forked from ablab/quast
-
Notifications
You must be signed in to change notification settings - Fork 1
/
manual.html
1645 lines (1458 loc) · 251 KB
/
manual.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>QUAST 4.5 manual</title>
<style type="text/css">
body {
margin-top: 30px;
margin-left: 50px;
max-width: 800px;
font-family: Tahoma,sans-serif;
font-size: 14px;
}
pre.code {
background-color: #EEE;
padding: 5px 0px;
margin-top: 5px;
margin-bottom: 15px;
}
table td {
vertical-align: top;
}
h2, h3, h4 {
margin-bottom: -10px;
}
h2 {
margin-top: 40px;
}
h3 {
margin-top: 50px;
}
h4 {
margin-top: 30px;
font-size: 1.1em;
}
ul {
margin-top: -12px;
}
ul li, ol li {
margin-bottom: 5px;
}
.options {
margin-left: 34px;
}
.option {
margin-top: 15px;
margin-bottom: 5px;
}
.options .option:first-child {
margin-top: 4px;
}
.metric-name, .metric-ref {
font-family: Georgia,serif;
}
.metric-name {
font-weight: bold;
}
.metrics_description p {
margin-bottom: 25px;
}
.hs { /* 10<span class="hs"></span>000 */
margin-left: .2em;
}
.rhs { /* 1<span class="rhs"> </span>kb */
font-size: 50%;
line-height: 1;
}
</style>
</head>
<body>
<h1>QUAST 4.5 manual</h1>
<p> QUAST stands for <u>QU</u>ality <u>AS</u>sessment <u>T</u>ool.
The tool evaluates genome assemblies by computing various metrics. This document provides instructions
for the general <b>QUAST</b> tool for genome assemblies, <b>MetaQUAST</b>, the extension for metagenomic datasets,
and <b>Icarus</b>, interactive visualizer for these tools.
<br>
<br>
You can find all project news and the latest version of the tool
at <a href="http://quast.sf.net/">http://quast.sf.net/</a>.
<br>
<br>
QUAST utilizes <a href="http://www.csd.uwo.ca/%7Eilie/E-MEM/">E-MEM</a>
(an improvement over <a href="http://mummer.sourceforge.net/">MUMmer</a>),
<a href="http://exon.gatech.edu/GeneMark/">GeneMarkS</a>,
<a href="http://exon.gatech.edu/GeneMark/gmes_instructions.html">GeneMark-ES</a>,
<a href="http://cbcb.umd.edu/software/glimmerhmm/">GlimmerHMM</a>,
<a href="http://gage.cbcb.umd.edu/index.html">GAGE</a>,
<a href="http://gnuplot.sourceforge.net/">Gnuplot</a>,
<a href="http://www.genome.umd.edu/jellyfish.html">Jellyfish</a>, and LAP.
In addition, MetaQUAST uses <a href="http://exon.gatech.edu/GeneMark/">MetaGeneMark</a>, <a href="http://sourceforge.net/p/krona/home/krona/">Krona tools</a>,
<a href="http://blast.ncbi.nlm.nih.gov/Blast.cgi">BLAST</a>, and
<a href="http://www.arb-silva.de/">SILVA</a> 16S rRNA database.
Starting from version 3.2, QUAST package includes reads processing tools for finding structural variants between the reference genome and actual organism.
These tools are <a href="https://github.com/lh3/bwa">BWA</a>,
<a href="https://github.com/lomereiter/sambamba">Sambamba</a>, and <a href="https://github.com/Illumina/manta">Manta</a>.
Also we use <a href="http://bedtools.readthedocs.io/">bedtools</a> for calculating raw and physical read coverage, which is shown in Icarus contig alignment viewer.
<br>
All tools above are built in into the QUAST package which is ready for use by academic, non-profit institutions and U.S. Government agencies.
If you are not in one of these categories please refer to <a href="LICENSE.txt">LICENSE</a> section 'Third-party tools incorporated into QUAST'
for guidelines on how to complete the licensing process.
<br>
<br>
Version 4.5 of QUAST was released under GPL v2 on XX March 2017. Note that some of build-in third-party tools are not under GPL v2. See <a href="LICENSE.txt">LICENSE</a> for details.
</p>
<h2>Contents</h2>
<ol>
<li><a href="#sec1">Installation</a></li>
<li><a href="#sec2">Running QUAST</a>
<ol>
<li><a href="#sec2.1">For impatient people</a></li>
<li><a href="#sec2.2">Input data</a></li>
<li><a href="#sec2.3">GAGE mode</a></li>
<li><a href="#sec2.4">Command line options</a></li>
<li><a href="#sec2.5">Metagenomic assemblies</a></li>
</ol>
</li>
<li><a href="#sec3">QUAST output</a>
<ol>
<li><a href="#sec3.1">Metrics description</a>
<ol>
<li><a href="#sec3.1.1">Summary report</a></li>
<li><a href="#sec3.1.2">Misassemblies report</a></li>
<li><a href="#sec3.1.3">Unaligned report</a></li>
</ol>
</li>
<li><a href="#sec3.2">Plots descriptions</a></li>
<li><a href="#sec3.3">MetaQUAST output</a></li>
<li><a href="#sec3.4">Icarus output</a></li>
</ol>
</li>
<li><a href="#sec4">Adjusting QUAST reports and plots</a></li>
<li><a href="#sec5">Citation</a></li>
<li><a href="#sec6">Feedback and bug reports</a></li>
<li><a href="#sec7">FAQ</a></li>
</ol>
<a name="sec1"></a>
<h2>1. Installation</h2>
<p>
QUAST can be run on Linux or macOS (OS X).
</p>
<p>
Its default pipeline requires:
</p>
<ul>
<li>python 2.5, 2.6, 2.7, 3.3, 3.4 or 3.5</li>
<li>perl 5.6.0 or higher</li>
<li>gcc 4.7 or higher</li>
<li>basic UNIX tools (make, sh, sed, awk, ar)</li>
</ul>
<p>
In addition, QUAST submodules require:
</p>
<ul>
<li>Java JDK (tested with OpenJDK 6) for GAGE</li>
<li>Time::HiRes perl module for GeneMark-ES</li>
<li>Boost (tested with v1.56.0) for E-MEM</li>
</ul>
All those tools are usually pre installed on Linux.<br>
MacOS, however, initially misses <code>make</code>, <code>gcc</code> and <code>ar</code>, so you will have to install
<a href='https://developer.apple.com/xcode/'>Xcode</a> (or only
<a href='https://developer.apple.com/downloads/index.action?name=Command%20Line%20Tools'>Command Line Tools for Xcode</a>) to make them available.
<br>
<br>
QUAST draws plots in two formats: HTML and PDF. If you need the PDF versions, make sure that you have installed <a href="http://matplotlib.sourceforge.net/">Matplotlib</a> Python library. We recommend to use Matplotlib version 1.1 or higher. QUAST is fully tested with Matplotlib v.1.3.1.
Installation on Ubuntu:
<pre class="code">
sudo apt-get install -y pkg-config libfreetype6-dev libpng-dev python-matplotlib
</pre>
<br>
To download the <a href="https://downloads.sourceforge.net/project/quast/quast-4.5.tar.gz">QUAST source code tarball</a> and extract it, type:
<pre class="code">
wget https://downloads.sourceforge.net/project/quast/quast-4.5.tar.gz
tar -xzf quast-4.5.tar.gz
cd quast-4.5
</pre>
<br>
<p>
QUAST automatically compiles all its sub-parts when needed (on the first use).
Thus, installation is not required. However, if you want to precompile everything and add quast.py to your <code>PATH</code>, you may choose either:
<p>
Basic installation (about 120 MB):
<pre class="code">
./setup.py install
</pre>
</p>
or
<p>
Full installation (about 540 MB, additionally includes (1) tools for SV detection based on read pairs, which is used for more precise misassembly detection, and (2) tools/data for reference genome detection in metagenomic datasets):
<pre class="code">
./setup.py install_full
</pre>
</p>
The default installation location is <code>/usr/local/bin/</code> for the executable scripts, and <code>/usr/local/lib/</code> for the python modules and auxiliary files.
If you are getting a permission error during the installation, consider running <code>setup.py</code> with <code>sudo</code>,
or creating a virtual python environment and <a href="http://docs.python-guide.org/en/latest/dev/virtualenvs/">install into it</a>.
Alternatively, you may use old-style installation scripts (<code>./install.sh</code> or <code>./install_full.sh</code>), which build QUAST package inplace.
</p>
<a name="sec2"></a>
<h2 style='margin-bottom: -40px;'>2. Running QUAST</h2>
<a name="sec2.1"></a>
<h3>2.1 For impatient people</h3><br>
Running QUAST on test data from the installation tarball (reference genome, gene annotations, and two assemblies of the first 10<span class="rhs"> </span>kbp of <i>E. coli</i>):
<pre class="code">
./quast.py test_data/contigs_1.fasta \
test_data/contigs_2.fasta \
-R test_data/reference.fasta.gz \
-G test_data/genes.gff
</pre>
View the summary of the evaluation results with the <a href="http://www.greenwoodsoftware.com/less/">less</a> utility:
<pre class="code">
less quast_results/latest/report.txt
</pre>
<a name="sec2.2"></a>
<h3>2.2 Input data</h3>
<p>
The <code>test_data</code> directory contains examples of assemblies, reference genomes, gene and operon annotations, and raw reads files.<br>
<br>
<b>Sequences</b><br>
The tool accepts assemblies and reference genomes in FASTA format. Files may be compressed with zip, gzip, or bzip2.<br>
A reference genome with multiple chromosomes can be provided as a single FASTA file with separate sequence for each chromosome inside.<br>
<span style='line-height: 50%;'> </span><br>
Maximum total assembly length is 4.29<span class="rhs"> </span>Gbp.<br>
Maximum length of a reference sequence (e.g. a chromosome) is 536<span class="rhs"> </span>Mbp. The number of sequences in a reference file is not limited.<br>
<br>
<b>Genes and operons</b><br>
One can also specify files with gene and operon positions in the reference genome. QUAST will count fully and partially aligned regions,
and output <a href='#genes'>total values</a> as well as <a href='#gene_plot'>cumulative plots</a>.<br>
<span style='line-height: 50%;'> </span><br>
The following file formats are supported:
<ul>
<li>GFF, versions <a href="http://www.sanger.ac.uk/resources/software/gff/spec.html">2</a> and <a href="http://www.sequenceontology.org/gff3.shtml">3</a>
(note: <feature>/<type> field should be either "gene" or "operon");
<li><a href="http://www.ensembl.org/info/website/upload/bed.html">BED</a>: sequence name, start position, end position, gene/operon id, optional fields;
<li>the <a href="http://www.ncbi.nlm.nih.gov/gene">format used by NCBI</a> for genes ("Summary (text)");
<li>four tab-separated columns: sequence name, gene/operon id, start position, end position.
</ul>
Note that the sequence name has to match a name in the reference file.<br>
<span style='line-height: 50%;'> </span><br>
Coordinates are 1-based, i.e. the first nucleotide in the reference genome has position 1, not 0.
If a <i>start position</i> is less than a corresponding <i>end position</i>, such gene or operon is located on the forward strand,
and on the reverse-complement strand otherwise.
</p>
<a name="sec2.3"></a>
<h3>2.3 GAGE mode</h3>
<p>
<a href="http://gage.cbcb.umd.edu/index.html">GAGE</a> is an assessment tool used in the well-known homonymous evaluation study
(Salzberg <i>et al.</i>, 2011). However, it has several important limitations:
<ul>
<li>Only one assembly per run, which complicates assembly comparison.
<li>Fixed threshold for a minimum contig length (200<span class="rhs"> </span>bp).
</ul>
These issues are solved by QUAST in GAGE mode (run with <code>--gage</code>). QUAST filters contigs according to a specified threshold and runs GAGE on each assembly.
GAGE statistics (see <a href="http://gage.cbcb.umd.edu/index.html">GAGE website</a> and <a href="http://genome.cshlp.org/content/early/2012/01/12/gr.131383.111">GAGE paper</a> for the descriptions)
are reported in addition to standard QUAST report (saved in <code><quast_output_dir>/gage_report.*</code>).<br>
<span style='line-height: 50%;'> </span><br>
Note:<br><br>
<ul>
<li>GAGE requires a reference genome.</li>
<li>Java and Java Compiler must be installed on your machine. Tested with OpenJDK 6.</li>
</ul>
</p>
<a name="sec2.4"></a>
<h3>2.4 Command line options</h3>
<br>
QUAST runs from a command line as follows:
<pre class='code'>
python quast.py [options] <contig_file(s)>
</pre>
Options:
<div class='options'>
<div class='option'>
<code><b>-o</b> <output_dir></code>
</div>
Output directory. The default value is <code>quast_results/results_<date_time></code>.<br>
Also, <code>quast_results/latest</code> symlink is created.<br>
<br>
Note: QUAST reuses existing alignments if run repeatedly with the same output directory.
Thus, you can efficiently reuse already computed results when running QUAST with different parameters, or adding more assemblies to the existing comparison.
<div class='option'>
<code><b>-R</b> <path></code>
</div>
Reference genome file. Optional. Many metrics can't be evaluated without a reference. If this is omitted, QUAST will only report the metrics that can be evaluated without a reference.
<div class='option'>
<code><b>-G</b> <path></code> (or <code>--genes <path></code>)
</div>
File with gene positions in the reference genome. See details about the file format in <a href="#sec2.2">section 2.2</a>.<br>
<span style='line-height: 50%;'> </span><br>
If you do not have gene positions, you can make QUAST predict genes with <code><a href='#gene_finding'>--gene-finding</a></code>.<br>
<div class='option'>
<code><b>-O</b> <path></code> (or <code>--operons <path></code>)
</div>
File with operon positions in the reference genome. See details about the file format in <a href="#sec2.2">section 2.2</a>
<div class='option'>
<a name='min_contig'></a>
<code><b>--min-contig</b></code> (or <code>-m</code>) <code><int></code>
</div>
Lower threshold for a contig length (in bp). Shorter contigs won't be taken into account
(except for specific metrics, see <a href="#sec3">section 3</a>). The default value is 500.
</div>
<br>
Advanced options:
<div class='options'>
<div class='option'>
<a name='threads_opt'></a><code><b>--threads</b></code> (or <code>-t</code>) <code><int></code>
</div>
Maximum number of threads. The default value is 25% of all available CPUs but not less than 1. If QUAST fails to determine the number of CPUs, maximum threads number is set to 4.
<div class='option'>
<code><b>--labels</b></code> (or <code>-l</code>) <code><label,label...></code>
</div>
Human-readable assembly names. Those names will be used in reports, plots and logs. For example:<br>
<div style='margin-left: 30px; margin-top: 5px; margin-bottom: 10px;'>
<code>-l SPAdes,IDBA-UD</code>
</div>
If your labels include spaces, use quotes:<br>
<div style='margin-left: 30px; margin-top: 5px; margin-bottom: 10px;'>
<code>-l SPAdes,"Assembly 2",Assembly3</code>
</div>
<div style='margin-left: 30px; margin-top: 5px; margin-bottom: 10px;'>
<code>-l "SPAdes 2.5, SPAdes 2.4, IDBA-UD"<br></code>
</div>
<div class='option'>
<code><b>-L</b></code>
</div>
Take assembly names from their parent directory names.
<div class='option'>
<a name='gene_finding'></a><code><b>--gene-finding</b></code> (or <code>-f</code>)
</div>
Enables gene finding. Affects performance, thus disabled by default.<br>
<span style='line-height: 50%;'> </span><br>
By default, we assume that the genome is prokaryotic, and apply GeneMarkS for gene finding.
If the genome is eukaryotic, use <a href='#eukaryote'><code>--eukaryote</code></a> option to enable GeneMark-ES instead.
If it is a metagenome (you are running <a href='#sec2.5'>metaquast.py</a>), MetaGeneMark is used. You can also force
MetaGeneMark predictions with <a href='#mgm'><code>--mgm</code></a> option described below.
<span style='line-height: 50%;'> </span><br><br>
If a <a href='#sec2.2'>gene file</a> is provided with <code>-G</code> as well, both
<span class='metric_ref'><a href='#genes'># genes</a></span> in the file covered by the assembly, and
<span class='metric_ref'><a href='#predicted_genes'># predicted genes</a></span> are reported. Note that operons are not predicted,
but a file of known operon positions can be provided with <code>-O</code>.<br>
<div class='option'>
<code><b>--glimmer</b></code>
</div>
Use GlimmerHMM for gene finding (instead of GeneMark family of tools). Note: you may skip <code>--gene-finding</code> option if <code>--glimmer</code> is specified.
<div class='option'>
<a name="mgm"></a>
<code><b>--mgm</b></code>
</div>
Use MetaGeneMark for gene finding (instead of the default finder: GeneMarkS or GeneMark-ES).
<span style='line-height: 50%;'> </span><br>
Note: if you are working with metagenome assemblies, we recommend <a href='#sec2.5'>to use metaquast.py</a> instead of quast.py
(it is in the same directory as quast.py).
<div class='option'>
<code><b>--gene-thresholds</b> <int,int,...></code>
</div>
Comma-separated list of thresholds (in bp) for gene lengths to find with a finding tool. The default value is 0,300,1500,3000.
Note: this list is used only if <code>--gene-finding</code> or <code>--glimmer</code> option is specified.
<div class='option'>
<a name="eukaryote"></a>
<code><b>--eukaryote</b></code> (or <code>-e</code>)
</div>
Genome is eukaryotic. Affects gene finding and contig alignment:<br>
<ol class='my_ol' style='margin-top: 0;'>
<li>For prokaryotes (which is default), GeneMarkS is used. For eukaryotes, GeneMark-ES is used.
<li>By default, QUAST assumes that a genome is circular and correctly processes its linear representation.
This options indicates that the genome is not circular.
</ol>
<div class='option'>
<a name='est_ref_size'></a><code><b>--est-ref-size</b> <int></code>
</div>
Estimated reference genome size (in bp) for computing <span class='metric-ref'>NGx</span> statistics. This value will be used only if a reference genome file is
not specified (see <code>-R</code> option).
<div class='option'>
<code><b>--gage</b></code>
</div>
Starts QUAST in "GAGE mode" (see <a href="#sec2.3">section 2.3</a>).
Note: in this case, you have to specify a reference genome with <code>-R</code>.
<div class='option'>
<code><b>--contig-thresholds</b> <int,int,...></code>
</div>
Comma-separated list of contig length thresholds (in bp). Used in <span class='metric-ref'># contigs ≥ x</span> and
<span class='metric-ref'>total length (≥ x)</span> metrics (see <a href="#sec3">section 3</a>). The default value is 0,1000.
<div class='option'>
<a name='scaffolds'></a><code><b>--scaffolds</b></code> (or <code>-s</code>)
</div>
The assemblies are scaffolds (rather than contigs). QUAST will add split versions
of assemblies to the comparison (named <assembly_name>_broken).
Assemblies are split by continuous fragments of N's of length ≥ 10.
If broken version is equal to the original assembly (i.e. nothing was split) it is not included in the comparison.
Scaffold gap size misassemblies are enabled in this case (see <a href="#sec3.1.2">section 3.1.2</a> for details and
<a href='#scaffold_gap_size'><code>--scaffold-gap-max-size</code></a> for setting maximum gap length).
<div class='option'>
<code><b>--use-all-alignments</b></code> (or <code>-u</code>)
</div>
Compute <span class='metric-ref'>genome fraction, # genes, # operons</span> metrics in the manner used in QUAST v.1.*.
By default, QUAST v.2.0 and higher filters out ambiguous and redundant alignments, keeping only one alignment per contig
(or one set of non-overlapping or slightly overlapping alignments). This option makes QUAST count all alignments.
<div class='option'>
<a name='min_alignment'></a><code><b>--min-alignment</b></code> (or <code>-i</code>) <code><int></code>
</div>
Minimum length of alignment (in bp). Alignments shorter than this value will be filtered. Note that all alignments shorter than 65 bp will be filtered regardless of this threshold.
<div class='option'>
<a name='min_identity'></a><code><b>--min-identity</b></code> <code><float></code>
</div>
Minimum IDY% considered as proper alignment. Alignments with IDY% worse than this value will be filtered. Default is 95.0 %. Note that all alignments with IDY% less than 80.0% will be filtered regardless of this threshold.
<div class='option'>
<a name='ambiguity_usage'></a><code><b>--ambiguity-usage</b> (or <code>-a</code>) <<b>none</b>|<b>one</b>|<b>all</b>></code>
</div>
Way of processing equally good alignments of a contig (probably repeats):<br>
<table style="margin-left: 30px; font-size: 1em; vertical-align: bottom;">
<tr><td style='width: 40px;'><code>none</code></td><td>skip all such alignments;</td></tr>
<tr><td><code>one</code></td><td>take only one (the very best one);</td></tr>
<tr><td><code>all</code></td><td>use all alignments. Can cause a significant increase of <span class='metric-ref'># mismatches</span>
(repeats are almost always inexact due to accumulated SNPs, indels, etc.).</td></tr>
</table>
The default value is <code>one</code>.<br>
<div style='margin-top: 6;'>The value <code>all</code> is useful for metagenomic assemblies where ambiguous alignments might represent homologous sequences of different strains.
For that reason, <code>--ambiguity-usage</code> is set to <code>all</code> for the "combined reference" evaluation (see <a href='#sec2.5'>section 2.5</a>).
You may still modify this behaviour with <a href='#unique_mapping'><code>--unique-mapping</code></a>.</div>
<div class='option'>
<code><b>--ambiguity-score</b></code> <code><float></code>
</div>
Score S for defining equally good alignments of a single contig (see <a href='#ambiguity_usage'><code>--ambiguity-usage</code></a>). All alignments are sorted by decreasing LEN<span class='rhs'> </span>×<span class='rhs'> </span>IDY% value. All alignments with LEN<span class='rhs'> </span>×<span class='rhs'> </span>IDY% less than S<span class='rhs'> </span>×<span class='rhs'> </span>best(LEN<span class='rhs'> </span>×<span class='rhs'> </span>IDY%) are discarded. S should be between 0.8 and 1.0. The default value is 0.99.
<div class='option'>
<code><b>--strict-NA</b></code>
</div>
Break contigs at every misassembly event (including local ones) to compute <span class='metric-ref'>NAx</span> and
<span class='metric-ref'>NGAx</span> statistics. By default, QUAST breaks contigs <i>only at extensive</i> misassemblies (not local ones).
<div class='option'>
<a name='extensive_mis_size'></a><code><b>--extensive-mis-size</b></code> (or <code>-x</code>) <code><int></code>
</div>
Lower threshold for the relocation size (gap or overlap size between left and right flanking sequence, see <a href="#sec3.1.2">section 3.1.2</a> for details).
Shorter relocations are considered as local misassemblies. It does not affect other types of extensive misassemblies (inversions and translocations).
The default value is 1000 bp. Note that the threshold should be greater than maximum indel length which is 85 bp.
<div class='option'>
<a name='scaffold_gap_size'></a><code><b>--scaffold-gap-max-size</b></code> <code><int></code>
</div>
Max allowed scaffold gap length difference for detecting corresponding type of misassemblies (see <a href="#sec3.1.2">section 3.1.2</a>
for details).
Longer inconsistencies are considered as relocations and thus, counted as extensive misassemblies. The default value is 10000 bp.
Note that the threshold make sense only if it is greater than extensive misassembly size
(see <a href='#extensive_mis_size'><code>--extensive-mis-size</code></a>, its default value is 1000 bp).
Also note that scaffold gap size misassemblies are counted for <b>scaffold assemblies only</b> (use <a href='#scaffolds'><code>--scaffolds</code></a>
if your assemblies are scaffolds rather than contigs).
<div class='option'>
<a name='unaligned_part_size'></a><code><b>--unaligned-part-size</b></code> <code><int></code>
</div>
Lower threshold for detecting partially unaligned contigs, see <a href="#sec3.1.3">section 3.1.3</a> for details.
The default value is 500 bp.
<div class='option'>
<a name='fragmented'></a><code><b>--fragmented</b></code>
</div>
Reference genome is fragmented (e.g. a scaffold reference). QUAST will try to detect misassemblies caused by the fragmentation and
mark them fake (will be excluded from <a href="#misassemblies"><code># misassemblies</code></a>).
Note: QUAST will not detect misassemblies caused by the linear representation of circular genome.
<div class='option'>
<a name='fragmented_indent'></a><code><b>--fragmented-max-indent</b></code> <code><int></code>
</div>
Mark translocation as fake if both alignments are located no further than N bases from the ends of the reference fragments.
The value should be less than extensive misassembly size
(see <a href='#extensive_mis_size'><code>--extensive-mis-size</code></a>, its default value is 1000 bp). Default value is 85.
Note: requires <a href='#fragmented'><code>--fragmented</code></a> option.
<div class='option'>
<code><b>--plots-format</b></code> <code><format></code>
</div>
File format for plots. Supported formats: emf, eps, pdf, png, ps, raw, rgba, svg, svgz.
The default format is PDF.
<div class='option'>
<a name='memory_eff'></a><code><b>--memory-efficient</b></code>
</div>
Use one thread, separately per each assembly and each chromosome. This may significantly reduce memory consumption for large genomes. Note: this option will significantly slow down the processing as well.
<div class='option'>
<a name='space_eff'></a><code><b>--space-efficient</b></code>
</div>
Create only primary output items (reports, plots, quast.log, etc). All auxiliary files (.stdout, .stderr, etc) will not be created.
This may significantly reduce disk space usage on large assemblies (more than 100k contigs).
Note: Icarus viewers also will not be built because they became enormously large and slow in case of
zillions of contigs, thus not applicable.
<div class='option'>
<code><b>--silent</b></code>
</div>
Do not print detailed information about each step in standard output. This option does not affect <code>quast.log</code> file.
</div>
<br>
Structural variant (SV) calling and processing (<b>experimental</b>, please use it carefully until we finalize the feature):
<div class='options'>
<div class='option'>
<a name='reads_opt'></a><code><b>--reads1</b> <path></code> (or <code>-1 <path></code>)
</div>
File with forward reads in FASTQ format (files compressed with gzip are allowed).
<div class='option'>
<code><b>--reads2</b> <path></code> (or <code>-2 <path></code>)
</div>
File with reverse reads in FASTQ format (files compressed with gzip are allowed).
<p>
<b>Important notes:</b><br>
<ul>
<li>You should specify exactly ONE file with forward reads and ONE file with the reverse ones. If you have multiple forward or reverse files,
please concatenate them.</li>
<li>Number of reads in both files should be exactly the same.</li>
<li>Forward and reverse reads of the same pair should have exactly the same names except trailing /1 and /2 respectively.</li>
</ul>
</p>
<p>Reads are used for SV detection: Reads are aligned to reference genome using BWA, then Manta SV calling tool is run on BWA output.
Found SVs are used for classifying QUAST misassemblies into true ones and fake ones (caused by structural differences between reference sequence and
sequenced organism). Fake misassemblies are excluded from <a href="#misassemblies"><code># misassemblies</code></a> and reported as <a href="#sv"><code># structural variants</code></a>.
<div class='option'>
<code><b>--bam</b> <path></code>
</div>
File with alignments of both forward and reverse reads to reference genome (in BAM format).
<div class='option'>
<code><b>--sam</b> <path></code>
</div>
File with alignments of both forward and reverse reads to reference genome (in SAM format).
<div class='option'>
<a name='sv_bedpe'></a><code><b>--sv-bedpe</b></code>
</div>
Use specified file in <a href="http://bedtools.readthedocs.org/en/latest/content/general-usage.html#bedpe-format">BEDPE format</a> as a list of structural variations (SV). This option disables SV detection based on reads.
Examples of BEDPE files for various types of SV are in FAQ section, <a href="#faq_q8">question Q8</a>.
</div>
<br>
Speedup options:
<div class='options'>
<div class='option'>
<code><b>--no-check</b></code>
</div>
<div style='margin-bottom: 6;'>Do not check and correct input FASTA files (both reference genome and assemblies).
By default, QUAST corrects sequence names by replacing special characters
(all symbols except latin letters, numbers, underscores, dots, and minus signs) with underscore ("_").
QUAST also checks and corrects sequences itself. Lowercase letters are changed to uppercase.
Alternative nucleotide symbols (M, K, R, etc) are replaced with N. If non-ACGTN characters
are present after this modifications the whole FASTA file is skipped from further processing. </div>
<i>Caution</i>: use this option at your own risk. Incorrect FASTA files may cause failing of
third-party tools incorporated to QUAST, e.g. GAGE, Nucmer, GeneMark, GlimmerHMM.
This option is useful for running QUAST without <code>-R</code> and <code>--gene-finding</code>
(no third-party tools will be run) or if you are absolutely sure that your FASTA files are correct.
<div class='option'>
<code><a name='no_plots'></a><b>--no-plots</b></code>
</div>
Do not draw plots.
<div class='option'>
<code><b>--no-html</b></code>
</div>
Do not build HTML reports and <a href="#sec3.4">Icarus viewers</a>.
<div class='option'>
<code><b>--no-icarus</b></code>
</div>
Do not build <a href="#sec3.4">Icarus viewers</a>.
<div class='option'>
<a name='no_snps'></a><code><b>--no-snps</b></code>
</div>
Do not report SNPs statistics. This may significantly reduce memory consumption on large genomes and speed up computation. However, all SNP-related metrics will not be reported (e.g. <code># mismatches per 100 kbp</code>).
<div class='option'>
<code><b>--no-gc</b></code>
</div>
Do not compute GC% and do not produce GC-distribution plots (both in HTML report and in PDF).
<div class='option'>
<code><b>--no-sv</b></code>
</div>
Do not run structural variant calling and processing (make sense only if reads are specified).
<div class='option'>
<code><b>--no-gzip</b></code>
</div>
Do not compress large output files (files containing SNP information and predicted genes).
This may speed up computation, but more disk space is required.
<div class='option'>
<a name='fast'></a><code><b>--fast</b></code>
</div>
A shortcut for using all of speedup options except --no-check.
</div>
<br>
MetaQUAST only:
<div class='options'>
<div class='option'>
<code><b>--use-input-ref-order</b></code>
</div>
Use provided order of references in MetaQUAST summary plots (X-axis). By default,
the ordering is based on the best average value of the metric among all assemblies.
Note: this option affects only static PDF/PNG/etc plots under <code><metaquast_output_dir>/summary/.
Interactive HTML report has radio button to control the order of references.
<div class='option'>
<a name='references_list'></a><code><b>--references-list</b> <path></code>
</div>
Text file with list of reference genomes (each one on a separate line).
MetaQUAST will search for these references in the NCBI database and will download the found ones.
Example of such file is in FAQ section, <a href="#faq_q10">question Q10</a>.
<div class='option'>
<code><b>--test-no-ref</b></code>
</div>
Run MetaQUAST on a data from the <code>test_data</code> folder, but without reference genomes. The tool will download
SILVA 16S rRNA gene database (170 Mb) and BLAST binaries (55-75 Mb depending on your OS),
which will be required if you plan to use MetaQUAST without references.
See <a href="#sec2.5">section 2.5</a> for details about reference search algorithm.
<div class='option'>
<a href='blast_db'></a><code><b>--blast-db</b></code> <code><path></code>
</div>
Use custom BLAST database instead of embedded SILVA 16S rRNA database. The path should point either to directory
containing .nsq file or to .nsq file itself.
See FAQ section, <a href="#faq_q12">question Q12</a> for details about creating custom BLAST databases.
<div class='option'>
<a href='max_ref_num'></a><code><b>--max-ref-num</b></code> <code><int></code>
</div>
Maximum number of reference genomes (per each assembly) to download after searching in SILVA database. Default value is 50.
<div class='option'>
<a name='unique_mapping'></a><code><b>--unique-mapping</b></code> <code><int></code>
</div>
Force <a href='#ambiguity_usage'><code>--ambiguity-usage</code></a>='one' for the combined reference genome
('all' is used by default).
</div>
<br>
Other:
<div class='options'>
<div class='option'>
<code><b>--test</b></code>
</div>
Run the tool on a data from the <code>test_data</code> folder and check correctness of the evaluation process. Output is saved in <code>quast_test_output</code>.
<div class='option'>
<code><b>--test-sv</b></code>
</div>
Run the tool on a data from the <code>test_data</code> folder using the reads for SV detection. The tool will compile or download the required programs (BEDtools, BWA, and Manta Structural Variant Caller).
<div class='option'>
<code><b>-h</b></code> (or <code>--help</code>)
</div>
Print help.
<div class='option'>
<code><b>-v</b></code> (or <code>--version</code>)<br>
</div>
Print version.
</div>
<a name="sec2.5"></a>
<h3>2.5 Metagenomic assemblies</h3>
<p>
The <code>metaquast.py</code> script accepts multiple reference genomes.
One can provide several files or directories with multiple reference files inside with <code>-R</code> option.
Option <code>-R</code> may be specified multiple times or all references may be specified as a comma-separated list (<b>without spaces!</b>)
with a single <code>-R</code> option beforehand. Another way is to use <a href='#references_list'><code>--references-list</code></a> option.
<p>General usage:
<pre class="code">
python metaquast.py contigs_1 contigs_2 ... -R reference_1,reference_2,reference_3,...
</pre>
<p>
The tool partitions all contigs into groups aligned to each reference genome.
Note that a contig may belong to several groups simultaneously if it aligns to several references.
<br>
MetaQUAST runs quast.py for each of the following:<br>
<ul>
<li>for all reference genomes in combination (simple concatenation of the FASTA files, we refer to it as "combined reference"),
<li>for each reference genome separately, by using corresponding group of contigs,
<li>for the rest of the contigs that were not aligned to any reference genome.
</ul>
Note that MetaQUAST uses <a href='#ambiguity_usage'><code>--ambiguity-usage</code></a> 'all' when running quast.py on
the combined reference until <a href='#unique_mapping'><code>--unique-mapping</code></a> is specified.<br>
<p>If you run MetaQUAST without providing reference genomes, the tool will try to identify genome content of the metagenome.
MetaQUAST uses BLASTN for aligning contigs to SILVA 16S rRNA database, i.e. FASTA file containing small subunit ribosomal RNA sequences.
For each assembly, 50 reference genomes with top scores are chosen.
Maximum number of references to download can be specified with <a href='#max_ref_num'><code>--max-ref-number</code></a>.
<p>Reference genomes for the chosen genomes are downloaded from the NCBI database to <code><quast_output_dir>/quast_downloaded_references/</code>.
After that, MetaQUAST runs <code>quast.py</code> on all of them and removes reference genomes with low genome fraction (less than 10%) and
proceeds the usual MetaQUAST analysis with the remaining references.
<a name="sec3"></a>
<h2>3. QUAST output</h2>
<p>If an output path is not specified manually (with <code>-o</code>), QUAST generates its output into <code>quast_results/result_<DATE></code> directory and
creates <code>latest</code> symlink to it under <code>quast_results/</code> directory.
<br>
<br>
QUAST output contains:
<table style="margin-left: 20px; font-size: 1em;">
<tr>
<td style="padding-right: 20px;">report.txt</td>
<td>assessment summary in plain text format,</td>
</tr>
<tr>
<td style="padding-right: 20px;">report.tsv</td>
<td>tab-separated version of the summary, suitable for spreadsheets (Google Docs, Excel, etc),</td>
</tr>
<tr>
<td style="padding-right: 20px;">report.tex</td>
<td>LaTeX version of the summary,</td>
</tr>
<tr>
<td style="padding-right: 20px;">icarus.html</td>
<td>Icarus main menu with links to interactive viewers. See <a href="#sec3.4">section 3.4</a> for details,</td>
</tr>
<tr>
<td style="padding-right: 20px;">report.pdf</td>
<td>all other plots combined with all tables (file is created if matplotlib python library is installed),</td>
</tr>
<tr>
<td style="padding-right: 20px;">report.html</td>
<td>HTML version of the report with interactive plots inside,</td>
</tr>
<tr>
<td style="padding-right: 20px;">contigs_reports/</td>
<td></td>
</tr>
<tr>
<td style="padding-right: 20px; padding-left: 20px;">misassemblies_report</td>
<td>detailed report on misassemblies. See <a href="#sec3.1.2">section 3.1.2</a> for details,</td>
</tr>
<tr>
<td style="padding-right: 20px; padding-left: 20px;">unaligned_report</td>
<td>detailed report on unaligned and partially unaligned contigs. See <a href="#sec3.1.3">section 3.1.3</a> for details.</td>
</tr>
</table>
<br>
Note:
<ul style="margin-top: -12px;">
<li>metrics based on a reference genome are computed only if a reference is provided (see <a href="#sec1.3">section 2.4</a>), </li>
<li>metrics based on genes and operons are computed only if proper annotations are provided (see <a href="#sec1.3">section 2.4</a>). </li>
</ul>
</p>
<div class='metrics_description'>
<a name="sec3.1"></a>
<h3 style='margin-bottom: -15px;'>3.1 Metrics description</h3>
<a name="sec3.1.1"></a>
<h4>3.1.1 Summary report</h4>
<p><span class='metric-name'># contigs (≥<span class="rhs"> </span>x<span class="rhs"> </span>bp)</span>
is total number of contigs of length <code>≥ x<span class="rhs"> </span>bp</code>.
Not affected by the <code>--min-contig</code> parameter (see <a href="#sec2.4">section 2.4</a>).</p>
<p><span class='metric-name'>Total length (≥<span class="rhs"> </span>x<span class="rhs"> </span>bp)</span>
is the total number of bases in contigs of length <code>≥ x<span class="rhs"> </span>bp</code>.
Not affected by the <code>--min-contig</code> parameter (see <a href="#sec2.4">section 2.4</a>).<br>
<br>
<i>All remaining metrics are computed for contigs that exceed the threshold specified with
<code>--min-contig</code> (see <a href="#sec2.4">section 2.4</a>, default is 500 bp).</i>
</p>
<p><span class='metric-name'># contigs</span> is the total number of contigs in the assembly.</p>
<p><a name='largest_contig'></a><span class='metric-name'>Largest contig</span> is the length of the longest contig in the assembly.</p>
<p><a name='total_length'></a><span class='metric-name'>Total length</span> is the total number of bases in the assembly.</p>
<p><span class='metric-name'>Reference length</span> is the total number of bases in the reference genome.</p>
<p><a name='GC'></a><span class='metric-name'>GC (%)</span> is the total number of G and C nucleotides in the assembly,
divided by the total length of the assembly.</p>
<p><span class='metric-name'>Reference GC (%)</span> is the percentage of G and C nucleotides in the reference genome.</p>
<p><a name='N50'></a><span class='metric-name'>N50</span> is the length for which the collection of all contigs of that length or longer
covers at least half an assembly.<br>
<p><a name='NG50'></a><span class='metric-name'>NG50</span> is the length for which the collection of all contigs of that length or longer
covers at least half the reference genome.<br> This metric is computed only if
the reference genome is provided.</p>
<p><a name='N75'></a><span class='metric-name'>N75 and NG75</span> are defined similarly to N50 but with 75<span class="rhs"> </span>% instead of 50<span class="rhs"> </span>%.</p>
<p><span class='metric-name'>L50 (L75, LG50, LG75)</span> is the number of contigs equal to or longer than N50 (N75, NG50, NG75)<br>
In other words, L50, for example, is the minimal number of contigs that cover half the assembly.</p>
<p><a name='misassemblies'></a><span class='metric-name'># misassemblies</span> is the number of positions in the contigs (breakpoints) that satisfy one of the following criteria:<br>
<ul style='margin-top: -24px;'>
<li>the left flanking sequence aligns over 1<span class="rhs"> </span>kbp away from the right flanking sequence on the reference;
<li>flanking sequences overlap on more than 1<span class="rhs"> </span>kbp;
<li>flanking sequences align to different strands or different chromosomes;
<li>flanking sequences align on different reference genomes (MetaQUAST only).
</ul>
This metric requires a reference genome. Note that default threshold of 1<span class="rhs"> </span>kbp can be
changed with <a href='#extensive_mis_size'><code>--extensive-mis-size</code></a>.
See more details about misassemblies in <a href="#sec3.1.2">section 3.1.2</a>.
Important note: this metric does <b>not</b> sum up <code># local misassemblies, # scaffold gap size misassemblies,
# structural variants</code>, and <code># unaligned mis. contigs</code> described below.</p>
<p><span class='metric-name'># misassembled contigs</span> is the number of contigs that contain misassembly events
(see <a href="#misassemblies"><code># misassemblies</code></a> above).</p>
<p><span class='metric-name'>Misassembled contigs length</span> is the total number of bases in misassembled contigs.</p>
<p><span class='metric-name'># local misassemblies</span> is the number of positions in the contigs (breakpoints) that satisfy the following conditions:
<ol class='my_ol' style='margin-top: -24px;'>
<li>The gap or overlap between left and right flanking sequences is less than 1<span class="rhs"> </span>kbp, and larger than the maximum indel length (85 bp).</li>
<li>The left and right flanking sequences both are on the same strand of the same chromosome of the reference genome.</li>
</ol>
Note that default threshold of 1<span class="rhs"> </span>kbp can be
changed with <a href='#extensive_mis_size'><code>--extensive-mis-size</code></a>.
</p>
<p><a name='scaffold_misassembly'></a><span class='metric-name'># scaffold gap size misassemblies</span> is the number of positions in the scaffolds (breakpoints)
where the flanking sequences are combined in scaffold on the wrong distance (<a href='#scaffolds'><code>--scaffolds</code></a> only).
Max allowed distance inconsistency is controlled by <a href='#scaffold_gap_size'><code>--scaffold-gap-max-size</code></a> option (default is 10<span class="rhs"> </span>kbp).</p>
<p><a name='sv'></a><span class='metric-name'># structural variants</span> is the number of misassemblies matched with structural variations of genome
(if reads or BEDPE file with SV are provided, see <a href='#reads_opt'><code>--reads1/reads2</code></a> and <a href='#sv_bedpe'><code>--sv-bedpe</code></a>).
</p>
<p><a name='unaligned_mis_contigs'><span class='metric-name'># unaligned mis. contigs</span> is the number of contigs that
have the number of unaligned bases more than 50% of contig length
and at least one misassembly event in their aligned fragment.
Such contigs are probably not related to the reference genome, thus their misassemblies may be not real errors but
differences between the assembled organism and the reference.
</p>
<p><span class='metric-name'># unaligned contigs</span> is the number of contigs that have no alignment to the
reference sequence. The value "X<span class='rhs'> </span>+<span class='rhs'> </span>Y part" means X totally unaligned contigs plus Y partially unaligned contigs.
This metric sums up <code># unaligned mis. contigs</code> described above.</p>
<p><span class='metric-name'>Unaligned length</span> is the total length of all unaligned regions in the assembly
(sum of lengths of fully unaligned contigs and unaligned parts of partially unaligned ones). </p>
<!--p><span class='metric-name'># ambiguous contigs</span> is the number of contigs which have reference alignments
of equal quality in multiple locations on the reference. </p>
<p><span class='metric-name'>Ambiguous contigs length</span> is the number of total bases contained in all ambiguous contigs. </p-->
<p><span class='metric-name'>Genome fraction (%)</span> is the percentage of aligned bases in the reference genome.
A base in the reference genome is aligned if there is at least one contig with at least one alignment to this base.
Contigs from repetitive regions may map to multiple places, and thus may be counted multiple times (see <a href='#ambiguity_usage'><code>--ambiguity-usage</code></a>).</p>
<p><a name='duplication_ratio'></a><span class='metric-name'>Duplication ratio</span> is the total number of aligned bases in the assembly divided by the total number of aligned bases in the
reference genome (see <span class='metric-ref'>Genome fraction (%)</span> for the 'aligned base' definition). If the assembly contains many contigs that cover the same
regions of the reference, its <span class='metric-ref'>duplication ratio</span> may be much larger than 1. This may occur due to overestimating
repeat multiplicities and due to small overlaps between contigs, among other reasons.</p>
<p><span class='metric-name'># N's per 100<span class="rhs"> </span>kbp</span> is the average number of uncalled bases (N's) per 100<span class='hs'></span>000 assembly bases.</p>
<p><span class='metric-name'># mismatches per 100<span class="rhs"> </span>kbp</span> is the average number of mismatches
per 100<span class='hs'></span>000 aligned bases. True SNPs and sequencing errors are not distinguished and are counted equally.
</ul>
</p>
<p><span class='metric-name'># indels per 100<span class="rhs"> </span>kbp</span> is the average number of indels per 100<span class='hs'></span>000 aligned bases.
Several consecutive single nucleotide indels are counted as one indel.</p>
<p><a name='genes'></a><span class='metric-name'># genes</span> is the number of genes in the assembly (complete and partial), based on a user-provided
list of gene positions in the reference genome. A gene 'partially covered' if the assembly contains at least 100<span class="rhs"> </span>bp
of this gene but not the whole one.<br>
<span style='line-height: 50%;'> </span><br>
This metric is computed only if a reference genome and an annotated list of gene positions are provided (see <a href="#sec2.4">section 2.4</a>).</p>
<p><span class='metric-name'># operons</span> is defined similarly to <span class='metric-ref'># genes</span>, but an operon positions file required instead.</p>
<p><a name='predicted_genes'></a><span class='metric-name'># predicted genes</span> is the number of genes in the assembly
found by GeneMarkS, GeneMark-ES, GlimmerHMM or MetaGeneMark. See the description of <a href='#gene_finding'><code>--gene-finding</code></a> option for details.</p>
<p><span class='metric-name'>Total aligned length</span> is the total number of aligned bases in the assembly. A value is usually smaller than a value of <a href='#total_length'><span class='metric-ref'>total length</span></a> because some of the contigs may be unaligned or partially unaligned.</p>
<p><span class='metric-name'>Largest alignment</span> is the length of the largest continuous alignment in the assembly.
A value can be smaller than a value of <a href='#largest_contig'><span class='metric-ref'>largest contig</span></a> if the largest contig is misassembled or partially unaligned.</p>
<p><a name='NAx'></a><a name='NGAx'></a><span class='metric-name'>NA50, NGA50, NA75, NGA75, LA50, LA75, LGA50, LGA75</span> ("A" stands for "aligned") are similar to
the corresponding metrics without "A", but in this case aligned blocks instead of contigs are considered.<br>
Aligned blocks are obtained by breaking contigs at misassembly events and removing all unaligned bases.</p>
<a name="sec3.1.2"></a>
<h4>3.1.2 Misassemblies report</h4>
<p><span class='metric-name'># misassemblies</span> is the same as <span class='metric-ref'># misassemblies</span> from <a href="#sec3.1.1">section 3.1.1</a>.
However, this report also contains a classification of all misassembly events into three groups: <span class='metric-ref'>relocations</span>, <span class='metric-ref'>translocations</span>,
and <span class='metric-ref'>inversions</span> (see below). For metagenomic assemblies, this classification also includes interspecies translocation.</p>
<div align="center" style="margin: 20px 0 20px -50px;"><img height="120" src=""/></div>
<p><span class='metric-name'>Relocation</span> is a misassembly event (breakpoint) where the left flanking sequence aligns over 1<span class="rhs"> </span>kbp away from the right flanking
sequence on the reference genome, or they overlap by more than 1<span class="rhs"> </span>kbp, and both flanking sequences align on the same chromosome. Note that default threshold of 1<span class="rhs"> </span>kbp can be
changed by <a href='#extensive_mis_size'><code>--extensive-mis-size</code></a>.</p>
<p><span class='metric-name'>Translocation</span> is a misassembly event (breakpoint) where the flanking sequences align on different chromosomes. </p>
<p><span class='metric-name'>Interspecies translocation</span> is a misassembly event (breakpoint) where the flanking sequences align on different reference genomes (MetaQUAST only). </p>
<p><span class='metric-name'>Inversion</span> is a misassembly event (breakpoint) where the flanking sequences align on
opposite strands of the same chromosome. </p>
<p><span class='metric-name'># misassembled contigs</span> and <span class='metric-name'>misassembled contigs length</span> are the same as the metrics from
<a href="#sec3.1.1">section 3.1.1</a> and are counted among all contigs with any type of a misassembly event described above
(relocation, translocation, interspecies translocation or inversion). </p>
<p><span class='metric-name'># possibly misassembled contigs</span> is the number of contigs that contain large unaligned fragment and thus could possibly contain interspecies translocation
with unknown reference (MetaQUAST only, combined reference only). Minimal length of the consecutive unaligned fragment (excluding N's) is controlled by
<a href='#unaligned_part_size'><code>--unaligned-part-size</code></a>, default value is 500 bp. </p>
<p><span class='metric-name'># possible misassemblies</span> is the number of putative interspecies translocations in possibly misassembled contigs if each large unaligned fragment
is supposed to be a fragment of unknown reference (MetaQUAST only, combined reference only). </p>
<p>
The next metrics are the same to homonymous metrics from <a href="#sec3.1.1">section 3.1.1</a>. Note that all of them are excluded from <code># misassemblies</code> and related metrics:
<ul>
<li><span class='metric-name'># local misassemblies</span>,</li>
<li><span class='metric-name'># scaffold gap size misassemblies</span>,</li>
<li><span class='metric-name'># structural variants</span>,</li>
<li><span class='metric-name'># unaligned mis. contigs</span>.</li>
</ul>
</p>
<p><span class='metric-name'># mismatches</span> is the number of mismatches in all aligned bases.</p>
<p><span class='metric-name'># indels</span> is the number of indels in all aligned bases. Several consecutive single nucleotide indels are counted as one indel.
Note: default maximum length of indel is 85 bp. All indels larger than 85 bp are considered as local misassemblies.</p>
<p><span class='metric-name'># indels (≤<span class="rhs"> </span>5<span class="rhs"> </span>bp)</span> is the number of indels of length <code>≤<span class="rhs"> </span>5<span class="rhs"> </span>bp</code>.</p>
<p><span class='metric-name'># indels (><span class="rhs"> </span>5<span class="rhs"> </span>bp)</span> is the number of indels of length <code>><span class="rhs"> </span>5<span class="rhs"> </span>bp</code>.</p>
<p><span class='metric-name'>Indels length</span> is the total number of bases contained in all indels.</p>
<a name="sec3.1.3"></a>
<h4>3.1.3 Unaligned report</h4>
<p><span class='metric-name'># fully unaligned contigs</span> is the number of contigs that have no alignment to the reference sequence.</p>
<p><span class='metric-name'>Fully unaligned length</span> is the total number of bases in all unaligned contigs.</p>
<p><span class='metric-name'># partially unaligned contigs</span> is the number of contigs that are not fully unaligned (i.e. have at least one alignment), but have at least one unaligned fragment
≥ the threshold defined by <a href='#unaligned_part_size'><code>--unaligned-part-size</code></a> (default value is 500 bp).</p>
<p><span class='metric-name'>Partially unaligned length</span> is the total number of unaligned bases in all partially unaligned contigs.</p>
<p><span class='metric-name'># N's</span> is the total number of uncalled bases (N's) in the assembly.</p>
<a name="sec3.2"></a>
<h3>3.2 Plots description</h3>
<p>This section describes PDF and HTML plots. For Icarus interactive contig alignment and size visualization see <a href="#sec3.4">section 3.4</a>.</p>
<p><span class='metric-name'>Cumulative length plot</span> shows the growth of contig lengths. On the x-axis, contigs are ordered from the largest
to smallest. The y-axis gives the size of the x largest contigs in the assembly.</p>