forked from onflow/flow-go
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathecdsa_test.go
381 lines (330 loc) · 11.1 KB
/
ecdsa_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//go:build !relic
// +build !relic
package crypto
import (
"encoding/hex"
"testing"
"crypto/elliptic"
crand "crypto/rand"
"math/big"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/onflow/flow-go/crypto/hash"
)
var ecdsaCurves = []SigningAlgorithm{
ECDSAP256,
ECDSASecp256k1,
}
var ecdsaPrKeyLen = map[SigningAlgorithm]int{
ECDSAP256: PrKeyLenECDSAP256,
ECDSASecp256k1: PrKeyLenECDSASecp256k1,
}
var ecdsaPubKeyLen = map[SigningAlgorithm]int{
ECDSAP256: PubKeyLenECDSAP256,
ECDSASecp256k1: PubKeyLenECDSASecp256k1,
}
var ecdsaSigLen = map[SigningAlgorithm]int{
ECDSAP256: SignatureLenECDSAP256,
ECDSASecp256k1: SignatureLenECDSASecp256k1,
}
// ECDSA tests
func TestECDSA(t *testing.T) {
for _, curve := range ecdsaCurves {
t.Logf("Testing ECDSA for curve %s", curve)
// test key generation seed limits
testKeyGenSeed(t, curve, KeyGenSeedMinLen, KeyGenSeedMaxLen)
// test consistency
halg := hash.NewSHA3_256()
testGenSignVerify(t, curve, halg)
}
}
type dummyHasher struct{ size int }
func newDummyHasher(size int) hash.Hasher { return &dummyHasher{size} }
func (d *dummyHasher) Algorithm() hash.HashingAlgorithm { return hash.UnknownHashingAlgorithm }
func (d *dummyHasher) Size() int { return d.size }
func (d *dummyHasher) ComputeHash([]byte) hash.Hash { return make([]byte, d.size) }
func (d *dummyHasher) Write([]byte) (int, error) { return 0, nil }
func (d *dummyHasher) SumHash() hash.Hash { return make([]byte, d.size) }
func (d *dummyHasher) Reset() {}
func TestECDSAHasher(t *testing.T) {
for _, curve := range ecdsaCurves {
// generate a key pair
seed := make([]byte, KeyGenSeedMinLen)
n, err := crand.Read(seed)
require.Equal(t, n, KeyGenSeedMinLen)
require.NoError(t, err)
sk, err := GeneratePrivateKey(curve, seed)
require.NoError(t, err)
sig := make([]byte, ecdsaSigLen[curve])
// empty hasher
t.Run("Empty hasher", func(t *testing.T) {
_, err := sk.Sign(seed, nil)
assert.Error(t, err)
assert.True(t, IsNilHasherError(err))
_, err = sk.PublicKey().Verify(sig, seed, nil)
assert.Error(t, err)
assert.True(t, IsNilHasherError(err))
})
// hasher with large output size
t.Run("large size hasher is accepted", func(t *testing.T) {
dummy := newDummyHasher(500)
_, err := sk.Sign(seed, dummy)
assert.NoError(t, err)
_, err = sk.PublicKey().Verify(sig, seed, dummy)
assert.NoError(t, err)
})
// hasher with small output size
t.Run("small size hasher is rejected", func(t *testing.T) {
dummy := newDummyHasher(31) // 31 is one byte less than the supported curves' order
_, err := sk.Sign(seed, dummy)
assert.Error(t, err)
assert.True(t, IsInvalidHasherSizeError(err))
_, err = sk.PublicKey().Verify(sig, seed, dummy)
assert.Error(t, err)
assert.True(t, IsInvalidHasherSizeError(err))
})
}
}
// Signing bench
func BenchmarkECDSAP256Sign(b *testing.B) {
halg := hash.NewSHA3_256()
benchSign(b, ECDSAP256, halg)
}
// Verifying bench
func BenchmarkECDSAP256Verify(b *testing.B) {
halg := hash.NewSHA3_256()
benchVerify(b, ECDSAP256, halg)
}
// Signing bench
func BenchmarkECDSASecp256k1Sign(b *testing.B) {
halg := hash.NewSHA3_256()
benchSign(b, ECDSASecp256k1, halg)
}
// Verifying bench
func BenchmarkECDSASecp256k1Verify(b *testing.B) {
halg := hash.NewSHA3_256()
benchVerify(b, ECDSASecp256k1, halg)
}
// TestECDSAEncodeDecode tests encoding and decoding of ECDSA keys
func TestECDSAEncodeDecode(t *testing.T) {
for _, curve := range ecdsaCurves {
testEncodeDecode(t, curve)
}
}
// TestECDSAEquals tests equal for ECDSA keys
func TestECDSAEquals(t *testing.T) {
for i, curve := range ecdsaCurves {
testEquals(t, curve, ecdsaCurves[i]^1)
}
}
// TestECDSAUtils tests some utility functions
func TestECDSAUtils(t *testing.T) {
for _, curve := range ecdsaCurves {
// generate a key pair
seed := make([]byte, KeyGenSeedMinLen)
n, err := crand.Read(seed)
require.Equal(t, n, KeyGenSeedMinLen)
require.NoError(t, err)
sk, err := GeneratePrivateKey(curve, seed)
require.NoError(t, err)
testKeysAlgorithm(t, sk, curve)
testKeySize(t, sk, ecdsaPrKeyLen[curve], ecdsaPubKeyLen[curve])
}
}
// TestScalarMult is a unit test of the scalar multiplication
// This is only a sanity check meant to make sure the curve implemented
// is checked against an independant test vector
func TestScalarMult(t *testing.T) {
secp256k1 := secp256k1Instance.curve
p256 := p256Instance.curve
genericMultTests := []struct {
curve elliptic.Curve
Px string
Py string
k string
Qx string
Qy string
}{
{
secp256k1,
"858a2ea2498449acf531128892f8ee5eb6d10cfb2f7ebfa851def0e0d8428742",
"015c59492d794a4f6a3ab3046eecfc85e223d1ce8571aa99b98af6838018286e",
"6e37a39c31a05181bf77919ace790efd0bdbcaf42b5a52871fc112fceb918c95",
"fea24b9a6acdd97521f850e782ef4a24f3ef672b5cd51f824499d708bb0c744d",
"5f0b6db1a2c851cb2959fab5ed36ad377e8b53f1f43b7923f1be21b316df1ea1",
},
{
p256,
"fa1a85f1ae436e9aa05baabe60eb83b2d7ff52e5766504fda4e18d2d25887481",
"f7cc347e1ac53f6720ffc511bfb23c2f04c764620be0baf8c44313e92d5404de",
"6e37a39c31a05181bf77919ace790efd0bdbcaf42b5a52871fc112fceb918c95",
"28a27fc352f315d5cc562cb0d97e5882b6393fd6571f7d394cc583e65b5c7ffe",
"4086d17a2d0d9dc365388c91ba2176de7acc5c152c1a8d04e14edc6edaebd772",
},
}
baseMultTests := []struct {
curve elliptic.Curve
k string
Qx string
Qy string
}{
{
secp256k1,
"6e37a39c31a05181bf77919ace790efd0bdbcaf42b5a52871fc112fceb918c95",
"36f292f6c287b6e72ca8128465647c7f88730f84ab27a1e934dbd2da753930fa",
"39a09ddcf3d28fb30cc683de3fc725e095ec865c3d41aef6065044cb12b1ff61",
},
{
p256,
"6e37a39c31a05181bf77919ace790efd0bdbcaf42b5a52871fc112fceb918c95",
"78a80dfe190a6068be8ddf05644c32d2540402ffc682442f6a9eeb96125d8681",
"3789f92cf4afabf719aaba79ecec54b27e33a188f83158f6dd15ecb231b49808",
},
}
t.Run("scalar mult check", func(t *testing.T) {
for _, test := range genericMultTests {
Px, _ := new(big.Int).SetString(test.Px, 16)
Py, _ := new(big.Int).SetString(test.Py, 16)
k, _ := new(big.Int).SetString(test.k, 16)
Qx, _ := new(big.Int).SetString(test.Qx, 16)
Qy, _ := new(big.Int).SetString(test.Qy, 16)
Rx, Ry := test.curve.ScalarMult(Px, Py, k.Bytes())
assert.Equal(t, Rx.Cmp(Qx), 0)
assert.Equal(t, Ry.Cmp(Qy), 0)
}
})
t.Run("base scalar mult check", func(t *testing.T) {
for _, test := range baseMultTests {
k, _ := new(big.Int).SetString(test.k, 16)
Qx, _ := new(big.Int).SetString(test.Qx, 16)
Qy, _ := new(big.Int).SetString(test.Qy, 16)
// base mult
Rx, Ry := test.curve.ScalarBaseMult(k.Bytes())
assert.Equal(t, Rx.Cmp(Qx), 0)
assert.Equal(t, Ry.Cmp(Qy), 0)
// generic mult with base point
Px := new(big.Int).Set(test.curve.Params().Gx)
Py := new(big.Int).Set(test.curve.Params().Gy)
Rx, Ry = test.curve.ScalarMult(Px, Py, k.Bytes())
assert.Equal(t, Rx.Cmp(Qx), 0)
assert.Equal(t, Ry.Cmp(Qy), 0)
}
})
}
func TestSignatureFormatCheck(t *testing.T) {
for _, curve := range ecdsaCurves {
t.Run("valid signature", func(t *testing.T) {
len := ecdsaSigLen[curve]
sig := Signature(make([]byte, len))
_, err := crand.Read(sig)
require.NoError(t, err)
sig[len/2] = 0 // force s to be less than the curve order
sig[len-1] |= 1 // force s to be non zero
sig[0] = 0 // force r to be less than the curve order
sig[len/2-1] |= 1 // force r to be non zero
valid, err := SignatureFormatCheck(curve, sig)
assert.Nil(t, err)
assert.True(t, valid)
})
t.Run("invalid length", func(t *testing.T) {
len := ecdsaSigLen[curve]
shortSig := Signature(make([]byte, len/2))
valid, err := SignatureFormatCheck(curve, shortSig)
assert.Nil(t, err)
assert.False(t, valid)
longSig := Signature(make([]byte, len*2))
valid, err = SignatureFormatCheck(curve, longSig)
assert.Nil(t, err)
assert.False(t, valid)
})
t.Run("zero values", func(t *testing.T) {
// signature with a zero s
len := ecdsaSigLen[curve]
sig0s := Signature(make([]byte, len))
_, err := crand.Read(sig0s[:len/2])
require.NoError(t, err)
valid, err := SignatureFormatCheck(curve, sig0s)
assert.Nil(t, err)
assert.False(t, valid)
// signature with a zero r
sig0r := Signature(make([]byte, len))
_, err = crand.Read(sig0r[len/2:])
require.NoError(t, err)
valid, err = SignatureFormatCheck(curve, sig0r)
assert.Nil(t, err)
assert.False(t, valid)
})
t.Run("large values", func(t *testing.T) {
len := ecdsaSigLen[curve]
sigLargeS := Signature(make([]byte, len))
_, err := crand.Read(sigLargeS[:len/2])
require.NoError(t, err)
// make sure s is larger than the curve order
for i := len / 2; i < len; i++ {
sigLargeS[i] = 0xFF
}
valid, err := SignatureFormatCheck(curve, sigLargeS)
assert.Nil(t, err)
assert.False(t, valid)
sigLargeR := Signature(make([]byte, len))
_, err = crand.Read(sigLargeR[len/2:])
require.NoError(t, err)
// make sure s is larger than the curve order
for i := 0; i < len/2; i++ {
sigLargeR[i] = 0xFF
}
valid, err = SignatureFormatCheck(curve, sigLargeR)
assert.Nil(t, err)
assert.False(t, valid)
})
}
}
func TestEllipticUnmarshalSecp256k1(t *testing.T) {
testVectors := []string{
"028b10bf56476bf7da39a3286e29df389177a2fa0fca2d73348ff78887515d8da1", // IsOnCurve for elliptic returns false
"03d39427f07f680d202fe8504306eb29041aceaf4b628c2c69b0ec248155443166", // odd, IsOnCurve for elliptic returns false
"0267d1942a6cbe4daec242ea7e01c6cdb82dadb6e7077092deb55c845bf851433e", // arith of sqrt in elliptic doesn't match secp256k1
"0345d45eda6d087918b041453a96303b78c478dce89a4ae9b3c933a018888c5e06", // odd, arith of sqrt in elliptic doesn't match secp256k1
}
for _, testVector := range testVectors {
// get the compressed bytes
publicBytes, err := hex.DecodeString(testVector)
require.NoError(t, err)
// decompress, check that those are perfectly valid Secp256k1 public keys
retrieved, err := DecodePublicKeyCompressed(ECDSASecp256k1, publicBytes)
require.NoError(t, err)
// check the compression is canonical by re-compressing to the same bytes
require.Equal(t, retrieved.EncodeCompressed(), publicBytes)
// check that elliptic fails at decompressing them
x, y := elliptic.UnmarshalCompressed(btcec.S256(), publicBytes)
require.Nil(t, x)
require.Nil(t, y)
}
}
func BenchmarkECDSADecode(b *testing.B) {
// random message
seed := make([]byte, 50)
_, _ = crand.Read(seed)
for _, curve := range []SigningAlgorithm{ECDSASecp256k1, ECDSAP256} {
sk, _ := GeneratePrivateKey(curve, seed)
comp := sk.PublicKey().EncodeCompressed()
uncomp := sk.PublicKey().Encode()
b.Run("compressed point on "+curve.String(), func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := DecodePublicKeyCompressed(curve, comp)
require.NoError(b, err)
}
b.StopTimer()
})
b.Run("uncompressed point on "+curve.String(), func(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := DecodePublicKey(curve, uncomp)
require.NoError(b, err)
}
b.StopTimer()
})
}
}