-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnanodet-plus-m_ConvNeXt_320X192_28-09fukang.yml
119 lines (118 loc) · 3.21 KB
/
nanodet-plus-m_ConvNeXt_320X192_28-09fukang.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# nanodet-plus-m_320
# COCO mAP(0.5:0.95) = 0.270
# AP_50 = 0.418
# AP_75 = 0.281
# AP_small = 0.083
# AP_m = 0.278
# AP_l = 0.451
save_dir: workspace/nanodet-plus-m_ConvNeXt_3333_320X192_28-09fukang
model:
weight_averager:
name: ExpMovingAverager
decay: 0.9998
arch:
name: NanoDetPlus
detach_epoch: 10
backbone:
name: ConvNeXt
out_stages: [1,2,3]
depths: [3,3,3,3]
fpn:
name: GhostPAN
in_channels: [192, 384, 768]
out_channels: 96
kernel_size: 5
num_extra_level: 1
use_depthwise: True
activation: LeakyReLU
head:
name: NanoDetPlusHead
num_classes: 4
input_channel: 96
feat_channels: 96
stacked_convs: 2
kernel_size: 5
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
norm_cfg:
type: BN
loss:
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
# Auxiliary head, only use in training time.
aux_head:
name: SimpleConvHead
num_classes: 4
input_channel: 192
feat_channels: 192
stacked_convs: 4
strides: [8, 16, 32, 64]
activation: LeakyReLU
reg_max: 7
data:
train:
name: CocoDataset
img_path: /home/chenpengfei/dataset/28-09fukang/train/image
ann_path: /home/chenpengfei/dataset/28-09fukang/train/train.json
input_size: [320,192] #[w,h]
keep_ratio: False
load_mosaic: 0.0 # 增加mosaic数据增强
cut_mosaic: 0.0 # 变形版mosaic
pipeline:
perspective: 0.0 # 透视or仿射变换
scale: [0.6, 1.4] # 放缩
stretch: [[0.8, 1.2], [0.8, 1.2]] # 拉伸
rotation: 0 # 旋转
shear: 0 # 裁剪
translate: 0.2 # 平移
flip: 0.5 # 左右翻转
brightness: 0.2 # 亮度
contrast: [0.6, 1.4] # 对比度
saturation: [0.5, 1.2] # 饱和度
normalize: [[87.64457, 87.67082, 87.538086], [55.132763, 55.13459, 55.132042]]
val:
name: CocoDataset
img_path: /home/chenpengfei/dataset/28-09fukang/val/image
ann_path: /home/chenpengfei/dataset/28-09fukang/val/val.json
input_size: [320,192] #[w,h]
keep_ratio: False
pipeline:
normalize: [[87.64457, 87.67082, 87.538086], [55.132763, 55.13459, 55.132042]]
device:
gpu_ids: [1,2] # Set like [0, 1, 2, 3] if you have multi-GPUs
workers_per_gpu: 10
batchsize_per_gpu: 64
schedule:
# resume: workspace/nanodet-plus-m_ConvNeXt_3333_320X192_28-09fukang/model_last.ckpt
# load_model: /home/chenpengfei/nanodet/workspace/nanodet-plus-m_ConvNeXt_3333_320X192_DSMhand_smoke3/model_best/model_best.ckpt
optimizer:
name: AdamW
lr: 0.001
weight_decay: 0.05
warmup:
name: linear
steps: 500
ratio: 0.0001
total_epochs: 300
lr_schedule:
name: CosineAnnealingLR
T_max: 300
eta_min: 0.00005
val_intervals: 10
grad_clip: 35
evaluator:
name: CocoDetectionEvaluator
save_key: mAP
log:
interval: 50
class_names: ['face', 'hand', 'cigarette', 'cellphone']