-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
293 lines (256 loc) · 9.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import argparse
import copy
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, "
import os.path as osp
import time
import re
import loralib as lora
import torch
import torch.nn as nn
import mmcv
from mmcv.runner import init_dist
from mmcv.utils import Config, DictAction, get_git_hash
from mmseg import __version__
from mmseg.apis import set_random_seed
from mmcv_custom import train_segmentor
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.utils import collect_env, get_root_logger
from mmseg.models.backbones import EVA2
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--load-from', help='the checkpoint file to load weights from')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
'''
def find_eva_linear_names(model):
lora_module_names = set()
for name, module in model.backbone.named_modules():
if isinstance(module, bnb.nn.Linear4bit):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names)
def get_accelerate_model(args, model, checkpoint_dir=None):
from transformers import (
PreTrainedModel,
PretrainedConfig,
AutoModelForCausalLM,
BitsAndBytesConfig,
)
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model,
PeftModel
)
from peft.tuners.lora import LoraLayer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
import bitsandbytes as bnb
pconfig=PretrainedConfig(is_encoder_decoder=True,torch_dtype=torch.float32)
prtr=PreTrainedModel(pconfig)
# prtr.save_pretrained('workbench/pretrained/')
model = AutoModelForCausalLM.from_pretrained(
None,
state_dict=model.state_dict(),
config=prtr,
load_in_4bit=True,
device_map='auto',
max_memory={0: '5120MB'},
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
),
torch_dtype=torch.bfloat16,
)
setattr(model, 'model_parallel', True)
setattr(model, 'is_parallelizable', True)
model.config.torch_dtype=torch.bfloat16
model=prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
model.gradient_checkpointing_enable()
if checkpoint_dir is not None:
print("Loading adapters from checkpoint.")
model = PeftModel.from_pretrained(model, osp.join(checkpoint_dir, 'adapter_model'), is_trainable=True)
else:
print(f'Adding LoRA modules...')
modules = find_eva_linear_names(model)
config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=modules,
lora_dropout=0.1,
bias="none",
)
model=get_peft_model(model, config)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight') and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
return model
'''
def get_finetune_model(model, code, verbose=False):
def freeze_match(name, f_list):
ret = False
for n in f_list:
ret = ret or (re.search(n, name) is not None)
return ret
freeze_list = []
if code == 1:
checkpoint = torch.load(model.backbone.pretrained, map_location='cpu')["model"]
freeze_list.extend([f"backbone.{key}" for key in checkpoint.keys()])
if verbose:
print("**frozen parameters**")
print(f"List: {freeze_list}")
for key, value in model.named_parameters():
value.requires_grad = not freeze_match(key, freeze_list)
if verbose:
print(key, value.requires_grad)
return model
def main(args, info, verbose=False):
finetune_code, neck_name = info["finetune_code"], info["config_neck"]
config = f"configs/{neck_name}_neck.py"
cfg = Config.fromfile(config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(config))[0])
cfg.work_dir = osp.join(cfg.work_dir, f"neck_{neck_name}_finetune_{finetune_code}")
if args.load_from is not None:
cfg.load_from = args.load_from
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir.replace("/hy-tmp/", "")))
# dump config
cfg.dump(osp.join(cfg.work_dir.replace("/hy-tmp/", ""), osp.basename(config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir.replace("/hy-tmp/", ""), f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
logger.info(f"Neck: {neck_name}; Finetune_code: {finetune_code}")
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
if verbose:
logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line)
logger.info(f'Config:\n{cfg.pretty_text}')
meta['env_info'] = env_info
# set random seeds
if args.seed is not None:
if verbose:
logger.info(f'Distributed training: {distributed}')
logger.info(f'Set random seed to {args.seed}, deterministic: '
f'{args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
meta['exp_name'] = osp.basename(config)
model = build_segmentor(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg')
)
# finetune_code: {0: non_freeze; 1: freeze_loaded_eva2}
if finetune_code > 0:
model = get_finetune_model(model, finetune_code, verbose=verbose)
if verbose:
logger.info(model)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmseg version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmseg_version=f'{__version__}+{get_git_hash()[:7]}',
config=cfg.pretty_text,
CLASSES=datasets[0].CLASSES,
PALETTE=datasets[0].PALETTE)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_segmentor(
model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
args = parse_args()
neck_choices = ["fpn", "sfp", "linear"][2:]
# finetune_code = {0: no-freeze, 1: freeze EVA}
for n in neck_choices:
hyper_info = {
"finetune_code": 0,
"config_neck": n,
}
main(args, hyper_info)