-
Notifications
You must be signed in to change notification settings - Fork 54
/
vit_torch.py
244 lines (196 loc) · 7.86 KB
/
vit_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets.mnist import MNIST
from torchvision.transforms import ToTensor
from tqdm import tqdm, trange
np.random.seed(0)
torch.manual_seed(0)
def patchify(images, n_patches):
n, c, h, w = images.shape
assert h == w, "Patchify method is implemented for square images only"
patches = torch.zeros(n, n_patches**2, h * w * c // n_patches**2)
patch_size = h // n_patches
for idx, image in enumerate(images):
for i in range(n_patches):
for j in range(n_patches):
patch = image[
:,
i * patch_size : (i + 1) * patch_size,
j * patch_size : (j + 1) * patch_size,
]
patches[idx, i * n_patches + j] = patch.flatten()
return patches
class MyMSA(nn.Module):
def __init__(self, d, n_heads=2):
super(MyMSA, self).__init__()
self.d = d
self.n_heads = n_heads
assert d % n_heads == 0, f"Can't divide dimension {d} into {n_heads} heads"
d_head = int(d / n_heads)
self.q_mappings = nn.ModuleList(
[nn.Linear(d_head, d_head) for _ in range(self.n_heads)]
)
self.k_mappings = nn.ModuleList(
[nn.Linear(d_head, d_head) for _ in range(self.n_heads)]
)
self.v_mappings = nn.ModuleList(
[nn.Linear(d_head, d_head) for _ in range(self.n_heads)]
)
self.d_head = d_head
self.softmax = nn.Softmax(dim=-1)
def forward(self, sequences):
# Sequences has shape (N, seq_length, token_dim)
# We go into shape (N, seq_length, n_heads, token_dim / n_heads)
# And come back to (N, seq_length, item_dim) (through concatenation)
result = []
for sequence in sequences:
seq_result = []
for head in range(self.n_heads):
q_mapping = self.q_mappings[head]
k_mapping = self.k_mappings[head]
v_mapping = self.v_mappings[head]
seq = sequence[:, head * self.d_head : (head + 1) * self.d_head]
q, k, v = q_mapping(seq), k_mapping(seq), v_mapping(seq)
attention = self.softmax(q @ k.T / (self.d_head**0.5))
seq_result.append(attention @ v)
result.append(torch.hstack(seq_result))
return torch.cat([torch.unsqueeze(r, dim=0) for r in result])
class MyViTBlock(nn.Module):
def __init__(self, hidden_d, n_heads, mlp_ratio=4):
super(MyViTBlock, self).__init__()
self.hidden_d = hidden_d
self.n_heads = n_heads
self.norm1 = nn.LayerNorm(hidden_d)
self.mhsa = MyMSA(hidden_d, n_heads)
self.norm2 = nn.LayerNorm(hidden_d)
self.mlp = nn.Sequential(
nn.Linear(hidden_d, mlp_ratio * hidden_d),
nn.GELU(),
nn.Linear(mlp_ratio * hidden_d, hidden_d),
)
def forward(self, x):
out = x + self.mhsa(self.norm1(x))
out = out + self.mlp(self.norm2(out))
return out
class MyViT(nn.Module):
def __init__(self, chw, n_patches=7, n_blocks=2, hidden_d=8, n_heads=2, out_d=10):
# Super constructor
super(MyViT, self).__init__()
# Attributes
self.chw = chw # ( C , H , W )
self.n_patches = n_patches
self.n_blocks = n_blocks
self.n_heads = n_heads
self.hidden_d = hidden_d
# Input and patches sizes
assert (
chw[1] % n_patches == 0
), "Input shape not entirely divisible by number of patches"
assert (
chw[2] % n_patches == 0
), "Input shape not entirely divisible by number of patches"
self.patch_size = (chw[1] / n_patches, chw[2] / n_patches)
# 1) Linear mapper
self.input_d = int(chw[0] * self.patch_size[0] * self.patch_size[1])
self.linear_mapper = nn.Linear(self.input_d, self.hidden_d)
# 2) Learnable classification token
self.class_token = nn.Parameter(torch.rand(1, self.hidden_d))
# 3) Positional embedding
self.register_buffer(
"positional_embeddings",
get_positional_embeddings(n_patches**2 + 1, hidden_d),
persistent=False,
)
# 4) Transformer encoder blocks
self.blocks = nn.ModuleList(
[MyViTBlock(hidden_d, n_heads) for _ in range(n_blocks)]
)
# 5) Classification MLPk
self.mlp = nn.Sequential(nn.Linear(self.hidden_d, out_d), nn.Softmax(dim=-1))
def forward(self, images):
# Dividing images into patches
n, c, h, w = images.shape
patches = patchify(images, self.n_patches).to(self.positional_embeddings.device)
# Running linear layer tokenization
# Map the vector corresponding to each patch to the hidden size dimension
tokens = self.linear_mapper(patches)
# Adding classification token to the tokens
tokens = torch.cat((self.class_token.expand(n, 1, -1), tokens), dim=1)
# Adding positional embedding
out = tokens + self.positional_embeddings.repeat(n, 1, 1)
# Transformer Blocks
for block in self.blocks:
out = block(out)
# Getting the classification token only
out = out[:, 0]
return self.mlp(out) # Map to output dimension, output category distribution
def get_positional_embeddings(sequence_length, d):
result = torch.ones(sequence_length, d)
for i in range(sequence_length):
for j in range(d):
result[i][j] = (
np.sin(i / (10000 ** (j / d)))
if j % 2 == 0
else np.cos(i / (10000 ** ((j - 1) / d)))
)
return result
def main():
# Loading data
transform = ToTensor()
train_set = MNIST(
root="./../datasets", train=True, download=True, transform=transform
)
test_set = MNIST(
root="./../datasets", train=False, download=True, transform=transform
)
train_loader = DataLoader(train_set, shuffle=True, batch_size=128)
test_loader = DataLoader(test_set, shuffle=False, batch_size=128)
# Defining model and training options
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(
"Using device: ",
device,
f"({torch.cuda.get_device_name(device)})" if torch.cuda.is_available() else "",
)
model = MyViT(
(1, 28, 28), n_patches=7, n_blocks=2, hidden_d=8, n_heads=2, out_d=10
).to(device)
N_EPOCHS = 5
LR = 0.005
# Training loop
optimizer = Adam(model.parameters(), lr=LR)
criterion = CrossEntropyLoss()
for epoch in trange(N_EPOCHS, desc="Training"):
train_loss = 0.0
for batch in tqdm(
train_loader, desc=f"Epoch {epoch + 1} in training", leave=False
):
x, y = batch
x, y = x.to(device), y.to(device)
y_hat = model(x)
loss = criterion(y_hat, y)
train_loss += loss.detach().cpu().item() / len(train_loader)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}/{N_EPOCHS} loss: {train_loss:.2f}")
# Test loop
with torch.no_grad():
correct, total = 0, 0
test_loss = 0.0
for batch in tqdm(test_loader, desc="Testing"):
x, y = batch
x, y = x.to(device), y.to(device)
y_hat = model(x)
loss = criterion(y_hat, y)
test_loss += loss.detach().cpu().item() / len(test_loader)
correct += torch.sum(torch.argmax(y_hat, dim=1) == y).detach().cpu().item()
total += len(x)
print(f"Test loss: {test_loss:.2f}")
print(f"Test accuracy: {correct / total * 100:.2f}%")
if __name__ == "__main__":
main()