-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathQMNIST.py
112 lines (81 loc) · 3.92 KB
/
QMNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
############################################################################################
#
# Project: Breast Cancer AI Research Project
# Repository: Tensorflow Quantum IDC Classifier 2020
# Project: Leveraging Quantum MNIST to detect Invasive Ductal Carcinoma
#
# Author: Adam Milton-Barker (AdamMiltonBarker.com)
# Contributors:
# Title: QMNIST Helper Class
# Description: Wrapper classed based on Tensorflow Quantum MNIST example.
# Credit: Tensorflow Quantum MNIST classification
# https://www.tensorflow.org/quantum/tutorials/mnist
# Credit: Classification with Quantum Neural Networks on Near Term Processors
# https://arxiv.org/pdf/1802.06002.pdf
# License: MIT License
# Last Modified: 2020-04-16
#
############################################################################################
import cirq, sympy
import tensorflow as tf
import tensorflow_quantum as tfq
import numpy as np
from Classes.Helpers import Helpers
class QMNIST():
""" QMNIST Helper Class
QMNIST functions for the Leveraging Quantum MNIST to detect Invasive Ductal Carcinoma
QNN (Quantum Neural Network).
CREDIT: https://www.tensorflow.org/quantum/tutorials/mnist
CREDIT: https://arxiv.org/pdf/1802.06002.pdf
"""
def __init__(self):
""" Initializes the class. """
self.Helpers = Helpers("QMNIST", False)
self.bthreshold = self.Helpers.confs["qnn"]["core"]["bin_threshold"]
self.dim = self.Helpers.confs["qnn"]["data"]["dim"]
self.Helpers.logger.info("QMNIST Helper Class initialization complete.")
def encode_data_as_binary(self, x_train, x_test):
""" Converts to a binary encoding.
In the Classification with Quantum Neural Networks on Near Term
Processors paper, Farhi et al proposed that each pixel would
be represented by a Qubit, this requires the data to be first
be binary encoded.
CREDIT: https://www.tensorflow.org/quantum/tutorials/mnist
CREDIT: https://arxiv.org/pdf/1802.06002.pdf
"""
x_train_bin = np.array(x_train > self.bthreshold, dtype=np.float32)
x_test_bin = np.array(x_test > self.bthreshold, dtype=np.float32)
self.Helpers.logger.info("Data converted to binary encoding!")
return x_train_bin, x_test_bin
def convert_to_circuit(self, image):
""" Encode truncated classical image into quantum datapoint.
The qubits at pixel indices with values that exceed a threshold,
are rotated through an X gate.
CREDIT: https://www.tensorflow.org/quantum/tutorials/mnist
CREDIT: https://arxiv.org/pdf/1802.06002.pdf
"""
values = np.ndarray.flatten(image)
qubits = cirq.GridQubit.rect(self.dim, self.dim)
circuit = cirq.Circuit()
for i, value in enumerate(values):
if value:
circuit.append(cirq.X(qubits[i]))
return circuit
def do_circuit_conversion(self, X_train_bin, X_test_bin):
""" Encodes images as quantum data points.
CREDIT: https://www.tensorflow.org/quantum/tutorials/mnist
CREDIT: https://arxiv.org/pdf/1802.06002.pdf
"""
X__train_circ = [self.convert_to_circuit(x) for x in X_train_bin]
X__test_circ = [self.convert_to_circuit(x) for x in X_test_bin]
self.Helpers.logger.info("Data pixels converted to Qubits!")
return X__train_circ, X__test_circ
def convert_to_tensors(self, x_train_circ, x_test_circ):
""" Converts Cirq circuits to TFQ tensors.
CREDIT: https://www.tensorflow.org/quantum/tutorials/mnist
CREDIT: https://arxiv.org/pdf/1802.06002.pdf
"""
x_train_tfcirc = tfq.convert_to_tensor(x_train_circ)
x_test_tfcirc = tfq.convert_to_tensor(x_test_circ)
self.Helpers.logger.info("Converted Cirq circuits to TFQ tensors!")
return x_train_tfcirc, x_test_tfcirc