_model.py
'''
from dimerization_model_gaoit import model, gao_it
import numpy as np
from galibrate.pysb_utils import GAlibrateIt
if __name__ == '__main__':
# Initialize PySB solver object for running simulations.
# Simulation timespan should match experimental data.
tspan = np.linspace(0,1, num=51)
# USER must add commands to import/load any experimental
# data for use in the likelihood function!
experiments_avg = np.load('dimerization_model_dimer_data.npy')
experiments_sd = np.load('dimerization_model_dimer_sd.npy')
# Setup the Nested Sampling run
population_size = 100
observable_data = dict()
time_idxs = list(range(len(tspan)))
observable_data['A_dimer'] = tuple((experiments_avg, experiments_sd, time_idxs))
# Initialize the GAlibrateIt instance with the model details.
galibrate_it = GAlibrateIt(model, observable_data, tspan, gao_it=gao_it)
# Now build the GAO object. -- All inputs are
# optional keyword arguments.
gao = galibrate_it(gao_population_size=population_size,
gao_kwargs=dict({'generations':100, 'mutation_rate':0.05}),
fitness_type='norm_logpdf')
# run it
best_theta, best_theta_fitness = gao.run()
print("best_theta: ",best_theta)
print("best_theta_fitness: ", best_theta_fitness)