-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSchrodinger-Poison.c
362 lines (353 loc) · 13.7 KB
/
Schrodinger-Poison.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/* Matrix Method Finite Difference Schrodinger/Poisson Solver 3.1*/
/* C.R.J. Fisher;
07_2012 */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <error.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
void Normalise(gsl_vector *Single_eigvector_ptr, int Dim, double dx, FILE *fp_2)
{
int n;
double temp;
double norm_factor, vector_sum=0;
for (n=0; n<Dim; n++){
temp = gsl_vector_get(Single_eigvector_ptr, n);
vector_sum = vector_sum + temp*temp*dx;
}
norm_factor = sqrt(vector_sum);
for (n=0; n<Dim; n++){
temp = (gsl_vector_get(Single_eigvector_ptr, n))/norm_factor;
gsl_vector_set(Single_eigvector_ptr, n, temp);
fprintf(fp_2, "n%E", gsl_vector_get(Single_eigvector_ptr, n));
/*output mth value of nth eigenvector*/
}
}
int Schrodinger_Solve(double dx, int Dim, int barrier_L, int barrier_R, double E_well, double *Meff_ptr, double *subband_ptr,
gsl_eigen_symmv_workspace *Workspace, gsl_matrix *Hamil_ptr, gsl_vector *Eigvalue_ptr, gsl_matrix *Eigvector_ptr,
gsl_vector *s_eigvector_ptr, gsl_vector *Potential_ptr, gsl_matrix *Norm_Eigvector_ptr, FILE *fp_1, FILE *fp_2 ){
int n, m, N=0;
double Hbar=1.054571E-34, Element;
double t_0=(Hbar*Hbar)/(2*dx*dx);
for (n = 0; n < Dim; n++)
{
for (m = 0; m < Dim; m++)
{
if (n == m) /*main diagonal*/
{
Element = t_0/Meff_ptr[n-1] + t_0/Meff_ptr[n+1] + gsl_vector_get(Potential_ptr, n);
}
else if (n == m-1) /*subdiagonal*/
{
Element = -1*t_0/Meff_ptr[n-1];
}
else if (n == m+1) /*superdiagonal*/
{
Element = -1*t_0/Meff_ptr[n+1];
}
else
{
Element = 0;
/*all other matrix elements*/
}
gsl_matrix_set(Hamil_ptr, n, m, Element);
/*transfer value to matrix*/
}
}
gsl_eigen_symmv(Hamil_ptr, Eigvalue_ptr, Eigvector_ptr, Workspace);
/*solve matrix*/
gsl_eigen_symmv_sort(Eigvalue_ptr, Eigvector_ptr, GSL_EIGEN_SORT_VAL_ASC);
/*re-order the results in ascending order*/
/*output eigenvalues*/
for (n = 0; n < Dim; n++){
double eigenvalue = gsl_vector_get(Eigvalue_ptr, n);
if (eigenvalue>E_well && eigenvalue<0) /*select confined states*/
{
fprintf(fp_1, "n%E", (eigenvalue/1.6E-22));
/*output in meV*/
subband_ptr[n] = eigenvalue; /*For Fermi-Dirac */
N = N+1;
/* sum the number of eigenstates*/
}
}
/*output eigenvectors*/
for (n = 0; n < N; n++){ /*retrieve eigenvectors for confined states only*/
fprintf(fp_2, "nnnn");
gsl_matrix_get_col(s_eigvector_ptr, Eigvector_ptr, n);
/*retrieve nth eigenvector*/
Normalise(s_eigvector_ptr, Dim, dx, fp_2);
/*normalise eigenvector*/
gsl_matrix_set_col(Norm_Eigvector_ptr, n, s_eigvector_ptr);
}
return N;
}
double FD_Bisect(double *Subband_f, double E_fermi_super, double E_fermi_diff, double c_doping_yz, double Meff, int N, int T)
{
double n_sp = 0, n_s = 0;
double Hbar=1.054571E-34, Kb = 1.38065E-23;
int n, m;
/*temperature set to 300K*/
double DOS = Meff/(Hbar*Hbar*3.14159);
double E_fermi_sub = E_fermi_super + E_fermi_diff;
double E_fermi_mid = (E_fermi_sub + E_fermi_super)/2;
for (n=0; n<50; n++){
for (m = 0; m < N; m++){ /*add contributions from all subbands*/
n_sp = DOS*Kb*T*log(exp((E_fermi_mid - Subband_f[m])/(Kb*T)) + 1);
n_s = n_sp + n_s;
}
if (n_s > c_doping_yz){
E_fermi_super = E_fermi_mid;
E_fermi_mid = (E_fermi_super + E_fermi_sub)/2;
}
else {
E_fermi_sub = E_fermi_mid;
E_fermi_mid = (E_fermi_sub + E_fermi_super)/2;
}
n_s = 0;
}
printf("nPrecise Fermi energy is %E eV", E_fermi_mid);
return E_fermi_mid;
}
double FermiDiracPopulate(double *Subband_f, double c_doping_yz, double Meff, double E_fermi, int N, int T)
{
int m;
double FL_precise, n_sp = 0, n_s = 0;
/* initial fermi-energy roughly at intrinsic level (@300K)*/
double Hbar=1.054571E-34, Kb = 1.38065E-23;
double d_E_fermi = E_fermi/100;
double DOS = Meff/(Hbar*Hbar*3.14159);
for (n_s = 0; E_fermi < 0; E_fermi = E_fermi - d_E_fermi){
printf("n%E", E_fermi);
for (m = 0; m < N; m++){ /*add contributions from all subbands*/
n_sp = DOS*Kb*T*log(exp((E_fermi - Subband_f[m])/(Kb*T)) + 1);
/*NB. subband energies were calculated to be positive (should be negative)*/
n_s = n_sp + n_s;
}
//printf("ncharge density for E_fermi of %E is %E per meter squared", E_fermi, n_s);
if (n_s > c_doping_yz){
printf("nRaw Fermi energy is %E eV", E_fermi);
FL_precise = FD_Bisect(Subband_f, E_fermi, d_E_fermi, c_doping_yz, Meff, N, T);
break;
}
n_s = 0;
}
return FL_precise;
}
double subband_contrib(double E_fermi, double E, double Meff, int T)
{
double n_sp = 0;
double Hbar=1.054571E-34, Kb = 1.38065E-23;
double DOS = Meff/(Hbar*Hbar*3.14159);
n_sp = DOS*Kb*T*log(exp((E_fermi + E)/(Kb*T)) + 1);
return n_sp;
}
void Charge_Density(gsl_matrix *Norm_eigenvector_ptr, gsl_vector *s_eigvector_ptr, gsl_vector *Charge_Density_ptr, double *subband_ptr, double E_fermi, double dx, double c_doping_yz, double Meff, int Dim, int N, int T, FILE *fp_3)
{
int n, m;
double phi, n_sp, temp;
double c_doping_xyz, q = 1.602176E-19;
temp = sqrt(c_doping_yz);
c_doping_xyz = temp*temp*temp;
for (n=0; n<N; n++)
{
gsl_matrix_get_col(s_eigvector_ptr, Norm_eigenvector_ptr, n);
n_sp = subband_contrib(E_fermi, subband_ptr[n], Meff, T);
printf("ncharge contribution from subband %d is %E coulombs per meter squared", n, n_sp);
for (m=0; m<Dim; m++)
{
phi = gsl_vector_get(s_eigvector_ptr, m);
temp = gsl_vector_get(Charge_Density_ptr, m) - q*phi*phi*n_sp;
gsl_vector_set(Charge_Density_ptr, m, temp);
}
}
/*Output*/
for(m=0; m<Dim; m++){
//fprintf(fp_3, "n%E", gsl_vector_get(Charge_Density_ptr, m));
temp = gsl_vector_get(Charge_Density_ptr, m) + q*c_doping_xyz;
//temp = temp*dx*dx; /*for Poisson Solver*/
gsl_vector_set(Charge_Density_ptr, m, temp);
fprintf(fp_3, "n%E", gsl_vector_get(Charge_Density_ptr, m));
}
}
double charge_density_check(gsl_vector *charge_density_ptr, int Dim)
{
double charge_tot=0;
int n;
for(n=0; n<Dim; n++)
{
charge_tot = charge_tot + gsl_vector_get(charge_density_ptr, n);
}
return charge_tot;
}
//
//double Poisson_Solve(int Dim, int barrier_R, int barrier_L, double dx, gsl_vector *Main_Diagonal_ptr, gsl_vector *Super_Diagonal_ptr, gsl_vector *Sub_Diagonal_ptr,
// gsl_vector *Charge_Density_ptr, gsl_vector *Elec_Potential_ptr, FILE *fp_3, FILE *fp_4){
//
//int n;
//
///*constants*/
//double dielectric_Ge = 16, dielectric_Si = 11.9, permitt_0 = 8.854187E-12;
//double abs_permitt_Ge = dielectric_Ge*permitt_0, abs_permitt_Si = dielectric_Si*permitt_0;
//
//
///*assign vectors*/
////for(n=1; n<=Dim; n++){
////gsl_vector_set(Main_Diagonal_ptr, (n-1), -2);
////}
////for(n=1; n<=(Dim-1); n++){
////gsl_vector_set(Super_Sub_Diagonal_ptr, (n-1), 1);
////}
////for(n=1; n<=Dim; n++){
////double m=n/100;
//////double temp = (1-(2*m*m));
////double temp = 1;
////gsl_vector_set(Charge_Density_ptr, (n-1), temp );
/*/************************************************************\
*
\************************************************************/
function 1-2x^2*/
////printf("%E", m);
////printf("ncharge density at point %E is %E", n, temp);
////
////}
//
//for (n=0; n<(Dim); n++) {
// if(n>=barrier_R){
// gsl_vector_set(Main_Diagonal_ptr, n, -2*abs_permitt_Si);
// }
// if(n<barrier_R && n>=barrier_L){
// gsl_vector_set(Main_Diagonal_ptr, n, -2*abs_permitt_Ge);
// }
// if (n<barrier_L){
// gsl_vector_set(Main_Diagonal_ptr, n, -2*abs_permitt_Si);
// }
//}
//for (n=0; n<(Dim-1); n++) {
// if(n>=(barrier_R-1)){
// gsl_vector_set(Sub_Diagonal_ptr, n, 1*abs_permitt_Si);
// }
// if(n<(barrier_R-1) && n>(barrier_L-2)){
// gsl_vector_set(Sub_Diagonal_ptr, n, 1*abs_permitt_Ge);
// }
// if (n<(barrier_L-1)){
// gsl_vector_set(Sub_Diagonal_ptr, n, 1*abs_permitt_Si);
// }
//}
//for (n=0; n<(Dim-1); n++) {
// if(n>=barrier_R){
// gsl_vector_set(Super_Diagonal_ptr, n, 1*abs_permitt_Si);
// }
// if(n<barrier_R && n>=barrier_L){
// gsl_vector_set(Super_Diagonal_ptr, n, 1*abs_permitt_Ge);
// }
// if (n<barrier_L){
// gsl_vector_set(Super_Diagonal_ptr, n, 1*abs_permitt_Si);
// }
//}
//
//
/////*solve matrix*///
//gsl_linalg_solve_tridiag(Main_Diagonal_ptr, Super_Diagonal_ptr, Sub_Diagonal_ptr, Charge_Density_ptr, Elec_Potential_ptr);
//
////gsl_linalg_solve_symm_tridiag(Main_Diagonal_ptr, Super_Sub_Diagonal_ptr, Charge_Density_ptr, Potential_ptr);
//
//
///*output potential & charge distribution*/
//for(n=0; n<Dim; n++){
//fprintf(fp_4, "n%E", gsl_vector_get(Elec_Potential_ptr, n));
//}
//for(n=0; n<Dim; n++){
//fprintf(fp_3, "n%E", gsl_vector_get(Charge_Density_ptr, n));
//}
//return 0;
//}
int main()
{
int n=0, N=0;
int Dim =800;
int barrier_L=200, barrier_R=600;
double dx=1E-10, E_well = -1.6022E-20, Meff_barrier = 1.73078256E-31, Meff_well = 6.1032E-32; /* Meff for Ge is [3.7348E-32]; Meff for GaAs is [6.1032E-32]; Meff for Si is [1.73078256E-31]*/
double E_fermi, T=100;
double c_doping_yz = 1E16;
FILE *fp_1, *fp_2;
FILE *fp_3, *fp_4;
fp_1=fopen("//home//chuck/Documents//Project Code//MM Schrodinger Poisson Solver 3.1//eigenvalues.txt", "w+");
fp_2=fopen("//home//chuck/Documents//Project Code//MM Schrodinger Poisson Solver 3.1//eigenvectors.txt", "w+");
fp_3=fopen("//home//chuck/Documents//Project Code//MM Schrodinger Poisson Solver 3.1//charge_distribution.txt", "w+");
fp_4=fopen("//home//chuck/Documents//Project Code//MM Schrodinger Poisson Solver 3.1//elec_potential.txt", "w+");
double *Subband_ptr;
Subband_ptr = calloc(Dim, sizeof(double));
//double *Subband_prev_ptr;
//Subband_prev_ptr = calloc(Dim, sizeof(double));
double *Meff_ptr;
Meff_ptr = calloc((Dim+1), sizeof(double));
gsl_eigen_symmv_workspace *Workspace = gsl_eigen_symmv_alloc(Dim);
gsl_matrix *Hamil_ptr = gsl_matrix_alloc(Dim, Dim);
gsl_vector *Eigvalue_ptr = gsl_vector_alloc(Dim);
gsl_matrix *Eigvector_ptr = gsl_matrix_alloc(Dim, Dim);
gsl_vector *Potential_ptr = gsl_vector_alloc(Dim);
gsl_matrix *Norm_Eigvector_ptr = gsl_matrix_alloc(Dim, Dim);
gsl_vector *S_Eigvector_ptr = gsl_vector_alloc(Dim);
gsl_vector *Charge_Density_ptr = gsl_vector_alloc(Dim);
//gsl_vector *Main_Diagonal_ptr = gsl_vector_alloc(Dim);
//gsl_vector *Super_Diagonal_ptr = gsl_vector_alloc(Dim-1);
//gsl_vector *Sub_Diagonal_ptr = gsl_vector_alloc(Dim-1);
////gsl_vector *Super_Sub_Diagonal_ptr = gsl_vector_alloc(Dim-1);
//gsl_vector *Elec_Potential_ptr = gsl_vector_alloc(Dim);
/*initialise potential well*/
for (n=0; n<(Dim); n++) {
if(n>=barrier_R){
gsl_vector_set(Potential_ptr, n, 0);
}
if(n<barrier_R && n>=barrier_L){
gsl_vector_set(Potential_ptr, n, E_well);
}
if (n<barrier_L){
gsl_vector_set(Potential_ptr, n, 0);
}
}
/*initialise effective mass*/
for (n=0; n<(Dim+1); n++) {
if(n>barrier_R && n<Dim){
Meff_ptr[n]=Meff_barrier;
}
if(n<(barrier_R-1) && n>barrier_L){
Meff_ptr[n]=Meff_well;
}
if (n<(barrier_L) && n>0){
Meff_ptr[n] = Meff_barrier;
}
if (n==0 || n==Dim){
Meff_ptr[n]= Meff_barrier/2;
}
if (n==barrier_R || n==(barrier_R-1) || n==barrier_L || n==(barrier_L-1)){
Meff_ptr[n]= (Meff_barrier+Meff_well)/2;
}
}
N = Schrodinger_Solve(dx, Dim, barrier_L, barrier_R, E_well, Meff_ptr, Subband_ptr, Workspace, Hamil_ptr, Eigvalue_ptr, Eigvector_ptr, S_Eigvector_ptr, Potential_ptr, Norm_Eigvector_ptr, fp_1, fp_2);
E_fermi = FermiDiracPopulate(Subband_ptr, c_doping_yz, Meff_well, E_well, N, T);
Charge_Density(Norm_Eigvector_ptr, S_Eigvector_ptr, Charge_Density_ptr, Subband_ptr, E_fermi, dx, c_doping_yz, Meff_well, Dim, N, T, fp_3);
double Charge_tot = charge_density_check(Charge_Density_ptr, Dim);
printf("n%E", Charge_tot);
//Poisson_Solve(Dim, barrier_R, barrier_L, dx, Main_Diagonal_ptr, Super_Diagonal_ptr, Sub_Diagonal_ptr, Charge_Density_ptr, Elec_Potential_ptr, fp_3, fp_4);
//Convergence_Check()
//Subband_store()
/*free memory*/
gsl_matrix_free(Eigvector_ptr);
gsl_vector_free(Eigvalue_ptr);
gsl_matrix_free(Hamil_ptr);
gsl_eigen_symmv_free(Workspace);
gsl_matrix_free(Norm_Eigvector_ptr);
gsl_vector_free (S_Eigvector_ptr);
free(Subband_ptr);
free(Meff_ptr);
gsl_vector_free(Charge_Density_ptr);
//gsl_vector_free (Main_Diagonal_ptr);
//gsl_vector_free (Super_Diagonal_ptr);
//gsl_vector_free(Sub_Diagonal_ptr);
//gsl_vector_free(Elec_Potential_ptr);
//free(Subband_prev_ptr)
return 0;
}