-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_free_irl.py
273 lines (245 loc) · 10.6 KB
/
model_free_irl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
This code is extended from https://github.com/gkswamy98/fast_irl/blob/master/learners/filt.py
and follows largely the same structure. The main difference is the addition of a HybridReplayBuffer
that is used to train the SAC agent under the HyPE algorithm.
"""
import os
from pathlib import Path
from typing import Any, Dict
import hydra
import gym
import numpy as np
import omegaconf
import torch
from stable_baselines3.common.evaluation import evaluate_policy
from tqdm import tqdm
from garage.models.discriminator import Discriminator, DiscriminatorEnsemble
from garage.models.sac import SAC
from garage.utils.common import MF_LOG_FORMAT, PROJECT_ROOT, rollout_agent_in_real_env
from garage.utils.gym_wrappers import (
GoalWrapper,
ResetWrapper,
RewardWrapper,
TremblingHandWrapper,
)
from garage.utils.logger import Logger
from garage.utils.nn_utils import gradient_penalty, linear_schedule
from garage.utils.oadam import OAdam
from garage.utils.replay_buffer import HybridReplayBuffer, QReplayBuffer
def train(cfg: omegaconf.DictConfig, demos_dict: Dict[str, Any]) -> None:
"""
Main training loop for model-free inverse reinforcement learning.
Args:
cfg (omegaconf.DictConfig): Configuration for the experiment.
demos_dict (Dict[str, Any]): Dictionary containing the expert demonstrations.
Returns:
None
"""
device = cfg.device
env_name = cfg.overrides.env
is_maze = "maze" in env_name
# --------------- Wrap environment and init discriminator ---------------
env = gym.make(cfg.overrides.env)
eval_env = gym.make(cfg.overrides.env)
if is_maze:
env = GoalWrapper(env, demos_dict["goals"][0][0])
eval_env = GoalWrapper(eval_env, demos_dict["goals"][0][0])
# Wrapper to reset to expert states with probability=reset_prob.
# In standard IRL, reset_prob=0.0. For details, see second point here:
# https://github.com/jren03/garage/tree/main/garage/algorithms#model-free-inverse-reinforcement-learning
env = ResetWrapper(
env,
demos_dict["qpos"],
demos_dict["qvel"],
demos_dict["goals"],
demos_dict["traj_obs"],
demos_dict["traj_actions"],
demos_dict["traj_seeds"],
reset_prob=cfg.algorithm.reset_prob,
)
discriminator_cfg = cfg.overrides.discriminator
if discriminator_cfg.ensemble_size > 1:
f_net = DiscriminatorEnsemble(
env,
ensemble_size=discriminator_cfg.ensemble_size,
clip_output=discriminator_cfg.clip_output,
)
else:
f_net = Discriminator(env, clip_output=discriminator_cfg.clip_output)
f_net.to(device)
f_opt = OAdam(f_net.parameters(), lr=discriminator_cfg.lr)
env = RewardWrapper(env, f_net)
env = TremblingHandWrapper(env, cfg.overrides.p_tremble)
eval_env = TremblingHandWrapper(eval_env, cfg.overrides.p_tremble)
# --------------- Initialize Agent ---------------
if is_maze:
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
expert_buffer = QReplayBuffer(state_dim, action_dim)
expert_buffer.add_d4rl_dataset(demos_dict["dataset"])
learner_buffer = QReplayBuffer(state_dim, action_dim)
agent = hydra.utils.instantiate(
cfg.algorithm.td3_agent,
env=env,
expert_buffer=expert_buffer,
learner_buffer=learner_buffer,
discriminator=f_net,
cfg=cfg,
)
agent.learn(total_timesteps=cfg.algorithm.bc_init_steps, bc=True)
else:
sac_agent_cfg = cfg.algorithm.sac_agent
agent = SAC(
env=env,
discriminator=f_net,
learning_rate=linear_schedule(7.3e-4),
bc_reg=sac_agent_cfg.bc_reg,
bc_weight=sac_agent_cfg.bc_weight,
policy=sac_agent_cfg.policy,
verbose=sac_agent_cfg.verbose,
ent_coef=sac_agent_cfg.ent_coef,
train_freq=sac_agent_cfg.train_freq,
gradient_steps=sac_agent_cfg.gradient_steps,
gamma=sac_agent_cfg.gamma,
tau=sac_agent_cfg.tau,
device=device,
)
# Initialize replay buffer that can sample from both expert and learner data.
# In standard IRL, only learner data is sampled from, so hybrid_sampling=False
agent.replay_buffer = HybridReplayBuffer(
buffer_size=agent.buffer_size,
observation_space=agent.observation_space,
action_space=agent.action_space,
device=agent.device,
n_envs=1,
optimize_memory_usage=agent.optimize_memory_usage,
expert_data=demos_dict["dataset"],
hybrid_sampling=cfg.algorithm.hybrid_sampling,
sampling_schedule=cfg.algorithm.sampling_schedule
if cfg.algorithm.hybrid_sampling
else None,
)
agent.actor.optimizer = OAdam(agent.actor.parameters())
agent.critic.optimizer = OAdam(agent.critic.parameters())
# --------------- Logging ---------------
work_dir = os.getcwd()
logger = Logger(work_dir, cfg)
log_name = f"{cfg.algorithm.name}_{env_name}"
logger.register_group(
log_name,
MF_LOG_FORMAT,
color="green",
)
save_path = Path(
PROJECT_ROOT,
"garage",
"experiment_results",
env_name,
f"{cfg.algorithm.name}_{cfg.seed}.npz",
)
save_path.parent.mkdir(exist_ok=True, parents=True)
# ----------------- Train -----------------
disc_steps = 0
env_steps = 0
mean_rewards, std_rewards = [], []
kl_divs = [] # Add list for storing KL divergence history
total_env_steps = cfg.algorithm.total_env_steps
agent_train_steps = discriminator_cfg.train_every
expert_sa_pairs = demos_dict["expert_sa_pairs"].to(device)
tbar = tqdm(range(total_env_steps), ncols=0, desc="Env Interaction Steps")
while env_steps < total_env_steps:
if not disc_steps == 0:
disc_lr = discriminator_cfg.lr / disc_steps
else:
disc_lr = discriminator_cfg.lr
f_opt = OAdam(f_net.parameters(), lr=disc_lr)
# --------------- Agent Training -----------------
agent.learn(total_timesteps=agent_train_steps)
env_steps += agent_train_steps
tbar.update(agent_train_steps)
# Update discriminator on data from the current policy.
curr_states, curr_actions, _ = rollout_agent_in_real_env(
env, agent, discriminator_cfg.num_sample_trajectories
)
learner_sa_pairs = torch.cat((curr_states, curr_actions), dim=1).to(device)
# --------------- Discriminator Training ---------------
for _ in range(discriminator_cfg.num_update_steps):
learner_sa = learner_sa_pairs[
np.random.choice(len(learner_sa_pairs), discriminator_cfg.batch_size)
]
expert_sa = expert_sa_pairs[
np.random.choice(len(expert_sa_pairs), discriminator_cfg.batch_size)
]
f_opt.zero_grad()
f_learner = f_net(learner_sa.float())
f_expert = f_net(expert_sa.float())
gp = gradient_penalty(learner_sa, expert_sa, f_net)
loss = f_expert.mean() - f_learner.mean() + 10 * gp
loss.backward()
f_opt.step()
disc_steps += 1
if env_steps % cfg.overrides.eval_frequency == 0:
if is_maze:
mean_reward, std_reward = evaluate_policy(
agent, eval_env, n_eval_episodes=25
)
mean_reward = mean_reward * 100
std_reward = std_reward * 100
else:
mean_reward, std_reward = evaluate_policy(
agent, eval_env, n_eval_episodes=10
)
mean_rewards.append(mean_reward)
std_rewards.append(std_reward)
# -------- Calculate TRRO-style KL divergence --------
with torch.no_grad():
# Sample a subset of expert state-action pairs for KL calculation
n_samples = min(1000, len(expert_sa_pairs))
kl_sample = expert_sa_pairs[:n_samples]
kl_obs = kl_sample[:, :env.observation_space.shape[0]]
kl_acts = kl_sample[:, env.observation_space.shape[0]:]
# We'll use a simpler approach: measure the MSE between expert actions and policy actions
# This is a proxy for KL divergence in continuous action spaces
mse_values = []
# Process in batches
batch_size = 100
for i in range(0, n_samples, batch_size):
end_idx = min(i + batch_size, n_samples)
batch_obs = kl_obs[i:end_idx].cpu().numpy()
batch_expert_acts = kl_acts[i:end_idx]
# Get policy actions for the same states
batch_policy_acts = []
for obs in batch_obs:
# Get deterministic action from current policy
policy_action, _ = agent.predict(obs, deterministic=True)
batch_policy_acts.append(policy_action)
# Convert to tensor
batch_policy_acts = torch.tensor(batch_policy_acts, device=device)
# Calculate MSE between expert and policy actions
mse = torch.mean((batch_expert_acts - batch_policy_acts) ** 2, dim=1)
mse_values.extend(mse.tolist())
# Average MSE as a proxy for KL divergence
kl_proxy = np.mean(mse_values)
# Use this value as our KL divergence proxy
kl_trro = kl_proxy
kl_divs.append(kl_trro)
logger.log_data(
log_name,
{
"env_steps": env_steps,
"mean_reward": mean_reward,
"std_reward": std_reward,
"kl_divergence": kl_trro,
},
)
eval_steps = list(range(cfg.overrides.eval_frequency, env_steps + 1, cfg.overrides.eval_frequency))
# Save results
np.savez(
str(save_path),
means=mean_rewards,
stds=std_rewards,
kl_divs=kl_divs, # Add KL divergence history
steps=eval_steps
)
# ------------- Save results -------------
print(f"Results saved to {save_path}")