-
Notifications
You must be signed in to change notification settings - Fork 5
/
tusv-ext.py
667 lines (596 loc) · 33.1 KB
/
tusv-ext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# author: Jesse Eaton, Xuecong Fu
# the file is originated from tusv.py from TUSV by Jesse. Xuecong Fu fixed bugs and extend to current model TUSV-est.
# # # # # # # # # # #
# I M P O R T S #
# # # # # # # # # # #
import copy
import sys # for command line arguments
import os # for manipulating files and folders
import argparse # for command line arguments
import random
import numpy as np
import multiprocessing as mp
from datetime import datetime
from graphviz import Digraph
from ete2 import Tree # for creating phylogenetic trees for .xml output
from Bio import Phylo # for creating phylogenies to export as phylo .xml files
from cStringIO import StringIO # for converting string to file (for creating initial phylo .xml)
sys.path.insert(0, 'model/')
sys.path.insert(0, 'help/')
import solver as sv
import file_manager as fm # sanitizes file and directory arguments
import generate_matrices as gm # gets F, Q, G, A, H from .vcf files
import printer as pt
import vcf_help as vh
import pickle
from snv_matching import snv_assign
# # # # # # # # # # # # #
# C O N S T A N T S #
# # # # # # # # # # # # #
MAX_NUM_LEAVES = 10
MAX_COPY_NUM = 20
MAX_CORD_DESC_ITERS = 1000
MAX_RESTART_ITERS = 1000
NUM_CORES = mp.cpu_count()
METADATA_FNAME = 'data/2017_09_18_metadata.vcf'
STR_DTYPE = 'S50'
# # # # # # # # # # # # #
# F U N C T I O N S #
# # # # # # # # # # # # #
def main(argv):
args = get_args(argv)
write_readme(args['output_directory'], args)
unmix(args['input_directory'], args['output_directory'], args['num_leaves'], args['c_max'], args['lambda1'], args['lambda2'], args['restart_iters'], args['cord_desc_iters'], args['processors'], args['time_limit'], args['metadata_file'], args['num_subsamples'], args['overide_lambdas'], args['constant'], args['sv_upperbound'], args['only_leaf'], args['collapse'], args['threshold'], args['multi_num_clones'])
# input: num_seg_subsamples (int or None) number of segments to include in deconvolution. these are
# in addition to any segments contining an SV as thos are manditory for the SV. None is all segments
def unmix(in_dir, out_dir, n, c_max, lamb1, lamb2, num_restarts, num_cd_iters, num_processors, time_limit, metadata_fname, \
num_seg_subsamples, should_overide_lambdas, const, sv_ub, only_leaf, collapse, threshold, multi_num_clones=False):
print("unmix")
F_phasing_full, F_unsampled_phasing_full, Q_full, Q_unsampled_full, G, G_unsampled, A, H, bp_attr, cv_attr, F_info_phasing, \
F_unsampled_info_phasing, sampled_snv_list_sort, unsampled_snv_list_sort, sampled_sv_list_sort, unsampled_sv_list_sort = gm.get_mats(in_dir, n, const=const, sv_ub=sv_ub)
Q_full, Q_unsampled_full, G, A, H, F_phasing_full, F_unsampled_phasing_full = check_valid_input(Q_full, Q_unsampled_full,G, A, H, F_phasing_full, F_unsampled_phasing_full)
np.savetxt(out_dir + "/F_info_phasing.csv", F_info_phasing, delimiter='\t', fmt='%s')
np.savetxt(out_dir + "/F_unsampled_info_phasing.csv", F_unsampled_info_phasing, delimiter='\t', fmt='%s')
np.savetxt(out_dir + "/sampled_snv_list_sort.csv", sampled_snv_list_sort, delimiter='\t', fmt='%d')
np.savetxt(out_dir + "/unsampled_snv_list_sort.csv", unsampled_snv_list_sort, delimiter='\t', fmt='%d')
np.savetxt(out_dir + "/sampled_sv_list_sort.csv", sampled_sv_list_sort, delimiter='\t', fmt='%d')
np.savetxt(out_dir + "/unsampled_sv_list_sort.csv", unsampled_sv_list_sort, delimiter='\t', fmt='%d')
F_phasing, Q, Q_unsampled, org_indxs = randomly_remove_segments(F_phasing_full, Q_full, Q_unsampled_full, num_seg_subsamples)
np.savetxt(out_dir + '/F_phasing.tsv', F_phasing, delimiter='\t', fmt='%.8f')
np.savetxt(out_dir + '/F_unsampled_phasing_full.tsv', F_unsampled_phasing_full, delimiter='\t', fmt='%.8f')
# replace lambda1 and lambda2 with input derived values if should_orveride_lamdas was specified
m = len(F_phasing)
l_g, r = Q.shape
g_un = Q_unsampled.shape[0]
print('The num of features of F is '+str(l_g)+ ', the num of copy numbers is ' +str(r)+ ', the num of unsampled SNV is ' + str(g_un)+ '.')
if should_overide_lambdas:
lamb1 = float(l_g + 2*r) / float(2*r) * float(m) / float(2 * (n-1) )/2
lamb2 = float(l_g + 2*r) / float(l_g)/2
Us, Cs, Es, As, obj_vals, Rs, Ws, W_SVs, W_SNVs = [], [], [], [], [], [], [], [], []
num_complete = 0
if not multi_num_clones:
for i in xrange(0, num_restarts):
U, C, E, A_, R, W, W_SV, W_SNV, obj_val, err_msg = sv.get_UCE(F_phasing, Q, G, A, H, n, c_max, lamb1, lamb2, num_cd_iters, time_limit, only_leaf)
printnow(str(i + 1) + ' of ' + str(num_restarts) + ' random restarts complete\n')
Us.append(U)
Cs.append(C)
Es.append(E)
As.append(A_)
Rs.append(R)
Ws.append(W)
W_SVs.append(W_SV)
W_SNVs.append(W_SNV)
obj_vals.append(obj_val)
best_i = 0
best_obj_val = obj_vals[best_i]
for i, obj_val in enumerate(obj_vals):
if obj_val < best_obj_val:
best_obj_val = obj_val
best_i = i
with open(out_dir + "/training_objective", 'w') as f:
f.write(str(best_obj_val))
E_pre = copy.deepcopy(Es[best_i])
R_pre = copy.deepcopy(Rs[best_i])
W_pre = copy.deepcopy(Ws[best_i])
if collapse:
U_best, C_best, E_best, A_best, R_best, W_best, W_SV_best, W_SNV_best = collapse_nodes(Us[best_i], Cs[best_i], Es[best_i], As[best_i], Rs[best_i], Ws[best_i], W_SVs[best_i], W_SNVs[best_i], threshold,only_leaf)
else:
U_best, C_best, E_best, A_best, R_best, W_best, W_SV_best, W_SNV_best = Us[best_i], Cs[best_i], Es[best_i], As[best_i], Rs[best_i], Ws[best_i], W_SVs[best_i], W_SNVs[best_i]
min_node, min_dist, W_unsampled = snv_assign(C_best[:, -2*r:], Q_unsampled, A_best, E_best, U_best, F_unsampled_phasing_full, G_unsampled)
np.savetxt(out_dir + "/unsampled_assignment.csv", min_node, delimiter=',')
np.savetxt(out_dir + "/unsampled_assignment_dist.csv", min_dist, delimiter=',')
### concatenate unsampled SV and SNV list
W_SV_unsampled = W_unsampled[:,:len(unsampled_sv_list_sort)]
W_SNV_unsampled = W_unsampled[:,len(unsampled_sv_list_sort):]
W_con = concatenate_W(W_SV_best, W_SV_unsampled, W_SNV_best, W_SNV_unsampled, sampled_sv_list_sort, unsampled_sv_list_sort, sampled_snv_list_sort, unsampled_snv_list_sort)
writer = None #build_vcf_writer(F_phasing_full, C_best, org_indxs, G, Q, bp_attr, cv_attr, metadata_fname)
B = create_binary_matrix(W_con, A_best)
write_to_files(out_dir, l_g, U_best, C_best, E_best, R_best, W_best, W_SV_best, W_SNV_best, W_unsampled, W_con, obj_vals[best_i], F_phasing_full, F_unsampled_phasing_full, org_indxs, writer, E_pre, R_pre, W_pre, B, A_best)
else:
training_obj = np.zeros(n-1)
for n_ in range(2, n+1):
U, C, E, A_, R, W, W_SV, W_SNV, obj_val, err_msg = sv.get_UCE(F_phasing, Q, G, A, H, n_, c_max, lamb1,
lamb2, num_cd_iters, time_limit, only_leaf)
printnow(str(n_) + ' of ' + str(num_restarts) + ' num of clones restarts complete\n')
training_obj[n_-2] = obj_val
E_pre = copy.deepcopy(E)
R_pre = copy.deepcopy(R)
W_pre = copy.deepcopy(W)
if collapse:
U, C, E, A_, R, W, W_SV, W_SNV = collapse_nodes(U,C,E,A_,R,W,W_SV, W_SNV,threshold,only_leaf)
min_node, min_dist, W_SNV_unsampled = snv_assign(C[:, -2 * r:], Q_unsampled, A_, E, U,F_unsampled_phasing_full, G_unsampled)
np.savetxt(out_dir + "/unsampled_SNV_assignment.csv", min_node, delimiter=',')
np.savetxt(out_dir + "/unsampled_SNV_assignment_dist.csv", min_dist, delimiter=',')
W_con, W_snv_con = concatenate_W(W_SV, W_SNV, W_SNV_unsampled, sampled_snv_list_sort,
unsampled_snv_list_sort)
writer = build_vcf_writer(F_phasing_full, C, org_indxs, G, Q, bp_attr, cv_attr, metadata_fname)
B = create_binary_matrix(W_con, A)
if not os.path.exists(out_dir + '/num_clone_' + str(n_)):
os.mkdir(out_dir + '/num_clone_' + str(n_))
write_to_files(out_dir + '/num_clone_' + str(n_) + '/', l_g, U, C, E, R, W, W_SV, W_SNV, W_SNV_unsampled,W_con, obj_val, F_phasing_full,
F_unsampled_phasing_full, org_indxs, writer, E_pre, R_pre, W_pre, B, A_)
np.savetxt(out_dir + '/training_obj_list.csv', training_obj, delimiter='\t')
def create_binary_matrix(W_con, A):
B = copy.deepcopy(W_con)
ad_pairs = np.where(A == 1)
for i in range(len(ad_pairs[0])):
ancestor_idx = ad_pairs[0][i]
descendant_idx = ad_pairs[1][i]
B[descendant_idx] += B[ancestor_idx]
B[B > 1] = 1
return B
# concatenating W matrix for SVs and SNVs
def concatenate_W(W_SV_TUSV, W_SV_MATCHING, W_SNV_TUSV, W_SNV_MATCHING, sampled_sv_list_sort, unsampled_sv_list_sort, sampled_snv_list_sort, unsampled_snv_list_sort):
n, l_sampled = W_SV_TUSV.shape
l_unsampled = W_SV_MATCHING.shape[1]
l = l_sampled + l_unsampled
g_sampled = W_SNV_TUSV.shape[1]
g_unsampled = W_SNV_MATCHING.shape[1]
g = g_sampled + g_unsampled
W_con = np.zeros((n, l + g))
W_snv_con = np.zeros((n, g))
if l_unsampled != 0:
W_con[:, sampled_sv_list_sort] = W_SV_TUSV
W_con[:, unsampled_sv_list_sort] = W_SV_MATCHING
else:
W_con[:, :l]= W_SV_TUSV
if g_sampled != 0:
W_snv_con[:, sampled_snv_list_sort] = W_SNV_TUSV
W_snv_con[:, unsampled_snv_list_sort] = W_SNV_MATCHING
else:
W_snv_con = W_SNV_MATCHING
W_con[:, l:] = W_snv_con
return W_con
# create tree from W matrix
def W2tree(W_sv_total, W_snv_total, E):
edge_list = np.where(E == 1)
tree = {}
mutations = {}
for i in range(len(edge_list[0])):
parent = edge_list[0][i]
child = edge_list[1][i]
if parent not in tree.keys():
tree[parent] = []
tree[parent].append(child)
mut_sv_list = list(np.where(W_sv_total[child, :] == 1))
mutations[child] = ['sv_' + str(j) for j in mut_sv_list]
mut_snv_list = list(np.where(W_snv_total[child, :] == 1))
mutations[child] += ['snv_' + str(j) for j in mut_snv_list]
return tree, mutations
# collapse nodes
def collapse_nodes(U, C, E, A, R, W, W_SV, W_SNV, threshold=0.0, only_leaf=False):
print("Loading collapse nodes")
# generate the tree
tree = ModifyTree(E)
if not only_leaf:
# collapse the branches with 0 length
branch_remove_idx = []
for i in xrange(tree.N-1, -1, -1):
for j in xrange(tree.N-1, -1, -1):
if int(E[i, j]) == 1 and sum(W[j, :]) == 0 and R[i,j] == 0:
branch_remove_idx.append(j)
for node in branch_remove_idx:
target = tree.cp_tree[node]
U[:, target] += U[:, node]
if not tree.is_leaf(node):
for child in tree.tree[node]:
R[target, child] = R[node, child]
tree.delete_node(node)
# collapse the nodes with 0 frequency
freq_remove_idx = []
freq_leaf_remove_idx = []
for i in xrange(tree.N-1, -1, -1):
if i in branch_remove_idx:
continue
if np.mean(U[:, i]) <= threshold:
if tree.num_children(i) == 1:
freq_remove_idx.append(i)
elif tree.is_leaf(i):
freq_leaf_remove_idx.append(i)
for node in freq_remove_idx:
target = tree.tree[node][0]
parent = tree.cp_tree[node]
tree.delete_node(node)
W[target, :] += W[node, :]
W_SV[target,:] += W_SV[node,:]
W_SNV[target, :] += W_SNV[node, :]
R[parent, target] = R[parent, node] + R[node, target]
for node in freq_leaf_remove_idx:
tree.delete_node(node)
else:
# collapse the branches with 0 length and the child of the branch doesn't belong to leaf nodes
branch_remove_idx = []
for i in xrange(tree.N - 1, -1, -1):
for j in xrange(tree.N - 1, -1, -1):
if int(E[i, j]) == 1 and sum(W[j, :]) == 0 and R[i, j] == 0 and not tree.is_leaf(j):
branch_remove_idx.append(j)
for node in branch_remove_idx:
target = tree.cp_tree[node]
U[:, target] += U[:, node]
if not tree.is_leaf(node):
for child in tree.tree[node]:
R[target, child] = R[node, child]
tree.delete_node(node)
# collapse the leaf nodes with 0 frequency
freq_remove_idx = []
freq_leaf_remove_idx = []
for i in xrange(tree.N - 1, -1, -1):
if i in branch_remove_idx:
continue
if np.mean(U[:, i]) <= threshold and tree.is_leaf(i):
freq_leaf_remove_idx.append(i)
for node in freq_leaf_remove_idx:
tree.delete_node(node)
for i in xrange(tree.N - 1, -1, -1):
if tree.num_children(i) == 1:
freq_remove_idx.append(i)
for node in freq_remove_idx:
target = tree.tree[node][0]
parent = tree.cp_tree[node]
tree.delete_node(node)
W[target, :] += W[node, :]
W_SV[target, :] += W_SV[node, :]
W_SNV[target, :] += W_SNV[node, :]
R[parent, target] = R[parent, node] + R[node, target]
# delete those nodes
remove_idx = branch_remove_idx + freq_remove_idx + freq_leaf_remove_idx
print('Nodes ', remove_idx, 'will be collapsed.')
U_new = np.delete(U, remove_idx, axis=1)
C_new = np.delete(C, remove_idx, axis=0)
A_new = np.delete(A, remove_idx, axis=0)
A_new = np.delete(A_new, remove_idx, axis=1)
E_new = np.delete(tree.E, remove_idx, axis=0)
E_new = np.delete(E_new, remove_idx, axis=1)
R_new = np.delete(R, remove_idx, axis=0)
R_new = np.delete(R_new, remove_idx, axis=1)
W_new = np.delete(W, remove_idx, axis=0)
W_SV_new = np.delete(W_SV, remove_idx, axis=0)
W_SNV_new = np.delete(W_SNV, remove_idx, axis=0)
print("collapse", U_new.shape, C_new.shape)
return U_new, C_new, E_new, A_new, R_new, W_new, W_SV_new, W_SNV_new
class ModifyTree:
def __init__(self, E):
self.cp_tree = {}
self.tree = {}
self.E = E
self.N = len(E)
for i in xrange(self.N - 1, -1, -1):
for j in xrange(self.N - 1, -1, -1):
if int(E[i, j]) == 1:
self.cp_tree[j] = i
if i not in self.tree.keys():
self.tree[i] = [j]
else:
self.tree[i].append(j)
def delete_node(self, idx):
if self.is_root(idx):
if self.num_children(idx) > 1:
raise('Cannot delete root node with more than one child!')
child = self.tree[idx][0]
del self.cp_tree[child]
del self.tree[idx]
elif self.is_leaf(idx):
parent = self.cp_tree[idx]
del self.cp_tree[idx]
if self.num_children(parent) == 1:
del self.tree[parent]
else:
self.tree[parent].remove(idx)
else:
parent = self.cp_tree[idx]
children = self.tree[idx]
del self.cp_tree[idx]
for child in children:
self.cp_tree[child] = parent
self.tree[parent].append(child)
self.E[parent, child] = 1
del self.tree[idx]
def is_leaf(self, idx):
if idx not in self.tree.keys():
return True
else:
return False
def is_root(self, idx):
if idx in self.tree.keys() and idx not in self.cp_tree.keys():
return True
else:
return False
def num_children(self, idx):
if self.is_leaf(idx):
return 0
else:
return len(self.tree[idx])
# creates a readme file with the command in it.
def write_readme(dname, args, script_name = os.path.basename(__file__)):
readme_fname = dname + 'README.txt'
open(readme_fname, 'w').close() # clear readme
msg = ' executed: ' + str(datetime.now()) + '\n'
msg += 'command used:\n'
msg += '\t```\n'
msg += '\t' + ' '.join(['python', script_name] + [ '--' + str(k) + ' ' + _arg_val_to_str(v) for k, v in args.iteritems() ]) + '\n'
msg += '\t```\n'
fm.append_to_file(readme_fname, msg)
readme = open(dname + "parameters.txt", 'w')
for key, value in args.items():
readme.write(str(key) + ":" + str(value) + "\n")
readme.close()
return readme_fname
def _arg_val_to_str(v):
if isinstance(v, list):
return ' '.join([ str(x) for x in v ])
return str(v)
# input: F (np.array) [m, l+r] mixed copy number of l breakpoints, r segments across m samples
# Q (np.array) [l, r] binary indicator that breakpoint is in segment
# num_seg_subsamples (int) number of segments (in addition to those containing breakpoints)
# that are to be randomly kept in F
# output: F (np.array) [m, l+r'] r' is reduced number of segments
# Q (np.array) [l, r']
# org_indices (list of int) for each segment in output, the index of where it is found in input F
def randomly_remove_segments(F_phasing, Q, Q_unsampled, num_seg_subsamples):
#print(Q)
if num_seg_subsamples is None:
return F_phasing, Q, Q_unsampled, None
l_g, r = Q.shape
l_g, r = int(l_g), int(r)
g_un = Q_unsampled.shape[0]
bp_segs = []
for s in xrange(0, r):
if sum(Q[:, s]): # segment s has a breakpoint in it
bp_segs.append(s)
for s in xrange(0, r):
if sum(Q_unsampled[:, s]): # segment s has a breakpoint in it
bp_segs.append(s)
non_bp_segs = [ s for s in xrange(0, r) if s not in bp_segs ] # all non breakpoint containing segments
num_seg_subsamples = min(num_seg_subsamples, len(non_bp_segs)) # ensure not removing more segs than we have
if num_seg_subsamples == len(non_bp_segs):
return F_phasing, Q, Q_unsampled, None
keeps = random_subset(non_bp_segs, num_seg_subsamples) # segments to keep
keeps = set(sorted(bp_segs + keeps))
drops = [ s for s in xrange(0, r) if s not in keeps ]
Q = np.delete(Q, drops, axis = 1) # remove columns for segments we do not keep
Q_unsampled = np.delete(Q_unsampled, drops, axis=1)
#F = np.delete(F, [ s + l_g for s in drops ], axis = 1)
F_phasing = np.delete(F_phasing, [ s + l_g + r for s in drops ], axis=1)
F_phasing = np.delete(F_phasing, [s + l_g for s in drops], axis=1)
# F_info_phasing = np.delete(F_info_phasing, [ s + l_g + r for s in drops ], axis=1)
# F_info_phasing = np.delete(F_info_phasing, [s + l_g for s in drops], axis=1)
return F_phasing, Q, Q_unsampled, [ s + l_g for s in keeps]
# returns a subset of lst containing k random elements
def random_subset(lst, k):
result = []
n = 0
for item in lst:
n += 1
if len(result) < k:
result.append(item)
else:
s = int(random.random() * n)
if s < k:
result[s] = item
return result
def setup_get_UCE(args):
return sv.get_UCE(*args)
def printnow(s):
sys.stdout.write(s)
sys.stdout.flush()
# # # # # # # # # # # # # # # #
# W R I T E O U T P U T #
# # # # # # # # # # # # # # # #
# input: F (np.array) [m, l+r] mixed copy number for all l bps and r segments for each sample
# C (np.array) [n, l+r] integer copy number for each of n clones for all l bps and r' subset of r segments
# org_indices (list of int) for each segment in F, the index of where it is found in input F_all
# G (np.array) [l, l] G[i, j] == G[j, i] == 1 iff breakpoint i and j are mates. 0 otherwise
# bp_attr (dict) key is breakpoint index. val is tuple (chrm (str), pos (int), extends_left (bool))
# cv_attr (dict) key (int) is segment index. val is tuple (chrm (str), bgn_pos (int), end_pos (int))
# output: w (vcf_help.Writer) writer to be used to write entire .vcf file
def build_vcf_writer(F_phasing_full, C, org_indices, G, Q, bp_attr, cv_attr, metadata_fname):
print(org_indices)
m, l_g_2r = F_phasing_full.shape
n, l_g_2rp = C.shape
l, _ = G.shape
g_2r = l_g_2r - l
l_g = Q.shape[0]
r = (l_g_2r - l_g)/2
g = l_g - l
print(C[:,:].shape, g_2r)
if org_indices is not None: # only fill in values for segments not used if did not use some segments
org_indices_minor = [org_indices[i] + r for i in range(len(org_indices))]
c_org_indices = [ i for i in xrange(0, l_g) ] + org_indices + org_indices_minor
print(c_org_indices, len(c_org_indices))
C_out = -1*np.ones((n, l_g+2*r), dtype = float) # C with segments that were removed inserted back in with avg from F_full
print(C_out.shape, C_out[:, c_org_indices].shape)
C_out[:, c_org_indices] = C[:, :] # -1 is an indicator that this column should be omitted in validation
C = C_out
w = vh.Writer(m, n, metadata_fname)
bp_ids = np.array([ 'bp' + str(b+1) for b in xrange(0, l) ], dtype = STR_DTYPE)
for b in xrange(0, l): # force a breakpoint to not be mated with self
G[b, b] = 0
for b in xrange(0, l):
chrm, pos, ext_left = bp_attr[b]
rec_id = bp_ids[b]
mate_id = bp_ids[np.where(G[b, :])[0][0]]
fs = list(F_phasing_full[:, b])
cps = list(C[:, b])
if cps[0] < 0:
cps = []
w.add_bp(chrm, pos, ext_left, rec_id, mate_id, fs, cps)
snv_ids = [ 'snv' + str(s+1) for s in xrange(0, g) ]
cv_ids = [ 'cnv' + str(s+1) for s in xrange(0, r) ]
for s in xrange(0, r):
chrm, bgn, end = cv_attr[s]
rec_id = cv_ids[s]
fs = list(F_phasing_full[:, s + l_g])
cps = list(C[:, s + l_g])
if cps[0] < 0:
cps = []
w.add_cv(chrm, bgn, end, rec_id, fs, cps)
return w
# d (str) is local directory path. all others are np.array
# input: F (np.array) [m, l+r'] mixed copy number for l bps, r' subset of r segments for each of m samples
# F_full (np.array) [m, l+r] mixed copy number for all l bps and r segments for each sample
# org_indices (list of int) for each segment in F, the index of where it is found in input F_all
# writer (vcf_help.Writer) writer to be used to write entire .vcf file
def write_to_files(d, l_g, U, C, E, R, W, W_SV, W_SNV, W_SNV_UNSAMPLED, W_con, obj_val, F_phasing_full, F_unsampled_phasing_full, org_indices, writer, E_pre, R_pre, W_pre, B, A):
l_g_2r = F_phasing_full.shape[1]
r = (l_g_2r - l_g)/2
n, _ = C.shape
if org_indices is not None:
org_indices_minor = [org_indices[i] + r for i in range(len(org_indices))]
c_org_indices = [ i for i in xrange(0, l_g) ] + org_indices + org_indices_minor
C_out = -1*np.ones((n, l_g+2*r), dtype = float) # C with segments that were removed inserted back in with avg from F_full
C_out[:, c_org_indices] = C[:, :] # -1 is an indicator that this column should be omitted in validation
else:
C_out = C
fnames = [ d + fname for fname in ['U.tsv', 'C.tsv', 'T.dot', 'F.tsv', 'W.tsv', 'obj_val.txt', 'unmixed.vcf', 'unmixed.xml','F_phasing_full.tsv','F_unsampled_phasing_full.tsv', 'W_SV.tsv', 'W_SNV_sampled.tsv', 'W_SNV_unsampled.tsv', 'W_CONCATENATE.tsv', 'T_pre.dot', 'B.tsv', 'A.tsv'] ]
for fname in fnames:
fm.touch(fname)
np.savetxt(fnames[0], U, delimiter = '\t', fmt = '%.8f')
np.savetxt(fnames[1], C_out, delimiter = '\t', fmt = '%.8f')
np.savetxt(fnames[4], W, delimiter = '\t', fmt = '%d')
np.savetxt(fnames[10], W_SV, delimiter='\t', fmt='%d')
np.savetxt(fnames[11], W_SNV, delimiter='\t', fmt='%d')
np.savetxt(fnames[12], W_SNV_UNSAMPLED, delimiter='\t', fmt='%d')
np.savetxt(fnames[13], W_con, delimiter='\t', fmt='%d')
np.savetxt(fnames[14], B, delimiter='\t', fmt='%d')
np.savetxt(fnames[15], A, delimiter='\t', fmt='%d')
np.savetxt(fnames[5], np.array([obj_val]), delimiter = '\t', fmt = '%.8f')
np.savetxt(fnames[8], F_phasing_full, delimiter='\t', fmt='%.8f')
np.savetxt(fnames[9], F_unsampled_phasing_full, delimiter='\t', fmt='%.8f')
#writer.write(open(fnames[6], 'w'))
dot = to_dot(E, R, W)
open(fnames[2], 'w').write(dot.source) # write tree T in dot format
dot.format = 'svg'
dot.render(d + 'T') # display tree T in .svg
dot = to_dot(E_pre, R_pre, W_pre)
open(fnames[14], 'w').write(dot.source) # write tree T in dot format
dot.format = 'svg'
dot.render(d + 'T_pre')
write_xml(fnames[7], E, C, l_g)
# input: E (np.array of int) [2n-1, 2n-1] 0 if no edge, 1 if edge between nodes i and j
# R (np.array of int) [2n-1, 2n-1] cost of each edge in the tree
# W (np.array of int) [2n-1, l] W[i, b] == 1 iff breakpoint b appears at node v_i. 0 otherwise
# output: dot (graphviz.dot.Digraph) directed tree representation of E
def to_dot(E, R, W):
N = len(E)
dot = Digraph(format = 'png')
dot.node(str(N-1))
for i in xrange(N-1, -1, -1):
for j in xrange(N-1, -1, -1):
if int(E[i, j]) == 1:
num_breakpoints = sum(W[j, :])
edge_label = ' ' + str(int(R[i, j])) + '/' + str(num_breakpoints)
dot.node(str(j))
dot.edge(str(i), str(j), label = edge_label)
return dot
# input: E (np.array)
def write_xml(fname, E, C, l_g):
n, _ = E.shape
root = Tree()
root.name = str(n - 1)
stack = [root]
while stack:
cur = stack.pop()
i = int(cur.name)
child_idxs = np.where(E[i, :] == 1)[0]
for ci in child_idxs:
child = cur.add_child(name = str(ci))
child.dist = np.linalg.norm( np.subtract( C[i, l_g:], C[ci, l_g:] ), ord = 1 )
stack.append(child)
newick_str = root.write(features = ['name'], format = 1, format_root_node = True) # format_root_node=True puts root node name in str
newick_tree = Phylo.read(StringIO(newick_str), 'newick') # format=1 gives branch lengths and names for all nodes (leaves and internal)
for clade in newick_tree.find_clades():
if clade.confidence is not None: # Phylo.read() stupidly interprets names of internal nodes as confidences for newick strings
clade.name = clade.confidence
clade.confidence = None
xmltree = newick_tree.as_phyloxml() # convert to PhyloXML.Phylogeny type
Phylo.write(xmltree, open(fname, 'w'), 'phyloxml')
# # # # # # # # # # # # # # # # # # # #
# I N P U T V A L I D A T I O N #
# # # # # # # # # # # # # # # # # # # #
# input: Q (np.array of 0 or 1) [l, r] q_b,s == 1 if breakpoint b is in segment s. 0 otherwise
# G (np.array of 0 or 1) [l, l] g_s,t == 1 if breakpoints s and t are mates. 0 otherwise
# A (np.array of int) [m, l] a_p,b is number of mated reads for breakpoint b in sample p
# H (np.array of int) [m, l] h_p,b is number of total reads for breakpoint b in sample p
# does: exits with error message if any of the input is not valid
def check_valid_input(Q, Q_unsampled, G, A, H,F_phasing_full, F_unsampled_phasing_full): ### A and H are empty matrices
print("check valid input")
l_g, r = np.shape(Q)
print(l_g, r)
l, _ = np.shape(G)
g = l_g - l
m = np.shape(A)[0]
Q_msg = 'There is an issue with input binary matrix Q (indicates which segment each breakpoint belongs to). Each breakpoint must belong to exactly one segment.'
Q_unsampled_msg = 'There is an issue with input binary matrix Q (indicates which segment each SNV belongs to). Each SNV must belong to exactly one segment.'
G_msg = 'There is an issue with input binary matrix G (indicates which breakpoints are mates). Each breakpoint must be mated into pairs.'
A_msg = 'There is an issue with input integer matricies A and H (indicating the number of reads mapped to each mated breakpoint and the number of total reads mapping to a breakpoint). The number of mated reads must be less or equal to the total reads and both should be non negative.'
print(Q[np.where(np.sum(Q, axis=1) != 1)])
sys.stdout.flush()
raiseif(not np.all(np.sum(Q, 1) == 1), Q_msg)
raiseif(not np.all(np.sum(Q_unsampled, 1) == 1), Q_unsampled_msg)
print(np.where(np.sum(G, 0) != 2), np.where(np.sum(G, 0) != 2))
raiseif(not np.all(np.sum(G, 0) == 2) or not np.all(np.sum(G, 1) == 2), G_msg)
for i in xrange(0, l):
for j in xrange(0, l):
raiseif(G[i, j] != G[j, i], G_msg)
raiseif(i == j and G[i, j] != 1, G_msg)
for p in xrange(0, m):
for b in xrange(0, l):
raiseif(A[p, b] < 0 or A[p, b] > H[p, b], A_msg)
return Q, Q_unsampled, G, A, H, F_phasing_full, F_unsampled_phasing_full
# raises exception if boolean is true
def raiseif(should_raise, msg):
if should_raise:
raise Exception(msg)
# condition for G and A and H
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# C O M M A N D L I N E A R G U M E N T F U N C T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def get_args(argv):
parser = argparse.ArgumentParser(prog = 'tusv.py', description = "unmixes mixed copy numbers for breakpoints and segments and infers phylogeny with various phylogenetic constraints")
parser.add_argument('-i', '--input_directory', required = True, type = lambda x: fm.valid_dir_ext(parser, x, '.vcf'), help = 'directory containing a .vcf for each sample from a single patient')
parser.add_argument('-o', '--output_directory', required = True, type = lambda x: fm.valid_dir(parser, x), help = 'empty directory for output U.tsv, C.tsv, and T.dot files to go')
set_non_dir_args(parser)
return vars(parser.parse_args(argv))
def set_non_dir_args(parser):
parser.add_argument('-n', '--num_leaves', required = True, type = lambda x: fm.valid_int_in_range(parser, x, 2, MAX_NUM_LEAVES), help = 'number of leaves for inferred binary tree. total number of nodes will be 2*n-1')
parser.add_argument('-c', '--c_max', required = True, type = lambda x: fm.valid_int_in_range(parser, x, 1, MAX_COPY_NUM), help = 'maximum allowed copy number at any node in the tree')
parser.add_argument('-l', '--lambda1', default = 0.25, type = lambda x: fm.valid_float_above(parser, x, 0.0), help = 'regularization term to weight total tree cost against unmixing error in objective function. setting as 0.0 will put no tree cost constraint. setting as 1.0 will equally consider tree cost and unmixing error.')
parser.add_argument('-a', '--lambda2', default = 6.25, type = lambda x: fm.valid_float_above(parser, x, 0.0), help = 'regularization term to weight error in inferred ratio between copy number of a breakpoint and the copy number of the segment originally containing the position of breakpoint')
parser.add_argument('-t', '--cord_desc_iters', required = True, type = lambda x: fm.valid_int_in_range(parser, x, 1, MAX_CORD_DESC_ITERS), help = 'maximum number of cordinate descent iterations for each initialization of U')
parser.add_argument('-r', '--restart_iters', required = True, type = lambda x: fm.valid_int_in_range(parser, x, 1, MAX_RESTART_ITERS), help = 'number of random initializations for picking usage matrix U')
parser.add_argument('-p', '--processors', default = 1, type = lambda x: fm.valid_int_in_range(parser, x, 1, NUM_CORES), help = 'number of processors to use')
parser.add_argument('-m', '--time_limit', type = int, help = 'maximum time (in seconds) allowed for a single iteration of the cordinate descent algorithm')
parser.add_argument('-s', '--num_subsamples', type = int, default = None, help = 'number of segments (in addition to those containing breakpoints) that are to be randomly kept for deconvolution. default keeps all segments.')
parser.add_argument('-d', '--metadata_file', default = METADATA_FNAME, type = lambda x: fm.is_valid_file(parser, x), help = 'file containing metadata information for output .vcf file')
parser.add_argument('-b', '--overide_lambdas', action = 'store_true', help = 'specify this argument if you would like the parameters lambda1 and lambda2 to be set proportional to the input data set')
parser.add_argument('-C', '--constant', default = 120, type = int, help = 'scaling constant for sampling SNVs')
parser.add_argument('-sv_ub', '--sv_upperbound', default = -1, type = int, help = 'scaling constant for sampling SVs')
parser.add_argument('-leaf', '--only_leaf', action = 'store_true', help = 'if only deconvolute for leaves')
parser.add_argument('-col', '--collapse', action='store_true', help='if collapse nodes')
parser.add_argument('-th', '--threshold', default = 0.0, type = lambda x: fm.valid_float_above(parser, x, 0.0), help = 'mean frequency threshold to collapsing')
parser.add_argument('-scan', '--multi_num_clones', action='store_true', help='Scan a range of number of clones to get optimal number of clones')
# # # # # # # # # # # # # # # # # # # # # # # # #
# C A L L T O M A I N F U N C T I O N #
# # # # # # # # # # # # # # # # # # # # # # # # #
if __name__ == "__main__":
main(sys.argv[1:])