-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevalKITTI_ARI.py
82 lines (59 loc) · 2.61 KB
/
evalKITTI_ARI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
from datasetKITTIEval import KITTIDataset
from utils import adjusted_rand_index as ARI
from models.model_bg import *
parser = argparse.ArgumentParser()
parser.add_argument
parser.add_argument('--ckpt_path', default='/home/users/skara/check_release/checkpoints/DIODKITTI_100.ckpt', type=str, help='pre-trained model path' )
parser.add_argument('--test_path', default = '/home/data/skara/KITTI_DOM/KITTI_DOM_test', type = str, help = 'path of KITTI test set')
parser.add_argument('--num_slots', default=45, type=int, help='Number of slots in Slot Attention.')
parser.add_argument('--hid_dim', default=64, type=int, help='hidden dimension size')
def main():
opt = parser.parse_args()
resolution = (368, 1248)
model_path = opt.ckpt_path
data_path = opt.test_path
test_set = KITTIDataset(split = 'test', root = data_path)
model = SlotAttentionAutoEncoder(resolution, opt.num_slots, opt.hid_dim, 3).to(device)
model = nn.DataParallel(model)
model.load_state_dict(torch.load(model_path)['model_state_dict'])
print('model load finished!')
for param in model.module.parameters():
param.requires_grad = False
test_dataloader = torch.utils.data.DataLoader(test_set, batch_size=8,
shuffle=True, num_workers=4, drop_last=False)
ARIs, allARIs = [], []
for sample in tqdm(test_dataloader):
image = sample['image'].to(device)
image = image.unsqueeze(1)
mask_gt = sample['mask']
mask_gt = mask_gt.unsqueeze(1)
_, masks, _ ,_= model(image)
masks = masks.detach().cpu()
for i in range(8):
gt_msk = mask_gt[i]
pred_msk = masks[i]
gt_msk = gt_msk.view(1,-1)
pred_msk = pred_msk.view(1,opt.num_slots,-1).permute(1,0,2)
gt_msk = gt_msk.view(-1)
pred_msk = pred_msk.reshape(opt.num_slots,-1)
pred_msk = pred_msk.permute(1,0)
gt_msk = F.one_hot(gt_msk)
_, n_cat = gt_msk.shape
if n_cat <= 2:
continue
all_ari = ARI(gt_msk.unsqueeze(0), pred_msk.unsqueeze(0))
gt_msk = gt_msk[:,1:]
ari = ARI(gt_msk.unsqueeze(0), pred_msk.unsqueeze(0))
print('ari', ari, 'all-ari', all_ari )
allARIs.append(all_ari)
ARIs.append(ari)
del image, masks, mask_gt
print('final ARI:',sum(ARIs) / len(ARIs))
print('final all-ARI:',sum(allARIs) / len(allARIs))
if __name__ == '__main__':
main()