forked from onflow/flow-go
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbls12381_hashtocurve.c
338 lines (300 loc) · 14.5 KB
/
bls12381_hashtocurve.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// +build relic
#include "bls12381_utils.h"
#include "bls_include.h"
extern prec_st* bls_prec;
#if (hashToPoint== LOCAL_SSWU)
// These constants are taken from https://github.com/kwantam/bls12-381_hash
// and converted to the Mongtomery domain.
// Copyright 2019 Riad S. Wahby
const uint64_t iso_Nx_data[ELLP_Nx_LEN][Fp_DIGITS] = {
{0x4d18b6f3af00131c, 0x19fa219793fee28c, 0x3f2885f1467f19ae,
0x23dcea34f2ffb304, 0xd15b58d2ffc00054, 0x0913be200a20bef4,},
{0x898985385cdbbd8b, 0x3c79e43cc7d966aa, 0x1597e193f4cd233a,
0x8637ef1e4d6623ad, 0x11b22deed20d827b, 0x07097bc5998784ad,},
{0xa542583a480b664b, 0xfc7169c026e568c6, 0x5ba2ef314ed8b5a6,
0x5b5491c05102f0e7, 0xdf6e99707d2a0079, 0x0784151ed7605524,},
{0x494e212870f72741, 0xab9be52fbda43021, 0x26f5577994e34c3d,
0x049dfee82aefbd60, 0x65dadd7828505289, 0x0e93d431ea011aeb,},
{0x90ee774bd6a74d45, 0x7ada1c8a41bfb185, 0x0f1a8953b325f464,
0x104c24211be4805c, 0x169139d319ea7a8f, 0x09f20ead8e532bf6,},
{0x6ddd93e2f43626b7, 0xa5482c9aa1ccd7bd, 0x143245631883f4bd,
0x2e0a94ccf77ec0db, 0xb0282d480e56489f, 0x18f4bfcbb4368929,},
{0x23c5f0c953402dfd, 0x7a43ff6958ce4fe9, 0x2c390d3d2da5df63,
0xd0df5c98e1f9d70f, 0xffd89869a572b297, 0x1277ffc72f25e8fe,},
{0x79f4f0490f06a8a6, 0x85f894a88030fd81, 0x12da3054b18b6410,
0xe2a57f6505880d65, 0xbba074f260e400f1, 0x08b76279f621d028,},
{0xe67245ba78d5b00b, 0x8456ba9a1f186475, 0x7888bff6e6b33bb4,
0xe21585b9a30f86cb, 0x05a69cdcef55feee, 0x09e699dd9adfa5ac,},
{0x0de5c357bff57107, 0x0a0db4ae6b1a10b2, 0xe256bb67b3b3cd8d,
0x8ad456574e9db24f, 0x0443915f50fd4179, 0x098c4bf7de8b6375,},
{0xe6b0617e7dd929c7, 0xfe6e37d442537375, 0x1dafdeda137a489e,
0xe4efd1ad3f767ceb, 0x4a51d8667f0fe1cf, 0x054fdf4bbf1d821c,},
{0x72db2a50658d767b, 0x8abf91faa257b3d5, 0xe969d6833764ab47,
0x464170142a1009eb, 0xb14f01aadb30be2f, 0x18ae6a856f40715d,},
};
const uint64_t iso_Ny_data[ELLP_Ny_LEN][Fp_DIGITS] = {
{0x2b567ff3e2837267, 0x1d4d9e57b958a767, 0xce028fea04bd7373,
0xcc31a30a0b6cd3df, 0x7d7b18a682692693, 0x0d300744d42a0310,},
{0x99c2555fa542493f, 0xfe7f53cc4874f878, 0x5df0608b8f97608a,
0x14e03832052b49c8, 0x706326a6957dd5a4, 0x0a8dadd9c2414555,},
{0x13d942922a5cf63a, 0x357e33e36e261e7d, 0xcf05a27c8456088d,
0x0000bd1de7ba50f0, 0x83d0c7532f8c1fde, 0x13f70bf38bbf2905,},
{0x5c57fd95bfafbdbb, 0x28a359a65e541707, 0x3983ceb4f6360b6d,
0xafe19ff6f97e6d53, 0xb3468f4550192bf7, 0x0bb6cde49d8ba257,},
{0x590b62c7ff8a513f, 0x314b4ce372cacefd, 0x6bef32ce94b8a800,
0x6ddf84a095713d5f, 0x64eace4cb0982191, 0x0386213c651b888d,},
{0xa5310a31111bbcdd, 0xa14ac0f5da148982, 0xf9ad9cc95423d2e9,
0xaa6ec095283ee4a7, 0xcf5b1f022e1c9107, 0x01fddf5aed881793,},
{0x65a572b0d7a7d950, 0xe25c2d8183473a19, 0xc2fcebe7cb877dbd,
0x05b2d36c769a89b0, 0xba12961be86e9efb, 0x07eb1b29c1dfde1f,},
{0x93e09572f7c4cd24, 0x364e929076795091, 0x8569467e68af51b5,
0xa47da89439f5340f, 0xf4fa918082e44d64, 0x0ad52ba3e6695a79,},
{0x911429844e0d5f54, 0xd03f51a3516bb233, 0x3d587e5640536e66,
0xfa86d2a3a9a73482, 0xa90ed5adf1ed5537, 0x149c9c326a5e7393,},
{0x462bbeb03c12921a, 0xdc9af5fa0a274a17, 0x9a558ebde836ebed,
0x649ef8f11a4fae46, 0x8100e1652b3cdc62, 0x1862bd62c291dacb,},
{0x05c9b8ca89f12c26, 0x0194160fa9b9ac4f, 0x6a643d5a6879fa2c,
0x14665bdd8846e19d, 0xbb1d0d53af3ff6bf, 0x12c7e1c3b28962e5,},
{0xb55ebf900b8a3e17, 0xfedc77ec1a9201c4, 0x1f07db10ea1a4df4,
0x0dfbd15dc41a594d, 0x389547f2334a5391, 0x02419f98165871a4,},
{0xb416af000745fc20, 0x8e563e9d1ea6d0f5, 0x7c763e17763a0652,
0x01458ef0159ebbef, 0x8346fe421f96bb13, 0x0d2d7b829ce324d2,},
{0x93096bb538d64615, 0x6f2a2619951d823a, 0x8f66b3ea59514fa4,
0xf563e63704f7092f, 0x724b136c4cf2d9fa, 0x046959cfcfd0bf49,},
{0xea748d4b6e405346, 0x91e9079c2c02d58f, 0x41064965946d9b59,
0xa06731f1d2bbe1ee, 0x07f897e267a33f1b, 0x1017290919210e5f,},
{0x872aa6c17d985097, 0xeecc53161264562a, 0x07afe37afff55002,
0x54759078e5be6838, 0xc4b92d15db8acca8, 0x106d87d1b51d13b9,},
};
// sqrt_ration optimized for p mod 4 = 3.
// Check if (U/V) is a square, return 1 if yes, 0 otherwise
// If 1 is returned, out contains sqrt(U/V),
// otherwise out is sqrt(z*U/V)
// out should not be the same as U, or V
static int sqrt_ratio_3mod4(fp_t out, const fp_t u, const fp_t v) {
fp_t t0, t1, t2;
fp_sqr(t1, v); // V^2
fp_mul(t2, u, v); // U*V
fp_mul(t1, t1, t2); // U*V^3
fp_exp(out, t1, &bls_prec->p_3div4); // (U*V^3)^((p-3)/4)
fp_mul(out, out, t2); // (U*V)*(U*V^3)^((p-3)/4) = U^((p+1)/4) * V^(3p-5)/4
fp_sqr(t0, out); // out^2
fp_mul(t0, t0, v); // out^2 * V
int res = 1;
if (fp_cmp(t0, u) != RLC_EQ) { // check whether U/V is a quadratic residue
fp_mul(out, out, bls_prec->sqrt_z); // sqrt(-z)*U*V(UV^3)^((p-3)/4)
res = 0;
}
return res;
}
// returns 1 if input is odd and 0 if input is even
static int sign_0(const fp_t in) {
#if FP_RDC == MONTY
bn_t tmp;
fp_prime_back(tmp, in); // TODO: entire reduction may not be needed to get the parity
return bn_is_even(tmp);
#endif
return in[0]&1;
}
// Maps the field element t to a point p in E1(Fp) where E1: y^2 = g(x) = x^3 + a1*x + b1
// using optimized non-constant-time Simplified SWU implementation (A.B = 0)
// Outout point p is in Jacobian coordinates to avoid extra inversions.
static inline void map_to_E1_osswu(ep_t p, const fp_t t) {
fp_t t0, t1, t2, t3, t4;
// get the isogeny map coefficients
ctx_t* ctx = core_get();
fp_t *a1 = &ctx->ep_iso.a;
fp_t *b1 = &ctx->ep_iso.b;
fp_t *z = &ctx->ep_map_u;
// compute numerator and denominator of X0(t) = N / D
fp_sqr(t1, t); // t^2
fp_mul(t1, t1, *z); // z * t^2
fp_sqr(t2, t1); // z^2 * t^4
fp_add(t2, t2, t1); // z * t^2 + z^2 * t^4
fp_add(t3, t2, bls_prec->r); // z * t^2 + z^2 * t^4 + 1
fp_mul(t3, t3, *b1); // N = b * (z * t^2 + z^2 * t^4 + 1)
if (fp_is_zero(t2)) {
fp_copy(p->z, bls_prec->a1z); // D = a * z
} else {
fp_mul(p->z, t2, bls_prec->minus_a1); // D = - a * (z * t^2 + z^2 * t^4)
}
// compute numerator and denominator of g(X0(t)) = U / V
// U = N^3 + a1 * N * D^2 + b1 * D^3
// V = D^3
fp_sqr(t2, t3); // N^2
fp_sqr(t0, p->z); // D^2
fp_mul(t4, *a1, t0); // a * D^2
fp_add(t2, t4, t2); // N^2 + a * D^2
fp_mul(t2, t3, t2); // N^3 + a * N * D^2
fp_mul(t0, t0, p->z); // V = D^3
fp_mul(t4, *b1, t0); // b * V = b * D^3
fp_add(t2, t4, t2); // U = N^3 + a1 * N * D^2 + b1 * D^3
// compute sqrt(U/V)
int is_sqr = sqrt_ratio_3mod4(p->y, t2, t0);
if (is_sqr) {
fp_copy(p->x, t3); // x = N
} else {
fp_mul(p->x, t1, t3); // x = N * z * t^2
fp_mul(t1, t1, t); // z * t^3
fp_mul(p->y, p->y, t1); // y = z * t^3 * sqrt(r * U/V) where r is 1 or map coefficient z
}
// negate y to be the same sign of t
if (sign_0(t) != sign_0(p->y)) {
fp_neg(p->y, p->y); // -y
}
// convert (x/D, y) into Jacobian (X,Y,Z) where Z=D to avoid inversion.
// Z = D, X = x/D * D^2 = x*D , Y = y*D^3
fp_mul(p->x, p->x, p->z); // X = N*D
fp_mul(p->y, p->y, t0); // Y = y*D^3
// p->z is already equal to D
p->coord = JACOB;
}
// This code is taken from https://github.com/kwantam/bls12-381_hash
// and adapted to use Relic modular arithemtic.
// Copyright 2019 Riad S. Wahby
static inline void hornerPolynomial(fp_t accumulator, const fp_t x, const int start_val, const fp_t fp_tmp[]) {
for (int i = start_val; i >= 0; --i) {
fp_mul(accumulator, accumulator, x); // acc *= x
fp_add(accumulator, accumulator, fp_tmp[i]); // acc += next_val
}
}
// This code is taken from https://github.com/kwantam/bls12-381_hash
// and adapted to use Relic modular arithemtic.
// Copyright 2019 Riad S. Wahby
static inline void compute_map_zvals(fp_t out[], const fp_t inv[], const fp_t zv[], const unsigned len) {
for (unsigned i = 0; i < len; ++i) {
fp_mul(out[i], inv[i], zv[i]);
}
}
// 11-isogeny map
// computes the mapping of p and stores the result in r
//
// This code is taken from https://github.com/kwantam/bls12-381_hash
// and adapted to use Relic modular arithemtic. The constant tables
// iso_D and iso_N were converted to the Montgomery domain.
//
// Copyright 2019 Riad S. Wahby
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
static inline void eval_iso11(ep_t r, const ep_t p) {
fp_t fp_tmp[32];
// precompute even powers of Z up to Z^30 in fp_tmp[31]..fp_tmp[17]
fp_sqr(fp_tmp[31], p->z); // Z^2
fp_sqr(fp_tmp[30], fp_tmp[31]); // Z^4
fp_mul(fp_tmp[29], fp_tmp[30], fp_tmp[31]); // Z^6
fp_sqr(fp_tmp[28], fp_tmp[30]); // Z^8
fp_mul(fp_tmp[27], fp_tmp[28], fp_tmp[31]); // Z^10
fp_sqr(fp_tmp[26], fp_tmp[29]); // Z^12
fp_mul(fp_tmp[25], fp_tmp[26], fp_tmp[31]); // Z^14
fp_sqr(fp_tmp[24], fp_tmp[28]); // Z^16
fp_mul(fp_tmp[23], fp_tmp[24], fp_tmp[31]); // Z^18
fp_sqr(fp_tmp[22], fp_tmp[27]); // Z^20
fp_mul(fp_tmp[21], fp_tmp[22], fp_tmp[31]); // Z^22
fp_sqr(fp_tmp[20], fp_tmp[26]); // Z^24
fp_mul(fp_tmp[19], fp_tmp[20], fp_tmp[31]); // Z^26
fp_sqr(fp_tmp[18], fp_tmp[25]); // Z^28
fp_mul(fp_tmp[17], fp_tmp[18], fp_tmp[31]); // Z^30
// get isogeny map coefficients
iso_t iso = ep_curve_get_iso();
// hardcode the constant to avoid warnings of gcc -Wstringop-overread
const int deg_dy = 15; // also equal to iso->deg_yd;
const int deg_dx = 10; // also equal to iso->deg_xd;
// TODO: get N coefficient from Relic and update N computations
// y = Ny/Dy
// compute Dy
compute_map_zvals(fp_tmp, iso->yd, fp_tmp + 17, deg_dy); // k_(15-i) Z^(2i)
fp_add(fp_tmp[16], p->x, fp_tmp[deg_dy - 1]); // X + k_14 Z^2
hornerPolynomial(fp_tmp[16], p->x, deg_dy - 2, fp_tmp); // Horner for the rest
fp_mul(fp_tmp[15], fp_tmp[16], fp_tmp[31]); // Dy * Z^2
fp_mul(fp_tmp[15], fp_tmp[15], p->z); // Dy * Z^3
// compute Ny
compute_map_zvals(fp_tmp, bls_prec->iso_Ny, fp_tmp + 17, ELLP_Ny_LEN - 1); // k_(15-i) Z^(2i)
fp_mul(fp_tmp[16], p->x, bls_prec->iso_Ny[ELLP_Ny_LEN - 1]); // k_15 * X
fp_add(fp_tmp[16], fp_tmp[16], fp_tmp[ELLP_Ny_LEN - 2]); // k_15 * X + k_14 Z^2
hornerPolynomial(fp_tmp[16], p->x, ELLP_Ny_LEN - 3, fp_tmp); // Horner for the rest
fp_mul(fp_tmp[16], fp_tmp[16], p->y); // Ny * Y
// x = Nx/Dx
// compute Dx
compute_map_zvals(fp_tmp, iso->xd, fp_tmp + 22, deg_dx); // k_(10-i) Z^(2i)
fp_add(fp_tmp[14], p->x, fp_tmp[deg_dx - 1]); // X + k_9 Z^2
hornerPolynomial(fp_tmp[14], p->x, deg_dx - 2, fp_tmp); // Horner for the rest
fp_mul(fp_tmp[14], fp_tmp[14], fp_tmp[31]); // Dx * Z^2
// compute Nx
compute_map_zvals(fp_tmp, bls_prec->iso_Nx, fp_tmp + 21, ELLP_Nx_LEN - 1); // k_(11-i) Z^(2i)
fp_mul(fp_tmp[13], p->x, bls_prec->iso_Nx[ELLP_Nx_LEN - 1]); // k_11 * X
fp_add(fp_tmp[13], fp_tmp[13], fp_tmp[ELLP_Nx_LEN - 2]); // k_11 * X + k_10 * Z^2
hornerPolynomial(fp_tmp[13], p->x, ELLP_Nx_LEN - 3, fp_tmp); // Dy: Horner for the rest
// compute the resulting point (Xo,Yo,Zo)
fp_mul(r->z, fp_tmp[14], fp_tmp[15]); // Zo = Dx Dy
fp_mul(r->x, fp_tmp[13], fp_tmp[15]); // Nx Dy
fp_mul(r->x, r->x, r->z); // Xo = Nx Dy Z
fp_sqr(fp_tmp[12], r->z); // Zo^2
fp_mul(r->y, fp_tmp[16], fp_tmp[14]); // Ny Dx
fp_mul(r->y, r->y, fp_tmp[12]); // Yo = Ny Dx Zo^2
r->coord = JACOB;
}
// map an input point in E to a point in G1 by clearing the cofactor of G1
static void clear_cofactor(ep_t out, const ep_t in) {
bn_t z;
bn_new(z);
fp_prime_get_par(z);
// compute 1-z
bn_neg(z, z);
bn_add_dig(z, z, 1);
ep_mul_dig(out, in, z->dp[0]); // z fits in 64 bits
bn_free(z);
}
// construction 2 section 5 in in https://eprint.iacr.org/2019/403.pdf
// evaluate the optimized SSWU map twice, add resulting points, apply isogeny map, clear cofactor
// the result is stored in p
// msg is the input message to hash, must be at least 2*(FP_BYTES+16) = 128 bytes
static void map_to_G1_local(ep_t p, const uint8_t *msg, int len) {
RLC_TRY {
if (len < 2*(Fp_BYTES+16)) {
RLC_THROW(ERR_NO_BUFFER);
}
fp_t t1, t2;
bn_t tmp;
bn_new(tmp);
bn_read_bin(tmp, msg, len/2);
fp_prime_conv(t1, tmp);
bn_read_bin(tmp, msg + len/2, len - len/2);
fp_prime_conv(t2, tmp);
bn_free(tmp);
ep_t p_temp;
ep_new(p_temp);
// first mapping
map_to_E1_osswu(p_temp, t1); // map to E1
eval_iso11(p_temp, p_temp); // map to E
// second mapping
map_to_E1_osswu(p, t2); // map to E1
eval_iso11(p, p); // map to E
// sum
// TODO: implement point addition in E1 and apply the isogeny map only once.
// Gives 4% improvement for map-to-curve overall
ep_add_jacob(p, p, p_temp);
// clear the cofactor
clear_cofactor(p, p); // map to G1
ep_free(p_temp);
}
RLC_CATCH_ANY {
RLC_THROW(ERR_CAUGHT);
}
}
#endif
// computes a hash of input data to G1
// construction 2 from section 5 in https://eprint.iacr.org/2019/403.pdf
void map_to_G1(ep_t h, const byte* data, const int len) {
#if hashToPoint==LOCAL_SSWU
map_to_G1_local(h, data, len);
#elif hashToPoint==RELIC_SSWU
ep_map_from_field(h, data, len);
#endif
}