-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
102 lines (80 loc) · 3.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2018-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
def compute_grad_norm(discriminator, data):
data = data.requires_grad_()
score = discriminator(data)
grad = torch.autograd.grad(
outputs=score,
inputs=data,
grad_outputs=torch.ones_like(score),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
grad = grad.view(grad.size(0), -1)
grad_norm = (grad.norm(2, dim=1) ** 2).mean()
return grad_norm
def train_one_round(
loss_obj, discriminator, generator, d_optim, g_optim,
data_loader_iter, noise_generator, fake_batch_size,
num_step_d=1, num_step_g=1, simultaneous=True,
real_grad_penalty=None, fake_grad_penalty=None,
s=None, sparse_estimation=True,
device=None,
):
# simultaneous means that G and D are trained on the same fake batch
# and their parameters are updated simultaneously
if (num_step_g > 1 or num_step_d > 1) and simultaneous:
raise ValueError(num_step_g, num_step_d, simultaneous)
if device is None:
device = next(discriminator.parameters()).device
p = generator.p
noise_generator.eval()
discriminator.eval()
generator.train()
lst_g_loss = []
for ii in range(num_step_g):
fake_data = generator(noise_generator((fake_batch_size, p)))
g_loss = loss_obj.g_loss_fn(discriminator(fake_data))
lst_g_loss.append(g_loss.item())
g_optim.zero_grad()
g_loss.backward()
# _dim = generator.eta.size(0)
# generator.eta.grad *= (_dim ** 0.5 / 10.)
g_optim.step()
if s is not None and sparse_estimation is True:
with torch.no_grad():
_, index = torch.topk(torch.abs(generator.eta), p - s, largest=False)
generator.eta[index] = 0.
discriminator.train()
lst_d_loss = []
generator.eval()
for ii in range(num_step_d):
# real_data, _ = next(data_loader_iter)
real_data = next(data_loader_iter)[0]
real_data = real_data.to(device)
if simultaneous:
fake_data = fake_data.detach()
else:
fake_data = generator(
noise_generator((fake_batch_size, p))).detach()
d_loss = loss_obj.d_loss_fn(discriminator(real_data),
discriminator(fake_data))
lst_d_loss.append(d_loss.item())
if real_grad_penalty is not None:
d_loss = d_loss + real_grad_penalty * compute_grad_norm(
discriminator, real_data)
if fake_grad_penalty is not None:
d_loss = d_loss + fake_grad_penalty * compute_grad_norm(
discriminator, fake_data)
d_optim.zero_grad()
d_loss.backward()
# _dim = discriminator.layers[0].weight.size(1)
# discriminator.layers[0].weight.grad *= _dim / 100.
# discriminator.layers[0].bias.grad *= _dim / 100.
d_optim.step()
return lst_d_loss, lst_g_loss