-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysis.tex
44 lines (34 loc) · 980 Bytes
/
Analysis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\documentclass{Math_Note}
\title{\textbf{Analysis}}
\author{Buce-Ithon}
\newdateformat{mydate}{\twodigit{\THEDAY}{ }\shortmonthname[\THEMONTH], \THEYEAR}
\date{\today}
\begin{document}
% Title page
\maketitle
% Content
\newpage
\tableofcontents
\newpage
% Surface-figure
\begin{figure}[H]
\centering
\includegraphics[scale=0.24]{"./Figures/preface.jpg"}
\caption{Math tech, autumn tea~}
\end{figure}
% Chap0-Real Number System
\setcounter{section}{-1}
\newpage
\section{Real Number}
\S 1. Rational Number Field ($\mathbb{Q}$)
\begin{df}
A number $r$ is called a \textbf{rational number}, if $r=\frac{p}{q}$, where $p, q\in\mathbb{N}$ and $b\neq 0$.
The set of all rational numbers is denoted by $\mathbb{Q}$, and it is called the \textbf{rational number field}.
\end{df}
\begin{nt}
$1^{\circ}$. Proof by contradiction. -- To verify if a number is irrational.
\end{nt}
\begin{prp}
Basic properties of rational numbers:
\end{prp}
\end{document}