-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
210 lines (164 loc) · 8.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import os
import torch
import handwriting_synthesis.callbacks
import handwriting_synthesis.tasks
from handwriting_synthesis import training
from handwriting_synthesis import data, utils, models, metrics
from handwriting_synthesis.sampling import UnconditionalSampler, HandwritingSynthesizer
class ConfigOptions:
def __init__(self, batch_size, epochs, sampling_interval,
num_train_examples, num_val_examples, max_length,
model_path, charset_path, samples_dir,
output_clip_value, lstm_clip_value):
self.batch_size = batch_size
self.epochs = epochs
self.sampling_interval = sampling_interval
self.num_train_examples = num_train_examples
self.num_val_examples = num_val_examples
self.max_length = max_length
self.model_path = model_path
self.charset_path = charset_path
self.samples_dir = samples_dir
self.output_clip_value = output_clip_value
self.lstm_clip_value = lstm_clip_value
def print_info_message(training_task_verbose, config):
print(f'{training_task_verbose} with options: training set size {config.num_train_examples}, '
f'validation set size {config.num_val_examples}, '
f'batch size {config.batch_size}, '
f'max sequence length {config.max_length},'
f'sampling interval (in # iterations): {config.sampling_interval}')
def train_model(train_set, val_set, train_task, callbacks, config, training_task_verbose, sampler):
print_info_message(training_task_verbose, config)
train_metrics = [metrics.MSE(), metrics.SSE()]
val_metrics = [metrics.MSE(), metrics.SSE()]
loop = training.TrainingLoop(train_set, val_set, batch_size=config.batch_size, training_task=train_task,
train_metrics=train_metrics, val_metrics=val_metrics)
for cb in callbacks:
loop.add_callback(cb)
sample_class = sampler.__class__
_, largest_epoch = sample_class.load_latest(check_points_dir=config.model_path,
device=torch.device("cpu"))
saver = handwriting_synthesis.callbacks.EpochModelCheckpoint(
sampler, config.model_path, save_interval=1
)
loop.add_callback(saver)
loop.start(initial_epoch=largest_epoch, epochs=config.epochs)
def train_unconditional_handwriting_generator(train_set, val_set, device, config):
sampler, epochs = UnconditionalSampler.load_latest(config.model_path, device)
if sampler:
model = sampler.model
else:
model = models.HandwritingPredictionNetwork.get_default_model(device)
model = model.to(device)
if not sampler:
mu = torch.tensor(train_set.mu, dtype=torch.float32)
sd = torch.tensor(train_set.std, dtype=torch.float32)
tokenizer = data.Tokenizer.from_file(config.charset_path)
sampler = UnconditionalSampler(model, mu, sd, tokenizer.charset, num_steps=config.max_length)
if config.output_clip_value == 0 or config.lstm_clip_value == 0:
clip_values = None
else:
clip_values = (config.output_clip_value, config.lstm_clip_value)
train_task = handwriting_synthesis.tasks.HandwritingPredictionTrainingTask(device, model, clip_values)
cb = handwriting_synthesis.callbacks.HandwritingGenerationCallback(
model, config.samples_dir, config.max_length,
val_set, iteration_interval=config.sampling_interval
)
train_model(train_set, val_set, train_task, [cb], config,
training_task_verbose='Training (unconditional) handwriting prediction model', sampler=sampler)
def train_handwriting_synthesis_model(train_set, val_set, device, config):
synthesizer, epochs = HandwritingSynthesizer.load_latest(config.model_path, device)
if synthesizer:
model = synthesizer.model
else:
tokenizer = data.Tokenizer.from_file(config.charset_path)
alphabet_size = tokenizer.size
model = models.SynthesisNetwork.get_default_model(alphabet_size, device)
model = model.to(device)
mu = torch.tensor(train_set.mu, dtype=torch.float32)
sd = torch.tensor(train_set.std, dtype=torch.float32)
synthesizer = HandwritingSynthesizer(
model, mu, sd, tokenizer.charset, num_steps=config.max_length
)
if config.output_clip_value == 0 or config.lstm_clip_value == 0:
clip_values = None
else:
clip_values = (config.output_clip_value, config.lstm_clip_value)
train_task = handwriting_synthesis.tasks.HandwritingSynthesisTask(
synthesizer.tokenizer, device, model, clip_values
)
cb = handwriting_synthesis.callbacks.HandwritingSynthesisCallback(
synthesizer.tokenizer,
10,
model, config.samples_dir, config.max_length,
val_set, iteration_interval=config.sampling_interval
)
train_model(train_set, val_set, train_task, [cb], config,
training_task_verbose='Training handwriting synthesis model', sampler=synthesizer)
def get_device():
dev = torch.device("cpu")
if torch.cuda.is_available():
dev = torch.device("cuda:0")
else:
try:
import torch_xla
import torch_xla.core.xla_model as xm
# computations on TPU are very slow for some reason
dev = xm.xla_device()
except ImportError:
pass
return dev
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Starts/resumes training prediction or synthesis network.'
)
parser.add_argument("data_dir", type=str, help="Directory containing training and validation data h5 files")
parser.add_argument("model_dir", type=str, help="Directory storing model weights")
parser.add_argument(
"-u", "--unconditional", default=False, action="store_true",
help="Whether or not to train synthesis network (synthesis network is trained by default)"
)
parser.add_argument("-b", "--batch_size", type=int, default=32, help="Batch size")
parser.add_argument("-e", "--epochs", type=int, default=100, help="# of epochs to train")
parser.add_argument("-i", "--interval", type=int, default=100, help="Iterations between sampling")
parser.add_argument("-c", "--charset", type=str, default='', help="Path to the charset file")
parser.add_argument("--samples_dir", type=str, default='samples',
help="Path to the directory that will store samples")
parser.add_argument(
"--clip1", type=int, default=0,
help="Gradient clipping value for output layer. "
"When omitted or set to zero, no clipping is done."
)
parser.add_argument(
"--clip2", type=int, default=0,
help="Gradient clipping value for lstm layers. "
"When omitted or set to zero, no clipping is done."
)
args = parser.parse_args()
device = get_device()
print(f'Using device {device}')
with data.H5Dataset(f'{args.data_dir}/train.h5') as dataset:
mu = dataset.mu
sd = dataset.std
train_dataset_path = os.path.join(args.data_dir, 'train.h5')
val_dataset_path = os.path.join(args.data_dir, 'val.h5')
default_charset_path = os.path.join(args.data_dir, 'charset.txt')
charset_path = utils.get_charset_path_or_raise(args.charset, default_charset_path)
with data.NormalizedDataset(train_dataset_path, mu, sd) as train_set, \
data.NormalizedDataset(val_dataset_path, mu, sd) as val_set:
num_train_examples = len(train_set)
num_val_examples = len(val_set)
max_length = train_set.max_length
model_path = args.model_dir
config = ConfigOptions(batch_size=args.batch_size, epochs=args.epochs,
sampling_interval=args.interval, num_train_examples=num_train_examples,
num_val_examples=num_val_examples, max_length=max_length,
model_path=model_path,
charset_path=charset_path,
samples_dir=args.samples_dir,
output_clip_value=args.clip1, lstm_clip_value=args.clip2)
if args.unconditional:
train_unconditional_handwriting_generator(train_set, val_set, device, config)
else:
train_handwriting_synthesis_model(train_set, val_set, device, config)