-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsequential_updating.py
353 lines (282 loc) · 12.7 KB
/
sequential_updating.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python
"""
WIP
This script implements the idea of sequential Bayesian updating for BDNNs with VI approximate posteriors.
"""
from BHNs import Base_BHN
import modules
from modules import LinearFlowLayer, IndexLayer#, PermuteLayer, SplitLayer, ReverseLayer
from ops import load_mnist
from utils import log_normal, log_laplace, train_model, evaluate_model
import lasagne
from lasagne import nonlinearities
from lasagne.layers import get_output
from lasagne.random import set_rng
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
floatX = theano.config.floatX
# From BHNs.py
from modules import LinearFlowLayer, IndexLayer, PermuteLayer, SplitLayer, ReverseLayer
from modules import CoupledDenseLayer, ConvexBiasLayer, CoupledWNDenseLayer, \
stochasticDenseLayer2, stochasticConv2DLayer, \
stochastic_weight_norm
from modules import *
from utils import log_normal
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
RSSV = T.shared_randomstreams.RandomStateSharedVariable
floatX = theano.config.floatX
import lasagne
from lasagne import nonlinearities
rectify = nonlinearities.rectify
softmax = nonlinearities.softmax
from lasagne.layers import get_output
from lasagne.objectives import categorical_crossentropy as cc
from lasagne.objectives import squared_error as se
import numpy as np
from helpers import flatten_list
from helpers import SaveLoadMIXIN
# ---------------------------------------------------------------
# Define new functions/classes
# TODO: can compare with proper Bayesian updating (??)
def KL(prior_mean, prior_log_var, posterior_mean, posterior_log_var, delta=.001):
"""
Compute KL between Gaussian posterior and prior
equation taken from https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
"""
prior_var = T.exp(prior_log_var) + delta
posterior_var = T.exp(posterior_log_var) + delta
return .5 * (T.log(prior_var) - T.log(posterior_var) + (posterior_var + (prior_mean - posterior_mean)**2) / prior_var - 1)
class Full_BHN(Base_BHN):
"""
hypernet (really just BbB/mean field for now) that outputs ALL the primary net parameters (including biases!!)
"""
def __init__(self,
lbda=1,
perdatapoint=False,
srng = RandomStreams(seed=427),
#prior = log_normal,
prior_mean = 0,
prior_log_var = 0,
coupling=0,
n_hiddens=2,
n_units=800,
n_inputs=784,
n_classes=10,
output_type = 'categorical',
random_biases=1,
weight=1.,# the weight of the KL term
**kargs):
self.__dict__.update(locals())
assert coupling == 0# TODO
self.weight_shapes = []
if n_hiddens > 0:
self.weight_shapes.append((n_inputs,n_units))
for i in range(1,n_hiddens):
self.weight_shapes.append((n_units,n_units))
self.weight_shapes.append((n_units,n_classes))
else:
self.weight_shapes = [(n_inputs, n_classes)]
if self.random_biases:
self.num_params = sum((ws[0]+1)*ws[1] for ws in self.weight_shapes)
else:
self.num_params = sum((ws[0])*ws[1] for ws in self.weight_shapes)
super(Full_BHN, self).__init__(lbda=lbda,
perdatapoint=perdatapoint,
srng=srng,
prior=None,
output_type = output_type,
**kargs)
assert self.wd1 == 1
def _get_hyper_net(self):
# inition random noise
self.ep = self.srng.normal(size=(self.wd1,
self.num_params),dtype=floatX)
logdets_layers = []
h_net = lasagne.layers.InputLayer([None,self.num_params])
# mean and variation of the initial noise
#layer_temp = LinearFlowLayer(h_net, W=init.Normal(0.01,-7))
layer_temp = LinearFlowLayer(h_net, b=init.Normal(.01), W=init.Normal(0.000000000001,-22))
self.mean = layer_temp.b
self.log_var = layer_temp.W
self.delta = .001 # default value from modules.py
self.h_net = IndexLayer(layer_temp,0)
logdets_layers.append(IndexLayer(layer_temp,1))
self.weights = lasagne.layers.get_output(h_net,self.ep)
self.logdets = sum([get_output(ld,self.ep) for ld in logdets_layers])
def _get_primary_net(self):
t = 0#np.cast['int32'](0) # TODO: what's wrong with np.cast
p_net = lasagne.layers.InputLayer([None,self.n_inputs])
inputs = {p_net:self.input_var}
for ws in self.weight_shapes:
if self.random_biases:
num_param = (ws[0]+1) * ws[1]
weight_and_bias = self.weights[:,t:t+num_param]#.reshape((self.wd1,ws[0], ws[1]))
weight = weight_and_bias[:,:ws[0]*ws[1]].reshape((self.wd1, ws[0], ws[1]))
w_layer = lasagne.layers.InputLayer((None,ws[0]*ws[1]))
inputs[w_layer] = weight
bias = weight_and_bias[:,ws[0]*ws[1]:].reshape((self.wd1, ws[1]))
b_layer = lasagne.layers.InputLayer((None,ws[1]))
inputs[b_layer] = bias
p_net = modules.stochasticDenseLayerWithBias([p_net, w_layer, b_layer], num_units=ws[1])
else:
num_param = (ws[0]) * ws[1]
weight_and_bias = self.weights[:,t:t+num_param]#.reshape((self.wd1,ws[0], ws[1]))
weight = weight_and_bias[:,:ws[0]*ws[1]].reshape((self.wd1, ws[0], ws[1]))
w_layer = lasagne.layers.InputLayer((None,ws[0]*ws[1]))
inputs[w_layer] = weight
#bias = weight_and_bias[:,ws[0]*ws[1]:].reshape((self.wd1, ws[1]))
#b_layer = lasagne.layers.InputLayer((None,ws[1]))
#inputs[b_layer] = bias
p_net = modules.stochasticDenseLayer([p_net, w_layer], num_units=ws[1])
#print p_net.output_shape
t += num_param
if self.output_type == 'categorical':
p_net.nonlinearity = nonlinearities.softmax
y = T.clip(get_output(p_net,inputs), 0.001, 0.999) # stability
self.p_net = p_net
self.y = y
self.y_unclipped = get_output(p_net,inputs)
elif self.output_type == 'real':
p_net.nonlinearity = nonlinearities.linear
y = get_output(p_net,inputs)
self.p_net = p_net
self.y = y
self.y_unclipped = get_output(p_net,inputs)
else:
assert False
def _get_elbo(self):
# NTS: is KL waaay too big??
self.kl = KL(self.prior_mean, self.prior_log_var,
self.mean, self.log_var).sum(-1).mean()
if self.output_type == 'categorical':
self.logpyx = - cc(self.y,self.target_var).mean()
elif self.output_type == 'real':
self.logpyx = - se(self.y,self.target_var).mean()
else:
assert False
self.loss = - (self.logpyx - \
self.weight * self.kl/T.cast(self.dataset_size,floatX))
# DK - extra monitoring
params = self.params
ds = self.dataset_size
self.logpyx_grad = flatten_list(T.grad(-self.logpyx, params, disconnected_inputs='warn')).norm(2)
self.monitored = [self.logpyx, self.logpyx_grad, self.kl]#, self.target_var]
def _get_useful_funcs(self):
self.predict_proba = theano.function([self.input_var],self.y)
self.predict = theano.function([self.input_var],self.y.argmax(1))
self.predict_fixed_mask = theano.function([self.input_var, self.weights],self.y)
self.sample_weights = theano.function([], self.weights)
self.monitor_fn = theano.function([self.input_var, self.target_var], self.monitored)#, (self.predict(x) == y).sum()
def monitor_fn(self, x, y):
rval = self.monitor_fn(x,y)
print "logpyx, kl, acc = ", rval
return rval
# ---------------------------------------------------------------
import argparse
import os
import sys
import numpy
np = numpy
parser = argparse.ArgumentParser()
parser.add_argument('--bs', type=int, default=64)
parser.add_argument('--lr', type=float, default=.001)
#
parser.add_argument('--n_epochs', type=int, default=11)
parser.add_argument('--n_hiddens', type=int, default=1)
parser.add_argument('--n_units', type=int, default=50)
parser.add_argument('--n_splits', type=int, default=1)
parser.add_argument('--n_train', type=int, default=2000)
parser.add_argument('--n_valid', type=int, default=100) # using less examples so it's faster
#
parser.add_argument('--random_biases', type=int, default=1)
#parser.add_argument('--optimizer', type=str, default='sgd', choices=['adam', 'momentum', 'sgd'])
parser.add_argument('--save_dir', type=str, default="./")
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--verbose', type=int, default=0)
parser.add_argument('--print_every', type=int, default=999999999)
parser.add_argument('--kl_weight', type=float, default=1.)
# ---------------------------------------------------------------
# PARSE ARGS and SET-UP SAVING (save_path/exp_settings.txt)
# NTS: we name things after the filename + provided args. We could also save versions (ala Janos), and/or time-stamp things.
# TODO: loading
args = parser.parse_args()
print args
args_dict = args.__dict__
if args_dict['save_dir'] is None:
print "\n\n\n\t\t\t\t WARNING: save_dir is None! Results will not be saved! \n\n\n"
else:
# save_dir = filename + PROVIDED parser arguments
flags = [flag.lstrip('--') for flag in sys.argv[1:] if not flag.startswith('save_dir')]
save_dir = os.path.join(args_dict.pop('save_dir'), os.path.basename(__file__) + '___' + '_'.join(flags))
print("\t\t save_dir=", save_dir)
# make directory for results
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# save ALL parser arguments
with open (os.path.join(save_dir,'exp_settings.txt'), 'w') as f:
for key in sorted(args_dict):
f.write(key+'\t'+str(args_dict[key])+'\n')
locals().update(args_dict)
# ---------------------------------------------------------------
# SET RANDOM SEED (TODO: rng vs. random.seed)
if seed is None:
seed = np.random.randint(2**32 - 1)
np.random.seed(seed) # for reproducibility
rng = np.random.RandomState(seed)
srng = RandomStreams(seed)
set_rng(np.random.RandomState(seed))
# ---------------------------------------------------------------
# Get data
if os.path.isfile('/data/lisa/data/mnist.pkl.gz'):
filename = '/data/lisa/data/mnist.pkl.gz'
elif os.path.isfile(r'./data/mnist.pkl.gz'):
filename = r'./data/mnist.pkl.gz'
elif os.path.isfile(os.path.join(os.environ['DATA_PATH'], 'mnist.pkl.gz')):
filename = os.path.join(os.environ['DATA_PATH'], 'mnist.pkl.gz')
else:
print '\n\tdownloading mnist'
import download_datasets.mnist
filename = r'./data/mnist.pkl.gz'
train_x, train_y, valid_x, valid_y, test_x, test_y = load_mnist(filename)
train_x = train_x[:n_train]
train_y = train_y[:n_train]
va_x = valid_x[:n_valid]
va_y = valid_y[:n_valid]
len_split = n_train / n_splits
va_accs = np.zeros((n_splits, n_epochs-1))
# TODO: some analysis...
#va_means = np.zeros((n_splits, n_epochs))
# ---------------------------------------------------------------
# train model
prior_mean = 0
prior_log_var = 0
for split in range(n_splits):
# get data
tr_x = train_x[split*len_split:(split+1)*len_split]
tr_y = train_y[split*len_split:(split+1)*len_split]
# define model
model = Full_BHN(
srng=srng,
prior_mean=prior_mean,
prior_log_var=prior_log_var,
n_hiddens=n_hiddens,
n_units=n_units,
weight=kl_weight,
random_biases=random_biases)
model.input_var.tag.test_value = train_x[:32]
model.target_var.tag.test_value = train_x[:32]
# train and evaluate
va_acc = train_model(model,tr_x,tr_y,va_x,va_y,
lr0=lr,lrdecay=0,bs=bs,epochs=n_epochs,
#anneal=0,name='0', e0=0,rec=0,
save=0,
verbose=verbose,
print_every=print_every)
va_accs[split] = va_acc
# update posterior
prior_mean = model.mean.eval()
prior_log_var = model.log_var.eval()
np.save(save_dir + 'va_accs.npy', va_accs)