-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWrapper.v
189 lines (172 loc) · 6.38 KB
/
Wrapper.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
`timescale 1ns / 1ps
/**
*
* READ THIS DESCRIPTION:
*
* This is the Wrapper module that will serve as the header file combining your processor,
* RegFile and Memory elements together.
*
* This file will be used to generate the bitstream to upload to the FPGA.
* We have provided a sibling file, Wrapper_tb.v so that you can test your processor's functionality.
*
* We will be using our own separate Wrapper_tb.v to test your code. You are allowed to make changes to the Wrapper files
* for your own individual testing, but we expect your final processor.v and memory modules to work with the
* provided Wrapper interface.
*
* Refer to Lab 5 documents for detailed instructions on how to interface
* with the memory elements. Each imem and dmem modules will take 12-bit
* addresses and will allow for storing of 32-bit values at each address.
* Each memory module should receive a single clock. At which edges, is
* purely a design choice (and thereby up to you).
*
* You must change line 36 to add the memory file of the test you created using the assembler
* For example, you would add sample inside of the quotes on line 38 after assembling sample.s
*
**/
module Wrapper (CLK100MHZ, BTND, LED, VGA_R, VGA_G, VGA_B, MOVE_LEFT, MOVE_RIGHT, LASER_ON, AN, SEVEN_SEG, hSync, vSync);
input CLK100MHZ, BTND, MOVE_LEFT, MOVE_RIGHT, LASER_ON;
output[7:0] AN;
output[6:0] SEVEN_SEG;
output[15:0] LED;
wire rwe, mwe;
wire[4:0] rd, rs1, rs2;
wire[31:0] instAddr, instData,
rData, regA, regB,
memAddr, memDataIn, memDataOut;
wire [31:0] spriteXArr [9:0];
wire [31:0] spriteYArr [9:0];
wire [31:0] laser, playerLives, playerScore;
wire[31:0] inPlayerX, inPlayerY;
// ADD YOUR MEMORY FILE HERE
//localparam INSTR_FILE = "final-project";
localparam INSTR_FILE = "basic";
reg clk1Hz = 0;
reg[27:0] counter = 0;
reg[27:0] laserCounter = 0;
reg[27:0] rightCounter = 0;
reg[27:0] leftCounter = 0;
wire [26:0] CounterLimit;
assign CounterLimit = 27'd999;
always @(posedge CLK100MHZ) begin
if(~LASER_ON == 1'b1) begin
if(laserCounter < 27'd10000000) begin
laserCounter <= laserCounter + 1;
end
end
else begin
laserCounter <= 0;
end
if(~MOVE_RIGHT == 1'b1) begin
if(rightCounter < 27'd10000000) begin
rightCounter <= rightCounter + 1;
end
end
else begin
rightCounter <= 0;
end
if(~MOVE_LEFT == 1'b1) begin
if(leftCounter < 27'd10000000) begin
leftCounter <= leftCounter + 1;
end
end
else begin
leftCounter <= 0;
end
if(counter < CounterLimit)
counter <= counter + 1;
else begin
counter <= 0;
clk1Hz <= ~clk1Hz;
end
end
wire debouncedLaserOn = (laserCounter >= 27'd5000000);
wire debouncedMoveRight = (rightCounter >= 27'd5000000);
wire debouncedMoveLeft = (leftCounter >= 27'd5000000);
output [3:0] VGA_R, VGA_G, VGA_B;
output hSync, vSync;
VGAController displayOutput(
.sprite1X(spriteXArr[0]), .sprite2X(spriteXArr[1]), .sprite3X(spriteXArr[2]), .sprite4X(spriteXArr[3]), .sprite5X(spriteXArr[4]), .sprite6X(spriteXArr[5]), .sprite7X(spriteXArr[6]), .sprite8X(spriteXArr[7]), .sprite9X(spriteXArr[8]), .sprite10X(spriteXArr[9]),
.sprite1Y(spriteYArr[0]), .sprite2Y(spriteYArr[1]), .sprite3Y(spriteYArr[2]), .sprite4Y(spriteYArr[3]), .sprite5Y(spriteYArr[4]), .sprite6Y(spriteYArr[5]), .sprite7Y(spriteYArr[6]), .sprite8Y(spriteYArr[7]), .sprite9Y(spriteYArr[8]), .sprite10Y(spriteYArr[9]),
.playerX(inPlayerX),
.playerY(inPlayerY),
.laser(laser),
.clk(CLK100MHZ), // 100 MHz System Clock
.reset(BTND), // Reset Signal
.hSync(hSync), // H Sync Signal
.vSync(vSync), // Veritcal Sync Signal
.VGA_R(VGA_R), // Red Signal Bits
.VGA_G(VGA_G), // Green Signal Bits
.VGA_B(VGA_B) // Blue Signal Bits);
);
// Main Processing Unit
processor CPU(.clock(clk1Hz), .reset(BTND),
// ROM
.address_imem(instAddr), .q_imem(instData),
// Regfile
.ctrl_writeEnable(rwe), .ctrl_writeReg(rd),
.ctrl_readRegA(rs1), .ctrl_readRegB(rs2),
.data_writeReg(rData), .data_readRegA(regA), .data_readRegB(regB),
// RAM
.wren(mwe), .address_dmem(memAddr),
.data(memDataIn), .q_dmem(memDataOut));
// Instruction Memory (ROM)
ROM #(.MEMFILE({INSTR_FILE, ".mem"}))
InstMem(.clk(clk1Hz),
.addr(instAddr[11:0]),
.dataOut(instData));
// Register File
regfile RegisterFile(.clock(clk1Hz),
.ctrl_writeEnable(rwe), .ctrl_reset(BTND),
.ctrl_writeReg(rd),
.ctrl_readRegA(rs1), .ctrl_readRegB(rs2),
.data_writeReg(rData), .data_readRegA(regA), .data_readRegB(regB));
// Processor Memory (RAM)
RAM ProcMem(.clk(clk1Hz),
.wEn(mwe),
.addr(memAddr[11:0]),
.dataIn(memDataIn),
.dataOut(memDataOut),
.sprite1X(spriteXArr[0]), .sprite1Y(spriteYArr[0]),
.sprite2X(spriteXArr[1]), .sprite2Y(spriteYArr[1]),
.sprite3X(spriteXArr[2]), .sprite3Y(spriteYArr[2]),
.sprite4X(spriteXArr[3]), .sprite4Y(spriteYArr[3]),
.sprite5X(spriteXArr[4]), .sprite5Y(spriteYArr[4]),
.sprite6X(spriteXArr[5]), .sprite6Y(spriteYArr[5]),
.sprite7X(spriteXArr[6]), .sprite7Y(spriteYArr[6]),
.sprite8X(spriteXArr[7]), .sprite8Y(spriteYArr[7]),
.sprite9X(spriteXArr[8]), .sprite9Y(spriteYArr[8]),
.sprite10X(spriteXArr[9]), .sprite10Y(spriteYArr[9]),
.laser(laser), .playerLives(playerLives), .playerScore(playerScore),
.playerX(inPlayerX), .playerY(inPlayerY),
.moveRight(debouncedMoveRight), .moveLeft(debouncedMoveLeft), .laserOn(debouncedLaserOn));
//assign LED = temp1Val[15:0];
wire[6:0] scoreDigit0, scoreDigit1, lifeDigit;
hex_7_seg scoreDigit0Module(.sevenOut(scoreDigit0), .currNum(playerScore));
hex_7_seg scoreDigit1Module(.sevenOut(scoreDigit1), .currNum(playerScore >> 4));
hex_7_seg lifeDigitModule(.sevenOut(lifeDigit), .currNum(playerLives));
reg[2:0] seven_seg_ctr;
reg[7:0] anodeSelect;
reg[6:0] segmentValue;
initial begin
seven_seg_ctr = 0;
anodeSelect = 8'b11111111;
segmentValue = 7'b0000000;
end
always @(posedge clk1Hz) begin
if (seven_seg_ctr == 0) begin
anodeSelect = 8'b11111110;
segmentValue = scoreDigit0;
seven_seg_ctr = seven_seg_ctr + 1;
end else if(seven_seg_ctr == 1) begin
anodeSelect = 8'b11111101;
segmentValue = scoreDigit1;
seven_seg_ctr = seven_seg_ctr + 1;
end else if(seven_seg_ctr == 2) begin
anodeSelect = 8'b11101111;
segmentValue = lifeDigit;
seven_seg_ctr = 0;
end
end
assign SEVEN_SEG = segmentValue;
assign AN = anodeSelect;
endmodule