-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rl.py
164 lines (133 loc) · 5.54 KB
/
train_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import datetime
import os
import random
import time
from collections import deque
from itertools import count
import types
import hydra
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from omegaconf import DictConfig, OmegaConf
from tensorboardX import SummaryWriter
from utils.logger import Logger
from make_envs import make_env
from dataset.memory import Memory
from agent import make_agent
from utils.utils import evaluate, eval_mode
torch.set_num_threads(2)
def get_args(cfg: DictConfig):
cfg.device = "cuda:0" if torch.cuda.is_available() else "cpu"
cfg.hydra_base_dir = os.getcwd()
print(OmegaConf.to_yaml(cfg))
return cfg
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
args = get_args(cfg)
wandb.init(project=args.env.name + '_rl', entity='iq-learn',
sync_tensorboard=True, reinit=True,
#config=args
)
# set seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = torch.device(args.device)
if device.type == 'cuda' and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
env_args = args.env
env = make_env(args)
eval_env = make_env(args)
# Seed envs
env.seed(args.seed)
eval_env.seed(args.seed + 10)
REPLAY_MEMORY = int(env_args.replay_mem)
INITIAL_MEMORY = int(env_args.initial_mem)
EPISODE_STEPS = int(env_args.eps_steps)
EPISODE_WINDOW = int(env_args.eps_window)
LEARN_STEPS = int(env_args.learn_steps)
agent = make_agent(env, args)
memory_replay = Memory(REPLAY_MEMORY, args.seed)
# Setup logging
ts_str = datetime.datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d_%H-%M-%S")
log_dir = os.path.join(args.log_dir, args.env.name, args.exp_name, ts_str)
writer = SummaryWriter(log_dir=log_dir)
print(f'--> Saving logs at: {log_dir}')
logger = Logger(args.log_dir,
log_frequency=args.log_interval,
writer=writer,
save_tb=True,
agent=args.agent.name)
steps = 0
learn_steps = 0
begin_learn = False
# track mean reward and scores
rewards_window = deque(maxlen=EPISODE_WINDOW) # last N rewards
best_eval_returns = -np.inf
for epoch in count():
state = env.reset()
episode_reward = 0
done = False
start_time = time.time()
for episode_step in range(EPISODE_STEPS):
if steps < args.num_seed_steps:
# Seed replay buffer with random actions
action = env.action_space.sample()
else:
with eval_mode(agent):
action = agent.choose_action(state, sample=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
steps += 1
if learn_steps % args.env.eval_interval == 0:
eval_returns, eval_timesteps = evaluate(agent, eval_env, num_episodes=args.eval.eps)
returns = np.mean(eval_returns)
learn_steps += 1 # To prevent repeated eval at timestep 0
logger.log('eval/episode_reward', returns, learn_steps)
logger.log('eval/episode', epoch, learn_steps)
logger.dump(learn_steps)
# print('EVAL\tEp {}\tAverage reward: {:.2f}\t'.format(epoch, returns))
if returns > best_eval_returns:
# Store best eval returns
best_eval_returns = returns
wandb.run.summary["best_returns"] = best_eval_returns
save(agent, epoch, args, output_dir='results_best')
# only store done true when episode finishes without hitting timelimit (allow infinite bootstrap)
done_no_lim = done
if str(env.__class__.__name__).find('TimeLimit') >= 0 and episode_step + 1 == env._max_episode_steps:
done_no_lim = 0
memory_replay.add((state, next_state, action, reward, done_no_lim))
if memory_replay.size() > INITIAL_MEMORY:
# Start learning
if begin_learn is False:
print('Learn begins!')
begin_learn = True
learn_steps += 1
if learn_steps == LEARN_STEPS:
print('Finished!')
wandb.finish()
return
losses = agent.update(memory_replay, logger, learn_steps)
if learn_steps % args.log_interval == 0:
for key, loss in losses.items():
writer.add_scalar(key, loss, global_step=learn_steps)
if done:
break
state = next_state
rewards_window.append(episode_reward)
logger.log('train/episode', epoch, learn_steps)
logger.log('train/episode_reward', episode_reward, learn_steps)
logger.log('train/duration', time.time() - start_time, learn_steps)
logger.dump(learn_steps, save=begin_learn)
# print('TRAIN\tEp {}\tAverage reward: {:.2f}\t'.format(epoch, np.mean(rewards_window)))
save(agent, epoch, args, output_dir='results')
def save(agent, epoch, args, output_dir='results'):
if epoch % args.save_interval == 0:
if not os.path.exists(output_dir):
os.mkdir(output_dir)
agent.save(f'{output_dir}/{args.agent.name}_{args.env.name}')
if __name__ == "__main__":
main()