forked from zouxiaochuan/code_ogblsc2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
118 lines (101 loc) · 3.77 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import datasets6 as datasets
import torch.utils.data
from config2 import config
import ex3_models as models
import torch_utils
import torch.optim
import timm.scheduler
import torch.nn as nn
from tqdm import tqdm
import numpy as np
device = 'cuda:0'
def main():
model = models.MoleculeHLGapPredictor(config)
dataset_train = datasets.SimplePCQM4MDataset(
path=config['middle_data_path'], split_name='valid-train', rotate=True, path_atom_map=None, data_path_name='data')
dataset_test = datasets.SimplePCQM4MDataset(
path=config['middle_data_path'], split_name='valid-test', rotate=False, path_atom_map=None, data_path_name='data')
loader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_data_workers'],
collate_fn=datasets.collate_fn
)
loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_data_workers'],
collate_fn=datasets.collate_fn
)
# print([n for n, p in model.named_parameters()])
optimizer = torch.optim.AdamW(torch_utils.get_optimizer_params(model, config['learning_rate'], config['weight_decay']))
scheduler = timm.scheduler.StepLRScheduler(
optimizer, decay_t=5, decay_rate=config['learning_rate_decay_rate'],
warmup_t=config['warmup_epochs'], warmup_lr_init=1e-6)
model.to(device)
for iepoch in range(config['num_epochs']):
model.train()
pbar = tqdm(loader_train)
running_loss = None
for ibatch, batch in enumerate(pbar):
graph, y = batch
graph = torch_utils.batch_to_device(graph, device)
y = y.to(device)
scores = model(
# graph['atom_feat_cate'],
# graph['atom_feat_float'],
# graph['atom_mask'],
# graph['bond_index'],
# graph['bond_feat_cate'],
# graph['bond_feat_float'],
# graph['bond_mask'],
# graph['structure_feat_cate'],
# graph['structure_feat_float'],
# graph['triplet_feat_cate']
graph
)
loss = nn.functional.l1_loss(scores.flatten(), y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.item()
if running_loss is None:
running_loss = loss
else:
running_loss = 0.99 * running_loss + 0.01 * loss
pass
pbar.set_postfix(loss=running_loss, lr=optimizer.param_groups[0]['lr'])
pass
model.eval()
losses = []
for batch in tqdm(loader_test):
graph, y = batch
graph = torch_utils.batch_to_device(graph, device)
y = y.to(device)
with torch.no_grad():
scores = model(
# graph['atom_feat_cate'],
# graph['atom_feat_float'],
# graph['atom_mask'],
# graph['bond_index'],
# graph['bond_feat_cate'],
# graph['bond_feat_float'],
# graph['bond_mask'],
# graph['structure_feat_cate'],
# graph['structure_feat_float'],
# graph['triplet_feat_cate']
graph
)
loss = nn.functional.l1_loss(scores.flatten(), y)
pass
losses.append(loss.item())
pass
print(f'epoch: {iepoch}, loss: {np.mean(losses)}')
scheduler.step(iepoch)
pass
pass
if __name__ == '__main__':
main()
pass