-
Notifications
You must be signed in to change notification settings - Fork 9
/
experiment_MLP_WN_Regression_Task.py
352 lines (272 loc) · 11.5 KB
/
experiment_MLP_WN_Regression_Task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""@author: Riashat Islam
"""
import argparse
import os
import sys
import numpy
np = numpy
import math
import numpy
np = numpy
np.random.seed(1) # TODO
import os
import random
import pandas as pd
from BHNs_MLP_Regression import MLPWeightNorm_BHN, MCdropout_MLP, Backprop_MLP
from get_regression_data import get_regression_dataset
from ops import load_mnist
from utils import log_normal, log_laplace
import lasagne
import theano
import theano.tensor as T
from lasagne.random import set_rng
from theano.tensor.shared_randomstreams import RandomStreams
import matplotlib.pyplot as plt
lrdefault = 1e-3
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
def train_model(train_func,predict_func,X,Y,Xv,Yv,
lr0=0.1,lrdecay=1,bs=32,epochs=50,anneal=0,name='0',
e0=0,rec=0):
print 'trainset X.shape:{}, Y.shape:{}'.format(X.shape,Y.shape)
N = X.shape[0]
va_rec_name = name+'_recs'
save_path = name + '.params'
va_recs = list()
tr_recs = list()
t = 0
for e in range(epochs):
if e <= e0:
continue
if lrdecay:
lr = lr0 * 10**(-e/float(epochs-1))
else:
lr = lr0
if anneal:
w = min(1.0,0.001+e/(epochs/2.))
else:
w = 1.0
for i in range(N/bs):
x = X[i*bs:(i+1)*bs]
y = Y[i*bs:(i+1)*bs]
loss = train_func(x,y,N,lr,w)
print ("Loss", loss)
if t%100==0:
print 'epoch: {} {}, loss:{}'.format(e,t,loss)
tr_rmse = rmse(predict_func(X), Y)
va_rmse = rmse(predict_func(Xv), Yv)
# print '\ttrain rmse: {}'.format(tr_rmse)
# print '\tvalid rmse: {}'.format(va_rmse)
t+=1
tr_rmse = evaluate_model(model.predict, X, Y, n_mc=50)
print '\n\ntr rmse at epochs {}: {}'.format(e,tr_rmse)
va_rmse = evaluate_model(model.predict,Xv,Yv,n_mc=50)
print '\n\nva rmse at epochs {}: {}'.format(e,va_rmse)
va_recs.append(va_rmse)
tr_recs.append(tr_rmse)
if va_rmse > rec:
print '.... save best model .... '
model.save(save_path,[e])
rec = va_rmse
with open(va_rec_name,'a') as rec_file:
for r in va_recs:
rec_file.write(str(r)+'\n')
va_recs = list()
print '\n\n'
validation_rmse = np.asarray(va_recs)
training_rmse = np.asarray(tr_recs)
return training_rmse, validation_rmse
def evaluate_model(predict,X,Y,n_mc=100,max_n=100):
MCt = np.zeros((n_mc,X.shape[0],1))
N = X.shape[0]
num_batches = np.ceil(N / float(max_n)).astype(int)
for i in range(n_mc):
for j in range(num_batches):
x = X[j*max_n:(j+1)*max_n]
MCt[i,j*max_n:(j+1)*max_n] = predict(x)
Y_pred = MCt.mean(0)
Y_true = Y
RMSE = rmse(Y_pred, Y_true)
return RMSE
def plot_rmse(stats1, stats2, save_results, dataset, smoothing_window=1, noshow=False):
fig = plt.figure(figsize=(16, 8))
ax = plt.subplot()
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontname('Arial')
label.set_fontsize(22)
plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
ax.xaxis.get_offset_text().set_fontsize(20)
axis_font = {'fontname':'Arial', 'size':'28'}
rewards_smoothed_1 = pd.Series(stats1).rolling(smoothing_window, min_periods=smoothing_window).mean()
rewards_smoothed_2 = pd.Series(stats2).rolling(smoothing_window, min_periods=smoothing_window).mean()
cum_rwd_1, = plt.plot(rewards_smoothed_1, color = "#1f77b4", linewidth=2.5, label="Training RMSE")
cum_rwd_2, = plt.plot(rewards_smoothed_2, color = "#ff7f0e", linewidth=2.5, label="Validation RMSE" )
plt.legend(handles=[cum_rwd_1, cum_rwd_2], loc='lower right', prop={'size' : 16})
plt.xlabel("Number of Epochs",**axis_font)
plt.ylabel("Accuracy", **axis_font)
plt.title("Training and Validation RMSE", **axis_font)
plt.show()
fig.savefig(save_results + dataset + '_train_valid_rmse.png')
return fig
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--perdatapoint',default=0,type=int)
parser.add_argument('--lrdecay',default=0.1,type=int)
parser.add_argument('--lr0',default=0.001,type=float) # .1
parser.add_argument('--coupling',default=4,type=int)
parser.add_argument('--lbda',default=1,type=float)
parser.add_argument('--size',default=200,type=int)
parser.add_argument('--bs',default=32,type=int)
parser.add_argument('--epochs',default=1000,type=int)
parser.add_argument('--prior',default='log_normal',type=str)
parser.add_argument('--model',default='BHN',type=str, choices=['BHN', 'MCDropout', 'Backprop'])
parser.add_argument('--anneal',default=0,type=int)
parser.add_argument('--n_hiddens',default=2,type=int) # 1
parser.add_argument('--n_units',default=200,type=int) # 50
parser.add_argument('--totrain',default=1,type=int)
parser.add_argument('--seed',default=427,type=int)
parser.add_argument('--override',default=1,type=int)
parser.add_argument('--reinit',default=0,type=int)
parser.add_argument('--dataset',default='airfoil',type=str, choices=['airfoil', 'boston', 'concrete', 'energy', 'kin8nm', 'naval', 'power', 'protein', 'wine', 'yacht', 'year'])
parser.add_argument('--flow',default='RealNVP',type=str, choices=['RealNVP', 'IAF'])
parser.add_argument('--save_dir',default=None, type=str)
parser.add_argument('--cross_validate',default=0, type=int)
parser.add_argument('--drop_prob',default=0.005, type=float)
#parser.add_argument('--save_results',default='./results/',type=str)
args = parser.parse_args()
print args
args_dict = args.__dict__
if args_dict['save_dir'] is None:
print "\n\n\n\t\t\t\t WARNING: save_dir is None! Results will not be saved! \n\n\n"
else:
# save_dir = filename + PROVIDED parser arguments
flags = [flag.lstrip('--') for flag in sys.argv[1:] if not flag.startswith('save_dir')]
save_dir = os.path.join(args_dict.pop('save_dir'), os.path.basename(__file__) + '___' + '_'.join(flags))
print("\t\t save_dir=", save_dir)
# make directory for results
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# save ALL parser arguments
with open (os.path.join(save_dir,'exp_settings.txt'), 'w') as f:
for key in sorted(args_dict):
f.write(key+'\t'+str(args_dict[key])+'\n')
locals().update(args_dict)
set_rng(np.random.RandomState(args.seed))
np.random.seed(args.seed+1000)
if args.prior == 'log_normal':
pr = 0
if args.prior == 'log_laplace':
pr = 1
if args.model == 'BHN':
md = 0
if args.model == 'MCDropout':
md = 1
if args.model == 'Backprop':
md = 2
path = save_dir
name = '{}/regressionWN_md{}nh{}nu{}c{}pr{}lbda{}lr0{}lrd{}an{}s{}seed{}reinit{}flow{}'.format(
path,
md,
args.n_hiddens,
args.n_units,
args.coupling,
pr,
args.lbda,
args.lr0,
args.lrdecay,
args.anneal,
args.size,
args.seed,
args.reinit,
args.flow
)
coupling = args.coupling
perdatapoint = args.perdatapoint
lrdecay = args.lrdecay
lr0 = args.lr0
lbda = np.cast['float32'](args.lbda)
bs = args.bs
epochs = args.epochs
n_hiddens = args.n_hiddens
n_units = args.n_units
anneal = args.anneal
dataset = args.dataset
if args.prior=='log_normal':
prior = log_normal
elif args.prior=='log_laplace':
prior = log_laplace
else:
raise Exception('no prior named `{}`'.format(args.prior))
size = max(10,min(50000,args.size))
if cross_validate:
va_lcs = []
vs_bests = []
for exp in range(cross_validate):
# TODO: make sure this is set-up properly!
input_dim, train_x, train_y, valid_x, valid_y, test_x , test_y = get_regression_dataset(dataset, data_path=os.environ['HOME'] + '/BayesianHypernetCW/')
if args.reinit:
init_batch_size = 64
init_batch = train_x[:size][-init_batch_size:]
else:
init_batch = None
if args.model == 'BHN':
model = MLPWeightNorm_BHN(lbda=lbda,
perdatapoint=perdatapoint,
srng = RandomStreams(seed=args.seed+2000),
prior=prior,
coupling=coupling,
n_hiddens=n_hiddens,
n_units=n_units,
input_dim=input_dim,
flow=args.flow,
init_batch=init_batch)
elif args.model == 'MCDropout':
model = MCdropout_MLP(n_hiddens=n_hiddens,
n_units=n_units,
lbda=lbda,
input_dim=input_dim)
elif args.model =='Backprop':
model = Backprop_MLP(n_hiddens=n_hiddens,
n_units=n_units,
lbda=lbda,
input_dim=input_dim)
else:
raise Exception('no model named `{}`'.format(args.model))
va_rec_name = name+'_recs'
save_path = name + '.params.npy'
e0 = 0
rec = 0
if args.totrain:
print '\nstart training from epoch {}'.format(e0)
all_trainining_rmse, all_validation_rmse = train_model(model.train_func,model.predict,
train_x[:size],train_y[:size],
valid_x,valid_y,
lr0,lrdecay,bs,epochs,anneal,name,
e0,rec)
else:
print '\nno training'
va_lcs.append(all_validation_rmse)
va_bests.append(min(all_validation_rmse))
if save_dir is not None:
np.save(name + "_va_lcs.npy", va_lcs)
np.save(name + "_va_bests.npy", va_bests)
##### for test accuracy
# te_rmse = evaluate_model(model.predict_proba,
# test_x,test_y)
# print 'test acc: {}'.format(te_rmse)
#
# print ("TEST ACCURACY", te_rmse)
# for plotting
# plot_rmse(all_trainining_rmse, all_validation_rmse, args.save_results, args.dataset)
"""
if save_dir is not None:
np.save(name + "_all_training_rmse.npy", all_trainining_rmse)
np.save(name + "_all_validation_rmse.npy", all_validation_rmse)
np.save(name + "_training_rmse.npy", tr_rmse)
np.save(name + "_validation_rmse.npy", va_rmse)
"""
else:
print '\nno training' # TODO