-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
186 lines (137 loc) · 6.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import sys
import os
import torch
import random
import numpy as np
import time
from sklearn import metrics
import torch.nn.functional as F
from transformers import BertTokenizer
from snippet import *
from model import BiSyn_GAT_plus
def set_random_seed(args):
# set random seed
# torch.manual_seed(args.seed)
# np.random.seed(args.seed)
# random.seed(args.seed)
# torch.cuda.manual_seed(args.seed)
os.environ['PYTHONHASHSEED'] =str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
if args.device == 'cuda':
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic =True
def evaluate(model, dataloader, args, vocab):
token_vocab = vocab['token']
polarity_vocab = vocab['polarity']
predictions, labels = [], []
val_loss, val_acc = 0.0, 0.0
for step, batch in enumerate(dataloader):
model.eval()
with torch.no_grad():
batch = [b.to(args.device) for b in batch]
inputs = batch[:-1]
label = batch[-1]
logits = model(inputs)
loss = F.cross_entropy(logits, label, reduction='mean')
val_loss += loss.data
predictions += np.argmax(logits.data.cpu().numpy(), axis=1).tolist()
labels += label.data.cpu().numpy().tolist()
val_acc = metrics.accuracy_score(labels, predictions) * 100.0
f1_score = metrics.f1_score(labels, predictions, average = 'macro')
return val_loss / len(dataloader), val_acc, f1_score
def train(args, vocab, tokenizer, train_dataloader, valid_dataloader, test_dataloader, model, optimizer):
############################################################
# train
print("Training Set: {}".format(len(train_dataloader)))
print("Valid Set: {}".format(len(valid_dataloader)))
print("Test Set: {}".format(len(test_dataloader)))
train_acc_history, train_loss_history = [0.0],[0.0]
val_acc_history, val_history, val_f1_score_history = [0.0],[0.0],[0.0]
in_test_epoch, in_test_acc, in_test_f1 = 0, 0.0, 0.0
patience = 0
for epoch in range(1, args.num_epoch + 1):
begin_time = time.time()
print("Epoch {}".format(epoch) + "-" * 60)
train_loss, train_acc, train_step = 0.0, 0.0, 0
train_all_predict = 0
train_all_correct = 0
for i, batch in enumerate(train_dataloader):
model.train()
optimizer.zero_grad()
batch = [b.to(args.device) for b in batch]
inputs = batch[:-1]
label = batch[-1]
logits = model(inputs)
loss = F.cross_entropy(logits, label, reduction='mean')
loss.backward()
optimizer.step()
train_loss += loss.item()
corrects = (torch.max(logits,1)[1].view(label.size()).data == label.data).sum()
train_all_predict += label.size()[0]
train_all_correct += corrects.item()
train_step += 1
if train_step % args.log_step == 0:
print('{}/{} train_loss:{:.6f}, train_acc:{:.4f}'.format(
i, len(train_dataloader), train_loss / train_step, 100.0 * train_all_correct / train_all_predict
))
train_acc = 100.0 * train_all_correct / train_all_predict
val_loss, val_acc, val_f1 = evaluate(model, valid_dataloader,args, vocab)
print(
"[{:.2f}s] Pass!\nEnd of {} train_loss: {:.4f}, train_acc: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}, f1_score: {:.4f}".format(
time.time() - begin_time, epoch, train_loss / train_step, train_acc, val_loss, val_acc, val_f1
)
)
train_acc_history.append(train_acc)
train_loss_history.append(train_loss / train_step)
if epoch == 1 or float(val_acc) > max(val_acc_history) or float(val_f1) > max(val_f1_score_history):
patience = 0
test_loss, test_acc, test_f1 = evaluate(model, test_dataloader, args, vocab)
in_test_epoch = epoch
in_test_acc = test_acc
in_test_f1 = test_f1
print('-->In test: patience:{}, test_acc:{}, test_f1:{}'.format(patience,test_acc, test_f1))
else:
patience += 1
val_acc_history.append(float(val_acc))
val_f1_score_history.append(val_f1)
if patience >= args.max_patience:
print('Exceeding max patience', patience)
print('Training ended with {} epoches.'.format(epoch))
_, last_test_acc, last_test_f1 = evaluate(model, test_dataloader, args, vocab)
print('In Results: test_epoch:{}, test_acc:{}, test_f1:{}'.format(in_test_epoch, in_test_acc, in_test_f1))
print('Last In Results: test_epoch:{}, test_acc:{}, test_f1:{}'.format(epoch, last_test_acc, last_test_f1))
def run(args, vocab, tokenizer):
print_arguments(args)
###########################################################
# data
train_dataloader, valid_dataloader, test_dataloader = load_data(args, vocab, tokenizer=tokenizer)
###########################################################
# model
model = BiSyn_GAT_plus(args).to(device=args.device)
print(model)
print('# parameters:', totally_parameters(model))
###########################################################
# optimizer
bert_model = model.intra_context_module.context_encoder
bert_params_dict = list(map(id,bert_model.parameters()))
if not args.borrow_encoder and args.plus_AA:
bert_model_2 = model.inter_context_module.con_aspect_graph_encoder
bert_params_dict_2 = list(map(id,bert_model_2.parameters()))
bert_params_dict += bert_params_dict_2
base_params = filter(lambda p: id(p) not in bert_params_dict, model.parameters())
optimizer_grouped_parameters = [
{"params": [p for p in base_params if p.requires_grad]},
{"params": [p for p in bert_model.parameters() if p.requires_grad], "lr": args.bert_lr}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr,weight_decay=args.l2)
train(args, vocab, tokenizer, train_dataloader, valid_dataloader, test_dataloader, model, optimizer)
if __name__ == '__main__':
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
args = get_parameter()
set_random_seed(args)
vocab = load_vocab(args)
run(args, vocab, tokenizer = bert_tokenizer)