-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
193 lines (163 loc) · 6.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import sys
import argparse
import logging
import random
import collections
import torch
import gorilla
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'provider'))
sys.path.append(os.path.join(BASE_DIR, 'model'))
sys.path.append(os.path.join(BASE_DIR, 'model', 'pointnet2'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
from solver import Solver, get_logger
from dataset import TrainingDataset
# from DPDN import Net, SupervisedLoss, UnSupervisedLoss
def get_parser():
parser = argparse.ArgumentParser(
description="Pose Estimation")
# pretrain
parser.add_argument("--gpus",
type=str,
default="0",
help="gpu num")
parser.add_argument("--config",
type=str,
default="config/supervised.yaml",
help="path to config file")
parser.add_argument("--checkpoint_epoch",
type=int,
default=-1,
help="checkpoint epoch")
args_cfg = parser.parse_args()
return args_cfg
def init():
args = get_parser()
exp_name = args.config.split("/")[-1].split(".")[0]
log_dir = os.path.join("log", exp_name)
if not os.path.isdir("log"):
os.makedirs("log")
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
cfg = gorilla.Config.fromfile(args.config)
cfg.exp_name = exp_name
cfg.log_dir = log_dir
cfg.gpus = args.gpus
cfg.checkpoint_epoch = args.checkpoint_epoch
logger = get_logger(
level_print=logging.INFO, level_save=logging.WARNING, path_file=log_dir+"/training_logger.log")
gorilla.utils.set_cuda_visible_devices(gpu_ids=cfg.gpus)
return logger, cfg
if __name__ == "__main__":
logger, cfg = init()
logger.warning(
"************************ Start Logging ************************")
logger.info(cfg)
logger.info("using gpu: {}".format(cfg.gpus))
random.seed(cfg.rd_seed)
torch.manual_seed(cfg.rd_seed)
# Get model
logger.info("=> creating model ...")
if cfg.model_arch == "ist_net":
from ist_net import IST_Net, SupervisedLoss
model = IST_Net(cfg.num_category, cfg.freeze_world_enhancer)
elif cfg.model_arch == "posenet_gt":
from posenet_gt import PoseNetGT, SupervisedLoss
model = PoseNetGT(cfg.num_category)
else:
raise Exception('architecture {} not supported yet'.format(cfg.model_arch))
if cfg.checkpoint_epoch != -1:
logger.info("=> loading checkpoint from epoch {} ...".format(cfg.checkpoint_epoch))
checkpoint = os.path.join(cfg.log_dir, 'epoch_' + str(cfg.checkpoint_epoch) + '.pth')
checkpoint_file = gorilla.solver.load_checkpoint(model=model, filename=checkpoint)
start_epoch = checkpoint_file['meta']['epoch']+1
start_iter = checkpoint_file['meta']['iter']
del checkpoint_file
else:
start_epoch = 1
start_iter = 0
if len(cfg.gpus) > 1:
model = torch.nn.DataParallel(model, range(len(cfg.gpus.split(","))))
model = model.cuda()
# load freezed world enhancer if needed
if cfg.checkpoint_epoch == -1 and cfg.get("freeze_world_enhancer", False):
assert cfg.world_enhancer_weights is not None
checkpoint = torch.load(cfg.world_enhancer_weights, map_location=lambda storage, loc: storage.cuda())
world_enhancer_dict = collections.OrderedDict()
for k, v in checkpoint["model"].items():
if "pts_gt_extractor" in k:
if len(cfg.gpus) > 1:
new_k = k.replace("pts_gt_extractor.", "module.world_enhancer.extractor.")
else:
new_k = k.replace("pts_gt_extractor.", "world_enhancer.extractor.")
world_enhancer_dict[new_k] = v
model.load_state_dict(world_enhancer_dict, strict=False)
# set grads to False
for name, param in model.named_parameters():
if "world_enhancer" in name:
param.requires_grad = False
count_parameters = sum(gorilla.parameter_count(model).values())
logger.warning("#Total parameters : {}".format(count_parameters))
# Get Loss
loss_syn = SupervisedLoss(cfg).cuda()
loss_real = SupervisedLoss(cfg).cuda()
loss = {
"syn": loss_syn,
"real": loss_real,
}
# dataloader
data_mode = cfg.get("data_mode", "Camera+Real")
data_dir = os.path.join(BASE_DIR, 'data')
RealDataset = TrainingDataset
SynDataset = TrainingDataset
if "Camera" in data_mode:
syn_dataset = SynDataset(
cfg.train_dataset, data_dir, 'syn',
num_img_per_epoch=cfg.num_mini_batch_per_epoch*cfg.train_dataloader.syn_bs,
use_fill_miss = cfg.train_dataloader.use_fill_miss,
use_composed_img = cfg.train_dataloader.use_composed_img,
per_obj=cfg.train_dataloader.per_obj)
syn_dataloader = torch.utils.data.DataLoader(
syn_dataset,
batch_size=cfg.train_dataloader.syn_bs,
num_workers=cfg.train_dataloader.num_workers,
shuffle=cfg.train_dataloader.shuffle,
sampler=None,
drop_last=cfg.train_dataloader.drop_last,
pin_memory=cfg.train_dataloader.pin_memory
)
else:
syn_dataloader = None
if "Real" in data_mode:
data_type = 'real_withLabel'
real_dataset = RealDataset(
cfg.train_dataset, data_dir, data_type,
num_img_per_epoch=cfg.num_mini_batch_per_epoch*cfg.train_dataloader.real_bs,
use_fill_miss = cfg.train_dataloader.use_fill_miss,
use_composed_img = cfg.train_dataloader.use_composed_img,
per_obj=cfg.train_dataloader.per_obj)
real_dataloader = torch.utils.data.DataLoader(
real_dataset,
batch_size=cfg.train_dataloader.real_bs,
num_workers=cfg.train_dataloader.num_workers,
shuffle=cfg.train_dataloader.shuffle,
sampler=None,
drop_last=cfg.train_dataloader.drop_last,
pin_memory=cfg.train_dataloader.pin_memory
)
else:
real_dataloader = None
dataloaders = {
"syn": syn_dataloader,
"real": real_dataloader,
}
# solver
Trainer = Solver(model=model, data_mode=data_mode, loss=loss,
dataloaders=dataloaders,
logger=logger,
cfg=cfg,
start_epoch=start_epoch,
start_iter=start_iter)
Trainer.solve()
logger.info('\nFinish!\n')