-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconfiguration.ini
92 lines (69 loc) · 5.86 KB
/
configuration.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#####################################################################
# To be processed (yes or no)
#
# To train a model or test images, features must first be extracted. If you have not already extracted the features for the images you
# are using, please enable this step.
#
# If you are testing images, the models you are using must be trained. Either use models that have already been trained or enable
# model training.
#####################################################################
Extract features = no
Train model = no
Test images = no
# use this option if your test file is in the format "image_name,classification". Otherwise, set to "no" to just output the classifications
Test list has base truth = yes
#####################################################################
# INPUTS
#####################################################################
# Image location (database where the raw images can be located)
Image directory = ./
# Location of the image filename CSVs (the training or testing set csv files)
CSV directory = ./
# List files in format filename,class\n
# Class 1 = textured lenses | 0 = no lenses or clear lenses
# If either set is not required, leave blank: for example if you are training you may leave the testing set filename blank
# These files are used to load the image filenames and classifications for each image
Training set filename = trainList.csv
Testing set filename = testList.csv
#####################################################################
# SEGMENTATION
# Select either whole image (wi) or best guess (bg)
#####################################################################
Segmentation = bg
#####################################################################
# OUTPUTS : Feature Extraction (do not include .csv extension)
#
# The destination file indicates the prefix that will appear on each feature extraction file, allowing you to track different files if you wish.
# The output file will be (filename)_filter_size_size_bits.csv
# The directory is used to specify the location to store the feature .csv files
#
# The .csv outputs include the image filename and the features for that image in each row
#####################################################################
Feature extraction destination file = histogram
Feature extraction destination directory = ./
#####################################################################
# MODELS (used for training or testing)
#
# For sizes, you may specify between 1 and 16 BSIF scales to use for training or testing
# If you are using the sizes for testing, ensure you specify only sizes that have already been trained.
#####################################################################
# OPTIONS
# BSIF sizes to train/test with (format: #,#,#)
# Options: 3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34
# All Default BSIF: 3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34
Sizes = 3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34,3,5,6,7,9,10,11,13,14,15,17,18,22,26,30,34
#####################################################################
# BSIF : Feature Depth
# All Default BSIF: 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12
#####################################################################
Bitsizes = 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12
# Majority voting (if disabled, separate results will be output for each model)
# Uses simple majority voting to decided on an ensemble classification and will make a random decision in the event of a tie
Majority voting = yes
# Model type ("svm", "rf"(random forest), "mp"(multilayer perceptron))
Model type = svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm,svm
# OUTPUTS
# The location where .xml files for each model will be stored
Model directory = ./
Classification filename = image_classes
Classification file directory = ./