-
Notifications
You must be signed in to change notification settings - Fork 9
/
CHERICC_Fat.bsv
1548 lines (1389 loc) · 63.5 KB
/
CHERICC_Fat.bsv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2015-2019 Jonathan Woodruff
* Copyright (c) 2017-2021 Alexandre Joannou
* Copyright (c) 2019 Peter Rugg
* Copyright (c) 2021 Dapeng Gao
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* @BERI_LICENSE_HEADER_START@
*
* Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor
* license agreements. See the NOTICE file distributed with this work for
* additional information regarding copyright ownership. BERI licenses this
* file to you under the BERI Hardware-Software License, Version 1.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*
* http://www.beri-open-systems.org/legal/license-1-0.txt
*
* Unless required by applicable law or agreed to in writing, Work distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* @BERI_LICENSE_HEADER_END@
*/
package CHERICC_Fat;
import DefaultValue :: *;
import CHERICap :: *;
export CapMem;
export CapReg;
export CapPipe;
export CapFat;
export MW;
export OTypeW;
export FlagsW;
export Perms;
export ResW;
export Format;
export TempFields;
export Bounds;
export UPermW;
export CapW;
export ExpW;
export CapAddrW;
export CBoundsW;
export CBounds;
export VA_Width;
export HPerms;
export PermsW;
export Exp;
export MetaInfo;
export SetBoundsReturn;
export CapTrim;
export trimCap;
export untrimCap;
// ===============================================================================
typedef struct {
Bool v;
t d;
} VnD#(type t) deriving (Bits);
// ===============================================================================
`ifdef RISCV
`define FLAGSW 1
`else // MIPS format with 0-width flags width XXX
`define FLAGSW 0
`endif
`ifdef CAP64
typedef 0 UPermW;
typedef 8 MW;
typedef 6 ExpW;
typedef 4 OTypeW;
typedef `FLAGSW FlagsW;
typedef 32 CapAddrW;
typedef 64 CapW;
`else // CAP128 is default
typedef 4 UPermW;
typedef 14 MW;
typedef 6 ExpW;
typedef 18 OTypeW;
typedef `FLAGSW FlagsW;
typedef 64 CapAddrW;
typedef 128 CapW;
`endif
// The Address type is used to represent the full sized address returned to the
// consuming pipeline. In cases where fewer than CapAddrW bits are stored to
// represent a memory address (and remaining bits are usable for storing extra
// metadata), returning a value of type Address is currently expected to sign
// extend the address.
// SizeOf#(Address) should be greater or equal to CapAddrW
typedef CapAddrW AddressW;
typedef Bit#(AddressW) Address;
typedef TDiv#(ExpW,2) HalfExpW;
typedef TSub#(MW,HalfExpW) UpperMW;
// The compressed bounds field type
typedef TSub#(TMul#(MW,2),1) CBoundsW;
typedef Bit#(CBoundsW) CBounds;
// The CapAddr types
typedef Bit#(CapAddrW) CapAddr;
typedef Bit#(TAdd#(CapAddrW,1)) CapAddrPlus1;
typedef Bit#(TAdd#(CapAddrW,2)) CapAddrPlus2;
// The Hardware permissions type
typedef struct {
Bool permit_set_CID;
Bool access_sys_regs;
Bool permit_unseal;
Bool permit_ccall;
Bool permit_seal;
Bool permit_store_ephemeral_cap;
Bool permit_store_cap;
Bool permit_load_cap;
Bool permit_store;
Bool permit_load;
Bool permit_execute;
Bool non_ephemeral;
} HPerms deriving(Bits, Eq, FShow); // 12 bits
// The permissions field, including both "soft" and "hard" permission bits.
typedef struct {
Bit#(UPermW) soft;
HPerms hard;
} Perms deriving(Bits, Eq, FShow);
typedef SizeOf#(Perms) PermsW;
// The reserved bits
typedef TSub#(CapW, TAdd#( CapAddrW
, TAdd#( OTypeW
, TAdd#( CBoundsW
, TAdd#(PermsW, FlagsW))))) ResW;
// The full capability structure, including the "tag" bit.
typedef struct {
Bool isCapability;
Perms perms;
Bit#(ResW) reserved;
Bit#(FlagsW) flags;
Bit#(OTypeW) otype;
CBounds bounds;
CapAddr address;
} CapabilityInMemory deriving (Bits, Eq, FShow); // CapW + 1 (tag bit)
// The full capability structure as Bits, including the "tag" bit.
typedef Bit#(TAdd#(CapW,1)) Capability;
// not including the tag bit
typedef Bit#(CapW) CapBits;
/* TODO
staticAssert(valueOf(SizeOf#(CapabilityInMemory))==valueOf(SizeOf#(Capability)),
"The CapabilityInMemory type has incorrect size of " + integerToString(valueOf(SizeOf#(CapabilityInMemory))) + " (CapW = " + integerToString(valueOf(CapW)) + ")"
);
*/
// Bit type of the debug capability
typedef Bit#(CapW) DebugCap;
// Format of the cheri concentrate capability
typedef enum {Exp0, EmbeddedExp} Format deriving (Bits, Eq, FShow);
// Exponent type
typedef UInt#(ExpW) Exp;
// Type for capability otype field
typedef VnD#(Bit#(OTypeW)) CType;
Bit#(OTypeW) otype_max = -5;
Bit#(OTypeW) otype_unsealed = -1;
Bit#(OTypeW) otype_sentry = -2;
Bit#(OTypeW) otype_res0 = -3;
Bit#(OTypeW) otype_res1 = -4;
// unpacked capability format
typedef struct {
Bool isCapability;
Bit#(CapAddrW) address;
Bit#(MW) addrBits;
Perms perms;
Bit#(FlagsW) flags;
Bit#(ResW) reserved;
Bit#(OTypeW) otype;
Format format;
Bounds bounds;
} CapFat deriving (Bits);
// "Architectural FShow"
function Fmt showArchitectural(CapFat cap) =
$format("valid:%b", cap.isCapability)
+ $format(" perms:0x%x", getPerms(cap))
//+ $format(" flags:0x%x", getFlags(cap))
+ $format(" kind:", fshow(getKind(cap)))
+ $format(" offset:0x%x", getOffsetFat(cap, getTempFields(cap)))
+ $format(" base:0x%x", getBotFat(cap, getTempFields(cap)))
+ $format(" length:0x%x", getLengthFat(cap, getTempFields(cap)));
// "Microarchitectural FShow"
instance FShow#(CapFat);
function Fmt fshow(CapFat cap) =
$format("valid:%b", cap.isCapability)
+ $format(" perms:0x%x", getPerms(cap))
//+ $format(" flags:0x%x", getFlags(cap))
+ $format(" reserved:0x%x", cap.reserved)
+ $format(" format:", fshow(cap.format))
+ $format(" bounds:", fshow(cap.bounds))
+ $format(" address:0x%x", cap.address)
+ $format(" addrBits:0x%x", cap.addrBits)
+ $format(" {bot:0x%x top:0x%x len:0x%x offset:0x%x}",
getBotFat(cap, getTempFields(cap)),
getTopFat(cap, getTempFields(cap)),
getLengthFat(cap, getTempFields(cap)),
getOffsetFat(cap, getTempFields(cap)))
+ $format(" (TempFields: {") + fshow(getTempFields(cap)) + $format("})");
endinstance
// default value for CatFat
CapFat defaultCapFat = defaultValue;
// unpack a memory representation of the capability
function CapFat unpackCap(Capability thin);
CapabilityInMemory memCap = unpack(thin);
// extract the fields from the memory capability
CapFat fat = defaultValue;
fat.isCapability = memCap.isCapability;
fat.perms = memCap.perms;
fat.flags = memCap.flags;
fat.reserved = memCap.reserved;
fat.otype = memCap.otype;
match {.f, .b} = decBounds(memCap.bounds);
fat.format = f;
fat.bounds = b;
fat.address = memCap.address;
// The next few lines are to optimise the critical path of generating addrBits.
// The value of Exp can now be 0 or come from token, so assume they come from the token,
// then select the lower bits at the end if they didn't after all.
BoundsEmbeddedExp tmp = unpack(memCap.bounds);
Exp potentialExp = unpack({tmp.expTopHalf,tmp.expBotHalf});
Bit#(MW) potentialAddrBits = truncate(memCap.address >> potentialExp);
fat.addrBits = tmp.embeddedExp ? potentialAddrBits
: truncate(memCap.address);
return fat;
endfunction
// pack the fat capability into the memory representation
function Capability packCap(CapFat fat);
CapabilityInMemory thin = CapabilityInMemory{
isCapability: fat.isCapability
, perms: fat.perms
, flags: fat.flags
, reserved: fat.reserved
, otype: fat.otype
, bounds: encBounds(fat.format,fat.bounds)
, address: fat.address };
return pack(thin);
endfunction
// The temporary fields
typedef MetaInfo TempFields;
// Interface functions
//------------------------------------------------------------------------------
function BoundsInfo#(CapAddrW) getBoundsInfoFat (CapFat cap, TempFields tf)
provisos ( NumAlias #(fullW, TAdd #(CapAddrW, 1))
, NumAlias #(upperW, TSub #(fullW, MW))
, NumAlias #(lowerW, MW) );
// shared useful bindings and precomputed values
//////////////////////////////////////////////////////////////////////////////
// bind the Bounds field of the CapFat to shorter handy names
Exp exp = cap.bounds.exp;
Bit #(MW) baseBits = cap.bounds.baseBits;
Bit #(MW) topBits = cap.bounds.topBits;
// prepare representable bound bits
Bit #(MW) repBoundBits = {tf.repBoundTopBits, 0};
// prepare typed "lower" MW zeroes for simpler concatenation
Bit #(lowerW) lowerZeroes = 0;
// prepare "full" version for baseBits, topBits and repBoundBits
Bit #(fullW) baseBitsFull = zeroExtend (baseBits) << exp;
Bit #(fullW) topBitsFull = zeroExtend (topBits) << exp;
Bit #(fullW) repBoundBitsFull = zeroExtend (repBoundBits) << exp;
// other helper values
CapAddr capAddr0 = 0;
CapAddrPlus1 addrSpaceTop = {1'b1, capAddr0};
Bool alwaysRep = exp >= resetExp - 2;
// shared +1 and -1/~0 shifted by exponent
Bit #(upperW) allOnesExpShifted = ~0 << exp;
let mask = allOnesExpShifted;
let minusOne = allOnesExpShifted;
Bit #(upperW) oneExpShifted = 1 << exp;
let plusOne = oneExpShifted;
// Prepare "upper" address and its "hi" and "lo" region versions
Bit #(upperW) addrUpperBits = truncateLSB ({1'b0, cap.address}) & mask;
Bit #(upperW) addrUpperHi = addrUpperBits + (tf.addrHi ? 0 : plusOne);
Bit #(upperW) addrUpperLo = addrUpperBits + (tf.addrHi ? minusOne : 0);
function addrUpper (isHi) = isHi ? addrUpperHi : addrUpperLo;
// compute base
//////////////////////////////////////////////////////////////////////////////
// Use the appropriate upper bits of the address based on whether the base is
// in the "hi" or the "lo" region, append implied zeroes in the lower bits,
// and or in the base bits
CapAddr base =
truncate ({addrUpper (tf.baseHi), lowerZeroes} | baseBitsFull);
// compute top
//////////////////////////////////////////////////////////////////////////////
// Use the appropriate upper bits of the address based on whether the top is
// in the "hi" or the "lo" region, append implied zeroes in the lower bits,
// and or in the top bits
CapAddrPlus1 top = {addrUpper (tf.topHi), lowerZeroes} | topBitsFull;
// If the base and top are more than an address space away from eachother,
// invert the 64th/32nd bit of Top. This corrects for errors that happen when
// the representable space wraps the address space.
Bit #(2) topTip = truncateLSB (top);
Bit #(2) baseTip = {1'b0, msb (base)};
// If the bit we're interested in are actually coming from baseBits, select
// the correct one from there.
// exp == (resetExp - 1) doesn't matter since we will not flip unless
// exp < resetExp - 1.
if (exp == (resetExp - 2)) baseTip = {1'b0, baseBits[valueOf(MW) - 1]};
// Do the final check.
// If exp >= resetExp - 1, the bits we're looking at are coming directly from
// topBits and baseBits, are not being inferred, and therefore do not need
// correction. If we are below this range, check that the difference between
// the resulting top and bottom is less than one address space. If not, flip
// the msb of the top.
if (exp < (resetExp - 1) && (topTip - baseTip) > 1)
top[valueOf(CapAddrW)] = ~top[valueOf(CapAddrW)];
// compute length
//////////////////////////////////////////////////////////////////////////////
// Get the top and base bits with the 2 correction bits prepended
Bit #(TAdd #(MW, 2)) correctBase = {pack (tf.baseCorrection), baseBits};
Bit #(TAdd #(MW, 2)) correctTop = {pack (tf.topCorrection), topBits};
// Get the length by subtracting base from top and shifting appropriately, and
// saturate in case of big exponent
CapAddrPlus1 length =
(exp >= resetExp) ? ~0 : zeroExtend (correctTop - correctBase) << exp;
// compute repBase
//////////////////////////////////////////////////////////////////////////////
// Use the "lo" region upper bits of the address, append implied zeroes in the
// lower bits, and or in the representable bound bit.
// Saturate to zero when in the "always representable" case,
// i.e. exp >= resetExp - 2.
CapAddr repBase =
alwaysRep ? capAddr0
: truncate ({addrUpperLo, lowerZeroes} | repBoundBitsFull);
// compute repTop
//////////////////////////////////////////////////////////////////////////////
// Use the "hi" region upper bits of the address, append implied zeroes in the
// lower bits, and or in the representable bound bits
// Saturate to 1 and all zeroes when in the "always representable" case,
// i.e. exp >= resetExp - 2.
CapAddrPlus1 repTop =
alwaysRep ? addrSpaceTop
: {addrUpperHi, lowerZeroes} | repBoundBitsFull;
// compute repLength
//////////////////////////////////////////////////////////////////////////////
CapAddrPlus1 repLength = {oneExpShifted, lowerZeroes};
// compute split of representable space
//////////////////////////////////////////////////////////////////////////////
Bool repSplit = alwaysRep ? False : ! unpack (reduceOr (addrUpperHi));
// return populated BoundsInfo structure
//////////////////////////////////////////////////////////////////////////////
return BoundsInfo { base: base
, top: top
, length: length
, repBase: repBase
, repTop: repTop
, repLength: repLength
, repSplit: repSplit };
endfunction
function CapAddr getBotFat(CapFat cap, TempFields tf);
// First, construct a full length value with the base bits and the
// correction bits above, and shift that value to the appropriate spot.
CapAddr addBase = signExtend({pack(tf.baseCorrection), cap.bounds.baseBits}) << cap.bounds.exp;
// Build a mask on the high bits of a full length value to extract the high
// bits of the address.
Bit#(TSub#(CapAddrW,MW)) mask = ~0 << cap.bounds.exp;
// Extract the high bits of the address (and append the implied zeros at the
// bottom), and add with the previously prepared value.
return {truncateLSB(cap.address)&mask,0} + addBase;
endfunction
function CapAddrPlus1 getTopFat(CapFat cap, TempFields tf);
// First, construct a full length value with the top bits and the
// correction bits above, and shift that value to the appropriate spot.
CapAddrPlus1 addTop = signExtend({pack(tf.topCorrection), cap.bounds.topBits}) << cap.bounds.exp;
// Build a mask on the high bits of a full length value to extract the high
// bits of the address.
Bit#(TSub#(TAdd#(CapAddrW,1),MW)) mask = ~0 << cap.bounds.exp;
// Extract the high bits of the address (and append the implied zeros at the
// bottom), and add with the previously prepared value.
CapAddrPlus1 ret = {truncateLSB({1'b0,cap.address})&mask,0} + addTop;
// If the bottom and top are more than an address space away from eachother,
// invert the 64th/32nd bit of Top. This corrects for errors that happen
// when the representable space wraps the address space.
Bit#(2) topTip = truncateLSB(ret);
// Calculate the msb of the base.
// First assume that only the address and correction are involved...
Bit#(TSub#(CapAddrW,MW)) bot = truncateLSB(cap.address) + (signExtend(pack(tf.baseCorrection)) << cap.bounds.exp);
Bit#(2) botTip = {1'b0, msb(bot)};
// If the bit we're interested in are actually coming from baseBits, select
// the correct one from there.
// exp == (resetExp - 1) doesn't matter since we will not flip unless
// exp < resetExp-1.
if (cap.bounds.exp == (resetExp - 2)) botTip = {1'b0, cap.bounds.baseBits[valueOf(MW)-1]};
// Do the final check.
// If exp >= resetExp - 1, the bits we're looking at are coming directly from
// topBits and baseBits, are not being inferred, and therefore do not need
// correction. If we are below this range, check that the difference between
// the resulting top and bottom is less than one address space. If not, flip
// the msb of the top.
if (cap.bounds.exp<(resetExp-1) && (topTip - botTip) > 1)
ret[valueOf(CapAddrW)] = ~ret[valueOf(CapAddrW)];
return ret;
endfunction
function CapAddrPlus1 getLengthFat(CapFat cap, TempFields tf);
// Get the top and base bits with the 2 correction bits prepended
Bit#(TAdd#(MW,2)) top = {pack(tf.topCorrection),cap.bounds.topBits};
Bit#(TAdd#(MW,2)) base = {pack(tf.baseCorrection),cap.bounds.baseBits};
// Get the length by substracting base from top and shifting appropriately
CapAddrPlus1 length = zeroExtend(top - base) << cap.bounds.exp;
// Return a saturated length in case of big exponent
// TODO: The saturation behaviour here is short of being correct
return (cap.bounds.exp >= resetExp) ? ~0 : length;
endfunction
function Address getOffsetFat(CapFat cap, TempFields tf);
// Get the exponent
Exp e = cap.bounds.exp;
// Get the base bits with the 2 correction bits prepended
Bit#(TAdd#(MW,2)) base = {pack(tf.baseCorrection),cap.bounds.baseBits};
// Get the offset bits by substracting the previous value from the addrBits
Bit#(TAdd#(MW,2)) offset = {2'b0, cap.addrBits} - base;
// Grab the bottom bits of the address and sign extend them to the size of Address
Address addrLSB = signExtend(cap.address & ~(~0 << e));
// Return the computed offset bits (sign extended) shifted appropriatly,
// with the low address bits appended
return (signExtend(offset) << e) | addrLSB;
endfunction
function Bit#(31) getPerms(CapFat cap);
Bit#(SizeOf#(HPerms)) hardPerms = zeroExtend(pack(cap.perms.hard));
Bit#(UPermW) softPerms = zeroExtend(pack(cap.perms.soft));
return zeroExtend({softPerms,hardPerms});
endfunction
function TempFields getTempFields(CapFat cap) = getMetaInfo(cap);
function Bool capInBounds(CapFat cap, TempFields tf, Bool inclusive);
// Check that the pointer of a capability is currently within the bounds
// of the capability
Bool ptrVStop = inclusive ? cap.addrBits <= cap.bounds.topBits
: cap.addrBits < cap.bounds.topBits;
// Top is ok if the pointer and top are in the same alignment region
// and the pointer is less than the top. If they are not in the same
// alignment region, it's ok if the top is in Hi and the bottom in Low.
Bool topOk = (tf.topHi == tf.addrHi) ? ptrVStop : tf.topHi;
Bool baseOk = (tf.baseHi == tf.addrHi) ? cap.addrBits >= cap.bounds.baseBits
: tf.addrHi;
return topOk && baseOk;
endfunction
function CapFat setCapPointer(CapFat cap, CapAddr pointer);
// Function to "cheat" and just set the pointer when we know that
// it will be in representable bounds by some other means.
CapFat ret = cap;
ret.address = pointer;
ret.addrBits = truncate(ret.address >> ret.bounds.exp);
return ret;
endfunction
// Only currently used for algorithm comparison.
function Bit#(n) smearMSBRight(Bit#(n) x);
Bit#(n) res = x;
for (Integer i = 0; i < valueOf(TLog#(n))-1; i = i + 1)
res = res | (res >> 2**i);
return res;
endfunction
function SetBoundsReturn#(CapFat, CapAddrW) setBoundsFat(CapFat cap, Address lengthFull, TempFields tf);
CapFat ret = cap;
// Find new exponent by finding the index of the most significant bit of the
// length, or counting leading zeros in the high bits of the length, and
// substracting them to the CapAddr width (taking away the bottom MW-1 bits:
// trim (MW-1) bits from the bottom of length since any length with a
// significance that small will yield an exponent of zero).
CapAddr length = truncate(lengthFull);
Bit#(TSub#(CapAddrW,TSub#(MW,1))) lengthMSBs = truncateLSB(length);
Exp zeros = zeroExtend(countZerosMSB(lengthMSBs));
// Adjust resetExp by one since it's scale reaches 1-bit greater than a
// 64-bit length can express.
Bool maxZero = (zeros==(resetExp-1));
Bool intExp = !(maxZero && length[fromInteger(valueOf(TSub#(MW,2)))]==1'b0);
// Do this without subtraction
//fromInteger(valueof(TSub#(SizeOf#(Address),TSub#(MW,1)))) - zeros;
Exp e = (resetExp-1) - zeros;
// Derive new base bits by extracting MW bits from the capability address
// starting at the new exponent's position.
CapAddrPlus2 base = {2'b0, cap.address};
Bit#(TAdd#(MW,1)) newBaseBits = truncate(base>>e);
// Derive new top bits by extracting MW bits from the capability address +
// requested length, starting at the new exponent's position, and rounding up
// if significant bits are lost in the process.
CapAddrPlus2 len = {2'b0, length};
CapAddrPlus2 top = base + len;
// Create a mask with all bits set below the MSB of length and then masking
// all bits below the mantissa bits.
CapAddrPlus2 lmask = smearMSBRight(len);
// The shift amount required to put the most significant set bit of the len
// just above the bottom HalfExpW bits that are taken by the exp.
Integer shiftAmount = valueOf(TSub#(TSub#(MW,2),HalfExpW));
// Calculate all values associated with E=e (e not rounding up)
// Round up considering the stolen HalfExpW exponent bits if required
Bit#(TAdd#(MW,1)) newTopBits = truncate(top>>e);
// Check if non-zero bits were lost in the low bits of top, either in the 'e'
// shifted out bits or in the HalfExpW bits stolen for the exponent
// Shift by MW-1 to move MSB of mask just below the mantissa, then up
// HalfExpW more to take in the bits that will be lost for the exponent when
// it is non-zero.
CapAddrPlus2 lmaskLor = lmask>>fromInteger(shiftAmount+1);
CapAddrPlus2 lmaskLo = lmask>>fromInteger(shiftAmount);
// For the len, we're not actually losing significance since we're not
// storing it, we just want to know if any low bits are non-zero so that we
// will know if it will cause the total length to round up.
Bool lostSignificantLen = (len&lmaskLor)!=0 && intExp;
Bool lostSignificantTop = (top&lmaskLor)!=0 && intExp;
// Check if non-zero bits were lost in the low bits of base, either in the
// 'e' shifted out bits or in the HalfExpW bits stolen for the exponent
Bool lostSignificantBase = (base&lmaskLor)!=0 && intExp;
// Calculate all values associated with E=e+1 (e rounding up due to msb of L
// increasing by 1) This value is just to avoid adding later.
Bit#(MW) newTopBitsHigher = truncateLSB(newTopBits);
// Check if non-zero bits were lost in the low bits of top, either in the 'e'
// shifted out bits or in the HalfExpW bits stolen for the exponent Shift by
// MW-1 to move MSB of mask just below the mantissa, then up HalfExpW more to
// take in the bits that will be lost for the exponent when it is non-zero.
Bool lostSignificantTopHigher = (top&lmaskLo)!=0 && intExp;
// Check if non-zero bits were lost in the low bits of base, either in the
// 'e' shifted out bits or in the HalfExpW bits stolen for the exponent
Bool lostSignificantBaseHigher = (base&lmaskLo)!=0 && intExp;
// If either base or top lost significant bits and we wanted an exact
// setBounds, void the return capability
// We need to round up Exp if the msb of length will increase.
// We can check how much the length will increase without looking at the
// result of adding the length to the base. We do this by adding the lower
// bits of the length to the base and then comparing both halves (above and
// below the mask) to zero. Either side that is non-zero indicates an extra
// "1" that will be added to the "mantissa" bits of the length, potentially
// causing overflow. Finally check how close the requested length is to
// overflow, and test in relation to how much the length will increase.
CapAddrPlus2 topLo = (lmaskLor & len) + (lmaskLor & base);
CapAddrPlus2 mwLsbMask = lmaskLor ^ lmaskLo;
// If the first bit of the mantissa of the top is not the sum of the
// corrosponding bits of base and length, there was a carry in.
Bool lengthCarryIn = (mwLsbMask & top) != ((mwLsbMask & base)^(mwLsbMask & len));
Bool lengthRoundUp = lostSignificantTop;
Bool lengthIsMax = (len & (~lmaskLor)) == (lmask ^ lmaskLor);
Bool lengthIsMaxLessOne = (len & (~lmaskLor)) == (lmask ^ lmaskLo);
Bool lengthOverflow = False;
if (lengthIsMax && (lengthCarryIn || lengthRoundUp)) lengthOverflow = True;
if (lengthIsMaxLessOne && lengthCarryIn && lengthRoundUp) lengthOverflow = True;
if(lengthOverflow && intExp) begin
e = e+1;
ret.bounds.topBits = lostSignificantTopHigher ? newTopBitsHigher + 'b1000
: newTopBitsHigher;
ret.bounds.baseBits = truncateLSB(newBaseBits);
end else begin
ret.bounds.topBits = lostSignificantTop ? truncate(newTopBits + 'b1000)
: truncate(newTopBits);
ret.bounds.baseBits = truncate(newBaseBits);
end
Bool exact = !(lostSignificantBase || lostSignificantTop);
ret.bounds.exp = e;
// Update the addrBits fields
ret.addrBits = ret.bounds.baseBits;
// Derive new format from newly computed exponent value, and round top up if
// necessary
if (!intExp) begin // If we have an Exp of 0 and no implied MSB of L.
ret.format = Exp0;
end else begin
ret.format = EmbeddedExp;
Bit#(HalfExpW) botZeroes = 0;
ret.bounds.baseBits = {truncateLSB(ret.bounds.baseBits), botZeroes};
ret.bounds.topBits = {truncateLSB(ret.bounds.topBits), botZeroes};
end
// Begin calculate newLength in case this is a request just for a
// representable length:
CapAddrPlus2 newLength = {2'b0, length};
CapAddrPlus2 baseMask = -1; // Override the result from the previous line if
// we represent everything.
if (intExp) begin
CapAddrPlus2 oneInLsb = (lmask ^ (lmask>>1)) >> shiftAmount;
CapAddrPlus2 newLengthRounded = newLength + oneInLsb;
newLength = (newLength & (~lmaskLor));
newLengthRounded = (newLengthRounded & (~lmaskLor));
if (lostSignificantLen) newLength = newLengthRounded;
baseMask = (lengthIsMax && lostSignificantTop) ? ~lmaskLo : ~lmaskLor;
end
// In parallel, work out if the result is going to be in bounds
// Base computation simple since tf and addrBits already extracted
// Logic same as capInBounds
Bool newBaseInBounds = (tf.baseHi == tf.addrHi) ? cap.addrBits >= cap.bounds.baseBits
: tf.addrHi;
// Interpret the requested length relative to the authorising cap
CapAddr lengthShifted = length >> cap.bounds.exp;
// Split the length into the mantissa, and the bits that overflowed
Bit#(TSub#(CapAddrW, MW)) lengthExcess = truncateLSB(lengthShifted);
Bit#(MW) lengthBits = truncate(lengthShifted);
// If length didn't fit into the mantissa, it's definitely too big
Bool lengthDisqualified = lengthExcess != 0;
// Compute the new top bits, assuming the same exponent
Bit#(TAdd#(MW, 1)) reqTopBits = {1'b0,cap.addrBits} + {1'b0,lengthBits};
// Find the difference between the current and new top bits
Int#(TAdd#(MW, 2)) topDiff = unpack({pack(tf.topCorrection), cap.bounds.topBits} - {1'b0,reqTopBits});
// Compute on bits below the mantissa for edge cases
CapAddrPlus2 lowMask = ~((~0) << cap.bounds.exp);
CapAddrPlus2 carryMask = ~lowMask & (lowMask << 1);
// Recover carry inputs to each bit of top calculation
CapAddrPlus2 carries = len ^ base ^ top;
Bool lowCarry = (carries & carryMask) != 0;
Bool lowRemainder = (top & lowMask) != 0;
// Address the cases for the top: difference in the mantissa bits dictates slack in the lower bits
Bool newTopInBounds = !lengthDisqualified && (
topDiff > 1
|| (topDiff == 1 && !(lowCarry && lowRemainder))
|| (topDiff == 0 && !(lowCarry || lowRemainder))
);
// Address the last case: address is zero being interpreted as the top of the address space.
Bool addressWrap = len == 0 && cap.address == 0 && cap.bounds.baseBits != 0;
Bool resultInBounds = newBaseInBounds && newTopInBounds && !addressWrap;
// Nullify the capability if the result is not in bounds
if (!resultInBounds) ret.isCapability = False;
// Return derived capability
return SetBoundsReturn { cap: ret
, exact: exact
, length: truncate(newLength)
, mask: truncate(baseMask)
, inBounds: resultInBounds };
endfunction
function CapFat seal(CapFat cap, TempFields tf, CType otype);
CapFat ret = cap;
// Update the fields of the new sealed capability (otype)
ret.otype = otype.d;
return ret;
endfunction
function CapFat unseal(CapFat cap, x _);
CapFat ret = cap;
ret.otype = otype_unsealed;
return ret;
endfunction
function VnD#(CapFat) incOffsetFat( CapFat cap
, CapAddr pointer
, CapAddr offset // this is the increment in inc offset, and the offset in set offset
, TempFields tf
, Bool setOffset);
// NOTE:
// The 'offset' argument is the "increment" value when setOffset is false, and
// the actual "offset" value when setOffset is true.
//
// For this function to work correctly, we must have
// 'offset' = 'pointer'-'cap.address'.
// In the most critical case we have both available and picking one or the
// other is less efficient than passing both. If the 'setOffset' flag is set,
// this function will ignore the 'pointer' argument and use 'offset' to set the
// offset of 'cap' by adding it to the capability base. If the 'setOffset' flag
// is not set, this function will increment the offset of 'cap' by replacing
// the 'cap.address' field with the 'pointer' argument (with the assumption
// that the 'pointer' argument is indeed equal to 'cap.address'+'offset'. The
// 'cap.addrBits' field is also updated accordingly.
CapFat ret = cap;
Exp e = cap.bounds.exp;
// Updating the address of a capability requires checking that the new
// address is still within representable bounds. For capabilities with big
// representable regions (with exponents >= resetExp-2), there is no
// representability issue.
// For the other capabilities, the check consists of two steps:
// - A "inRange" test
// - A "inLimits" test
// The inRange test
// ----------------
// Conceptually, the inRange test checks the magnitude of 'offset' is less
// then the representable region's size S. This ensures that the inLimits
// test result is meaningful. The test succeeds if the absolute value of
// 'offset' is less than S, that is -S < 'offset' < S. This test reduces to a
// check that there are no significant bits in the high bits of 'offset',
// that is they are all ones or all zeros.
CapAddr offsetAddr = offset;
Bit#(TSub#(CapAddrW,MW)) signBits = signExtend(offset[valueOf(TSub#(CapAddrW,1))]);
Bit#(TSub#(CapAddrW,MW)) highOffsetBits = truncateLSB(offsetAddr);
Bit#(TSub#(CapAddrW,MW)) highBitsfilter = -1 << e;
highOffsetBits = (highOffsetBits ^ signBits) & highBitsfilter;
Bool inRange = (highOffsetBits == 0);
// The inLimits test
// -----------------
// Conceptually, the inLimits test ensures that neither the of the edges of
// the representable region have been crossed with the new address. In
// essence, it compares the distance 'offsetBits' added (on MW bits) with the
// distance 'toBounds' to the edge of the representable space (on MW bits).
// - For a positive or null increment
// inLimits = offsetBits < toBounds - 1
// - For a negative increment:
// inLimits = (offsetBits >= toBounds) and ('we were not already on the
// bottom edge') (when already on the bottom edge of the representable
// space, the relevant bits of the address and those of the representable
// edge are the same, leading to a false positive on the i >= toBounds
// comparison)
// The sign of the increment
Bool posInc = msb(offsetAddr) == 1'b0;
// The offsetBits value corresponds to the appropriate slice of the
// 'offsetAddr' argument
Bit#(MW) offsetBits = truncate(offsetAddr >> e);
// The toBounds value is given by substracting the address of the capability
// from the address of the edge of the representable region (on MW bits) when
// the 'setOffset' flag is not set. When it is set, it is given by
// substracting the base address of the capability from the edge of the
// representable region (on MW bits). This value is both the distance to the
// representable top and the distance to the representable bottom (when
// appended to a one for negative sign), a convenience of the two's
// complement representation.
// NOTE: When the setOffset flag is set, toBounds should be the distance from
// the base to the representable edge. This can be computed efficiently, and
// without relying on the temporary fields, as follows: equivalent to
// (repBoundBits - cap.bounds.baseBits):
Bit#(MW) toBounds_A = {3'b111,0} - {3'b000,truncate(cap.bounds.baseBits)};
// equivalent to (repBoundBits - cap.bounds.baseBits - 1):
Bit#(MW) toBoundsM1_A = {3'b110,~truncate(cap.bounds.baseBits)};
/*
XXX not sure if we still care about that
if (toBoundsM1_A != (toBounds_A-1)) $display("error %x", toBounds_A[15:13]);
*/
// When the setOffset flag is not set, we need to use the temporary fields
// with the upper bits of the representable bounds
Bit#(MW) repBoundBits = {tf.repBoundTopBits,0};
Bit#(MW) toBounds_B = repBoundBits - cap.addrBits;
Bit#(MW) toBoundsM1_B = repBoundBits + ~cap.addrBits;
// Select the appropriate toBounds value
Bit#(MW) toBounds = setOffset ? toBounds_A : toBounds_B;
Bit#(MW) toBoundsM1 = setOffset ? toBoundsM1_A : toBoundsM1_B;
Bool addrAtRepBound = !setOffset && (repBoundBits == cap.addrBits);
// Implement the inLimit test
Bool inLimits = False;
if (posInc) begin
// For a positive or null increment
// SetOffset is offsetting against base, which has 0 in the lower bits, so
// we don't need to be conservative.
inLimits = setOffset ? offsetBits <= toBoundsM1
: offsetBits < toBoundsM1;
end else begin
// For a negative increment
inLimits = (offsetBits >= toBounds) && !addrAtRepBound;
end
// Complete representable bounds check
// -----------------------------------
Bool inBounds = (inRange && inLimits) || (e >= (resetExp - 2));
// Updating the return capability
// ------------------------------
if (setOffset) begin
// Get the base and add the offsetAddr. This could be slow, but seems to
// pass timing.
ret.address = getBotFat(cap,tf) + offsetAddr;
// Work out the slice of the address we are interested in using MW-bit
// arithmetics.
Bit#(MW) newAddrBits = cap.bounds.baseBits + offsetBits;
// Ensure the bits of the address slice past the top of the address space
// are zero
Bit#(2) mask = (e == resetExp) ? 2'b00 : (e == resetExp-1) ? 2'b01 : 2'b11;
ret.addrBits = {mask, ~0} & newAddrBits;
end else begin
// In the incOffset case, the 'pointer' argument already contains the new
// address
ret.address = pointer;
ret.addrBits = truncate(ret.address >> e);
end
// Nullify the capability if the representable bounds check has failed
if (!inBounds) ret.isCapability = False;
// return updated / invalid capability
return VnD {v: inBounds, d: ret};
endfunction
function VnD#(CapFat) setAddress(CapFat cap, CapAddr address, TempFields tf);
CapFat ret = setCapPointer(cap, address);
Exp e = cap.bounds.exp;
// Calculate what the difference in the upper bits of the new and original addresses must be if
// the new address is within representable bounds.
Bool newAddrHi = truncateLSB(ret.addrBits) < tf.repBoundTopBits;
Bit#(TSub#(CapAddrW,MW)) deltaAddrHi = signExtend({1'b0,pack(newAddrHi)} - {1'b0,pack(tf.addrHi)}) << e;
// Calculate the actual difference between the upper bits of the new address and the original address.
Bit#(TSub#(CapAddrW,MW)) mask = -1 << e;
Bit#(TSub#(CapAddrW,MW)) deltaAddrUpper = (truncateLSB(address)&mask) - (truncateLSB(cap.address)&mask);
Bool inRepBounds = deltaAddrHi == deltaAddrUpper;
if (!inRepBounds) ret.isCapability = False;
return VnD {v: inRepBounds, d: ret};
endfunction
///////////////////////////////
// Internal types and values //
////////////////////////////////////////////////////////////////////////////////
// Exponent that pushes the implied +1 of the top 1 bit outside the address space
Exp resetExp = fromInteger(valueOf(TSub#(TAdd#(CapAddrW,2),MW)));
Bit#(MW) resetTop = {2'b01,0};
typedef struct {
Exp exp;
Bit#(MW) topBits;
Bit#(MW) baseBits;
} Bounds deriving (Bits, Eq, FShow);
instance DefaultValue #(Bounds);
defaultValue = Bounds {
exp : resetExp
, topBits : resetTop
, baseBits: 0 };
endinstance
instance DefaultValue #(CapFat);
defaultValue = CapFat {
isCapability: True
, perms : unpack(~0)
, flags : 0
, reserved : 0
, otype : otype_unsealed
, format : EmbeddedExp
, bounds : defaultValue
, address : 0
, addrBits : 0 };
endinstance
CapFat null_cap = CapFat {
isCapability: False
, perms : unpack(0)
, flags : 0
, reserved : 0
, otype : otype_unsealed
, format : EmbeddedExp
, bounds : defaultValue
, address : 0
, addrBits : 0 };
///////////////////////////////////////////////
// CHERI CONCENTRATE, example 128-bit format //
///////////////////////////////////////////////
// In memory representation //
////////////////////////////////////////////////////////////////////////////////
/*
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX Note that the Flags field does not currently appear in the drawing below
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
Embedded Exp
127___124_123_112_111_109_108__91__90_89_________________________78_77__________________________64
| | | | | | | |
| uperms | perms | res | otype | 0 | top<11:0>| base<13:0>| Exp0
| uperms | perms | res | | 1 | top<11:3>|e<5:3>| base<13:3>|e<2:0>| EmbeddedExp
|________|_______|_______|_______|___|_____________________________|_____________________________|
63_______________________________________________________________________________________________0
| |
| address |
|________________________________________________________________________________________________|
reconstructing most significant top bits:
top<20:19> = base<20:19> + carry_out + len_correction
where
carry_out = 1 if top<18:0> < base <18:0>
0 otherwise
len_correction = 0 if Exp0
1 otherwise
*/
// These three bounds formats help with the decBounds function.
typedef struct {
Bool embeddedExp;
Bit#(TSub#(MW,2)) top;
Bit#(MW) base;
} BoundsExp0 deriving(Bits, Eq, FShow);
typedef struct {
Bool embeddedExp;
Bit#(TSub#(MW,TAdd#(HalfExpW,2))) topUpperBits;
Bit#(HalfExpW) expTopHalf;
Bit#(TSub#(MW,HalfExpW)) baseUpperBits;
Bit#(HalfExpW) expBotHalf;
} BoundsEmbeddedExp deriving(Bits, Eq, FShow);
function Tuple2#(Format, Bounds) decBounds (CBounds raw);
Bool embeddedExp = (truncateLSB(raw)==1'b1);
Format format = (embeddedExp) ? EmbeddedExp : Exp0;
Bounds bounds = defaultValue;
//bounds.exp = 0;
//bounds.topBits = 0;
//bounds.baseBits = 0;
Bit#(HalfExpW) halfExp0 = 0;
case (format)
EmbeddedExp: begin
BoundsEmbeddedExp b = unpack(raw);
bounds.exp = unpack({b.expTopHalf,b.expBotHalf});
bounds.topBits = {?,b.topUpperBits,halfExp0}; // will supply the top
// two bits later.
bounds.baseBits = {b.baseUpperBits,halfExp0};
end
default: begin // and Exp0
bounds.exp = 0;
BoundsExp0 b = unpack(raw);
bounds.topBits = {?,b.top}; // will supply the top two bits later.
bounds.baseBits = b.base;
end
endcase
// topBits = baseBits + lengthBits.
// lengthBits is not present here, but the MSB of lengthBits can be implied
// to be 1.
// To calculate the upper bits of of top, we need the oritinal carry out from
// the lower bits of base + length, which we find like so:
Bit#(TSub#(MW,2)) topBits = truncate(bounds.topBits);
Bit#(TSub#(MW,2)) baseBits = truncate(bounds.baseBits);
Bit#(2) carry_out = (topBits < baseBits) ? 2'b01 : 2'b00;
Bit#(2) len_correction = case (format)
Exp0: 2'b00;
default: 2'b01;
endcase;
Bit#(2) impliedTopBits = truncateLSB(bounds.baseBits) + carry_out + len_correction;
bounds.topBits = {impliedTopBits,truncate(bounds.topBits)};
return tuple2(format,bounds);
endfunction
function CBounds encBounds (Format format, Bounds bounds);
Bit#(HalfExpW) hiExpBits = truncateLSB(pack(bounds.exp));
Bit#(HalfExpW) loExpBits = truncate(pack(bounds.exp));
Bit#(TSub#(MW,TAdd#(HalfExpW,2))) eExpTop = truncate(bounds.topBits >> valueOf(HalfExpW));
Bit#(TSub#(MW,HalfExpW)) eExpBase = truncateLSB(bounds.baseBits);
return case (format)
Exp0: {1'b0, truncate(bounds.topBits), bounds.baseBits};
EmbeddedExp: {1'b1, eExpTop, hiExpBits, eExpBase, loExpBits};
endcase;
endfunction
typedef struct {
Bit#(3) repBoundTopBits;
Bool topHi;
Bool baseHi;
Bool addrHi;
Int#(2) topCorrection;
Int#(2) baseCorrection;
} MetaInfo deriving(Bits, Eq, FShow);
function MetaInfo getMetaInfo (CapFat cap);
Bit#(3) tb = truncateLSB(cap.bounds.topBits);
Bit#(3) bb = truncateLSB(cap.bounds.baseBits);
Bit#(3) ab = truncateLSB(cap.addrBits);
Bit#(3) repBound = bb - 3'b001;