-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
321 lines (228 loc) · 10 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""A collection of functions for use with complex numbers in pytorch
Author: Nitish Padmanaban
"""
import numpy as np
import torch
def stack_complex(real_mag, imag_phase):
return torch.stack((real_mag, imag_phase), -1)
def unstack_complex(stacked_array):
return stacked_array[..., 0], stacked_array[..., 1]
def heightmap_to_phase(height, wavelength, refractive_index):
return height * (2 * np.pi / wavelength) * (refractive_index - 1)
def phase_to_heightmap(phase, wavelength, refractive_index):
return phase / (2 * np.pi / wavelength) / (refractive_index - 1)
def rect_to_polar(real, imag):
mag = torch.pow(real**2 + imag**2, 0.5)
ang = torch.atan2(imag, real)
return mag, ang
def polar_to_rect(mag, ang):
real = mag * torch.cos(ang)
imag = mag * torch.sin(ang)
return real, imag
def rect_to_polar_stacked(real_imag):
mag, ang = rect_to_polar(*unstack_complex(real_imag))
return stack_complex(mag, ang)
def polar_to_rect_stacked(mag_ang):
real, imag = polar_to_rect(*unstack_complex(mag_ang))
return stack_complex(real, imag)
def field_to_intensity(real_imag):
return (real_imag ** 2).sum(-1)
def field_to_intensity_polar(mag_ang):
return mag_ang[..., 0] ** 2
def conj(real_imag):
# also works the same for mag_ang representation
real, imag = unstack_complex(real_imag)
return stack_complex(real, -imag)
def mul_complex(field1, field2):
real1, imag1 = unstack_complex(field1)
real2, imag2 = unstack_complex(field2)
real = real1 * real2 - imag1 * imag2
imag = real1 * imag2 + imag1 * real2
return stack_complex(real, imag)
def mul_complex_polar(field1, field2):
mag1, ang1 = unstack_complex(field1)
mag2, ang2 = unstack_complex(field2)
mag = mag1 * mag2
ang = ang1 + ang2
over = ang > np.pi
ang[over].sub_(2 * np.pi)
under = ang <= -np.pi
ang[under].add_(2 * np.pi)
return stack_complex(mag, ang)
def div_complex(field1, field2):
real1, imag1 = unstack_complex(field1)
real2, imag2 = unstack_complex(field2)
mag_squared = (real2 ** 2) + (imag2 ** 2)
real = (real1 * real2 + imag1 * imag2) / mag_squared
imag = (-real1 * imag2 + imag1 * real2) / mag_squared
return stack_complex(real, imag)
def div_complex_polar(field1, field2):
mag1, ang1 = unstack_complex(field1)
mag2, ang2 = unstack_complex(field2)
mag = mag1 / mag2
ang = ang1 - ang2
over = ang > np.pi
ang[over].sub_(2 * np.pi)
under = ang <= -np.pi
ang[under].add_(2 * np.pi)
return stack_complex(mag, ang)
def recip_complex(field):
real, imag = unstack_complex(field)
mag_squared = (real ** 2) + (imag ** 2)
real_inv = real / mag_squared
imag_inv = -imag / mag_squared
return stack_complex(real_inv, imag_inv)
def recip_complex_polar(field):
mag, ang = unstack_complex(field)
return stack_complex(1 / mag, -ang)
def conv_fft(img_real_imag, kernel_real_imag, padval=0):
img_pad, kernel_pad, output_pad = conv_pad_sizes(img_real_imag.shape,
kernel_real_imag.shape)
# fft
img_fft = fft(img_real_imag, pad=img_pad, padval=padval)
kernel_fft = fft(kernel_real_imag, pad=kernel_pad, padval=0)
# ifft, using img_pad to bring output to img input size
return ifft(mul_complex(img_fft, kernel_fft), pad=output_pad)
def conv_fft_polar(img_mag_ang, kernel_mag_ang, padval=0):
img_pad, kernel_pad, output_pad = conv_pad_sizes(img_mag_ang.shape,
kernel_mag_ang.shape)
# fft
img_fft = fft_polar(img_mag_ang, pad=img_pad, padval=padval)
kernel_fft = fft_polar(kernel_mag_ang, pad=kernel_pad, padval=0)
# ifft, using img_pad to bring output to img input size
return ifft_polar(mul_complex_polar(img_fft, kernel_fft), pad=output_pad)
def fft(real_imag, ndims=2, normalized=False, pad=None, padval=0):
if pad is not None:
real_imag = pad_stacked(real_imag, pad, padval=padval)
return fftshift(torch.fft(ifftshift(real_imag, ndims), ndims,
normalized=normalized), ndims)
def fft_polar(mag_ang, ndims=2, normalized=False, pad=None, padval=0):
real_imag = polar_to_rect_stacked(mag_ang)
real_imag_fft = fft(real_imag, ndims, normalized, pad, padval)
return rect_to_polar_stacked(real_imag_fft)
def ifft(real_imag, ndims=2, normalized=False, pad=None):
transformed = fftshift(torch.ifft(ifftshift(real_imag, ndims), ndims,
normalized=normalized), ndims)
if pad is not None:
transformed = crop(transformed, pad)
return transformed
def ifft_polar(mag_ang, ndims=2, normalized=False, pad=None):
real_imag = polar_to_rect_stacked(mag_ang)
real_imag_ifft = ifft(real_imag, ndims, normalized, pad)
return rect_to_polar_stacked(real_imag_ifft)
def fftshift(array, ndims=2, invert=False):
shift_adjust = 0 if invert else 1
# skips the last dimension, assuming stacked fft output
if ndims >= 1:
shift_len = (array.shape[-2] + shift_adjust) // 2
array = torch.cat((array[..., shift_len:, :],
array[..., :shift_len, :]), -2)
if ndims >= 2:
shift_len = (array.shape[-3] + shift_adjust) // 2
array = torch.cat((array[..., shift_len:, :, :],
array[..., :shift_len, :, :]), -3)
if ndims == 3:
shift_len = (array.shape[-4] + shift_adjust) // 2
array = torch.cat((array[..., shift_len:, :, :, :],
array[..., :shift_len, :, :, :]), -4)
return array
def ifftshift(array, ndims=2):
return fftshift(array, ndims, invert=True)
def conv_pad_sizes(image_shape, kernel_shape):
# skips the last dimension, assuming stacked fft output
# minimum required padding is to img.shape + kernel.shape - 1
# padding based on matching fftconvolve output
# when kernels are even, padding the extra 1 before/after matters
img_pad_end = (1 - ((kernel_shape[-2] % 2) | (image_shape[-2] % 2)),
1 - ((kernel_shape[-3] % 2) | (image_shape[-3] % 2)))
image_pad = ((kernel_shape[-2] - img_pad_end[0]) // 2,
(kernel_shape[-2] - 1 + img_pad_end[0]) // 2,
(kernel_shape[-3] - img_pad_end[1]) // 2,
(kernel_shape[-3] - 1 + img_pad_end[1]) // 2)
kernel_pad = (image_shape[-2] // 2, (image_shape[-2] - 1) // 2,
image_shape[-3] // 2, (image_shape[-3] - 1) // 2)
output_pad = ((kernel_shape[-2] - 1) // 2, kernel_shape[-2] // 2,
(kernel_shape[-3] - 1) // 2, kernel_shape[-3] // 2)
return image_pad, kernel_pad, output_pad
def pad_stacked(field, pad_width, padval=0):
if padval == 0:
pad_width = (0, 0, *pad_width) # add 0 padding for stacked dimension
return torch.nn.functional.pad(field, pad_width)
else:
if isinstance(padval, torch.Tensor):
padval = padval.item()
real, imag = unstack_complex(field)
real = torch.nn.functional.pad(real, pad_width, value=padval)
imag = torch.nn.functional.pad(imag, pad_width, value=0)
return stack_complex(real, imag)
def crop(array, pad):
# skips the last dimension, assuming stacked fft output
if len(pad) >= 2 and (pad[0] or pad[1]):
if pad[1]:
array = array[..., pad[0]:-pad[1], :]
else:
array = array[..., pad[0]:, :]
if len(pad) >= 4 and (pad[2] or pad[3]):
if pad[3]:
array = array[..., pad[2]:-pad[3], :, :]
else:
array = array[..., pad[2]:, :, :]
if len(pad) == 6 and (pad[4] or pad[5]):
if pad[5]:
array = array[..., pad[4]:-pad[5], :, :, :]
else:
array = array[..., pad[4]:, :, :, :]
return array
def pad_smaller_dims(field, target_shape, pytorch=True, stacked=True, padval=0):
if pytorch:
if stacked:
size_diff = np.array(target_shape) - np.array(field.shape[-3:-1])
odd_dim = np.array(field.shape[-3:-1]) % 2
else:
size_diff = np.array(target_shape) - np.array(field.shape[-2:])
odd_dim = np.array(field.shape[-2:]) % 2
else:
size_diff = np.array(target_shape) - np.array(field.shape)
odd_dim = np.array(field.shape) % 2
# pad the dimensions that need to increase in size
if (size_diff > 0).any():
pad_total = np.maximum(size_diff, 0)
pad_front = (pad_total + odd_dim) // 2
pad_end = (pad_total + 1 - odd_dim) // 2
if pytorch:
pad_axes = [int(p) # convert from np.int64
for tple in zip(pad_front[::-1], pad_end[::-1])
for p in tple]
if stacked:
return pad_stacked(field, pad_axes, padval=padval)
else:
return torch.nn.functional.pad(field, pad_axes, value=padval)
else:
return np.pad(field, tuple(zip(pad_front, pad_end)), 'constant',
constant_values=padval)
else:
return field
def crop_larger_dims(field, target_shape, pytorch=True, stacked=True):
if pytorch:
if stacked:
size_diff = np.array(field.shape[-3:-1]) - np.array(target_shape)
odd_dim = np.array(field.shape[-3:-1]) % 2
else:
size_diff = np.array(field.shape[-2:]) - np.array(target_shape)
odd_dim = np.array(field.shape[-2:]) % 2
else:
size_diff = np.array(field.shape) - np.array(target_shape)
odd_dim = np.array(field.shape) % 2
# crop dimensions that need to decrease in size
if (size_diff > 0).any():
crop_total = np.maximum(size_diff, 0)
crop_front = (crop_total + 1 - odd_dim) // 2
crop_end = (crop_total + odd_dim) // 2
crop_slices = [slice(int(f), int(-e) if e else None)
for f, e in zip(crop_front, crop_end)]
if pytorch and stacked:
return field[(..., *crop_slices, slice(None))]
else:
return field[(..., *crop_slices)]
else:
return field