forked from HuthLab/speechmodeltutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSemanticModel.py
326 lines (279 loc) · 11.8 KB
/
SemanticModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import tables
import pickle
import numpy as np
import logging
logger = logging.getLogger("SemanticModel")
class SemanticModel(object):
"""This class defines a semantic vector-space model based on HAL or LSA with some
prescribed preprocessing pipeline.
It contains two important variables: vocab and data.
vocab is a 1D list (or array) of words.
data is a 2D array (features by words) of word-feature values.
"""
def __init__(self, data, vocab):
"""Initializes a SemanticModel with the given [data] and [vocab].
"""
self.data = data
self.vocab = vocab
def get_ndim(self):
"""Returns the number of dimensions in this model.
"""
return self.data.shape[0]
ndim = property(get_ndim)
def get_vindex(self):
"""Return {vocab: index} dictionary.
"""
if "_vindex" not in dir(self):
self._vindex = dict([(v,i) for (i,v) in enumerate(self.vocab)])
return self._vindex
vindex = property(get_vindex)
def __getitem__(self, word):
"""Returns the vector corresponding to the given [word].
"""
return self.data[:,self.vindex[word]]
def load_root(self, rootfile, vocab):
"""Load the SVD-generated semantic vector space from [rootfile], assumed to be
an HDF5 file.
"""
roothf = tables.openFile(rootfile)
self.data = roothf.getNode("/R").read()
self.vocab = vocab
roothf.close()
def load_ascii_root(self, rootfile, vocab):
"""Loads the SVD-generated semantic vector space from [rootfile], assumed to be
an ASCII dense matrix output from SDVLIBC.
"""
vtfile = open(rootfile)
nrows, ncols = map(int, vtfile.readline().split())
Vt = np.zeros((nrows,ncols))
nrows_done = 0
for row in vtfile:
Vt[nrows_done,:] = map(float, row.split())
nrows_done += 1
self.data = Vt
self.vocab = vocab
def restrict_by_occurrence(self, min_rank=60, max_rank=60000):
"""Restricts the data to words that have an occurrence rank lower than
[min_rank] and higher than [max_rank].
"""
logger.debug("Restricting words by occurrence..")
nwords = self.data.shape[1]
wordranks = np.argsort(np.argsort(self.data[0,:]))
goodwords = np.nonzero(np.logical_and((nwords-wordranks)>min_rank,
(nwords-wordranks)<max_rank))[0]
self.data = self.data[:,goodwords]
self.vocab = [self.vocab[i] for i in goodwords]
logger.debug("Done restricting words..")
def pca_reduce(self, ndims):
"""Reduces the dimensionality of the vector-space using PCA.
"""
logger.debug("Reducing with PCA to %d dimensions"%ndims)
U,S,Vh = np.linalg.svd(self.data, full_matrices=False)
self.data = np.dot(Vh[:ndims].T, np.diag(S[:ndims])).T
logger.debug("Done with PCA..")
def pca_reduce_multi(self, ndimlist):
"""Reduces the dimensionality of the vector-space using PCA for many
different numbers of dimensions. More efficient than running
pca_reduce many times.
Instead of modifying this object, this function returns a list of new
SemanticModels with the specified numbers of dimensions.
"""
logger.debug("Reducing with PCA to fewer dimensions..")
U,S,Vh = np.linalg.svd(self.data, full_matrices=False)
newmodels = []
for nd in ndimlist:
newmodel = SemanticModel()
newmodel.vocab = list(self.vocab)
newmodel.data = np.dot(Vh[:nd].T, np.diag(S[:nd])).T
newmodels.append(newmodel)
return newmodels
def save(self, filename):
"""Saves this semantic model at the given filename.
"""
logger.debug("Saving file: %s"%filename)
shf = tables.openFile(filename, mode="w", title="SemanticModel")
shf.createArray("/", "data", self.data)
shf.createArray("/", "vocab", self.vocab)
shf.close()
logger.debug("Done saving file..")
@classmethod
def load(cls, filename):
"""Loads a semantic model from the given filename.
"""
logger.debug("Loading file: %s"%filename)
shf = tables.open_file(filename)
newsm = cls(None, None)
newsm.data = shf.get_node("/data").read()
newsm.vocab = [s.decode('utf-8') for s in shf.get_node("/vocab").read()]
shf.close()
logger.debug("Done loading file..")
return newsm
def copy(self):
"""Returns a copy of this model.
"""
logger.debug("Copying model..")
cp = SemanticModel(self.data.copy(), list(self.vocab))
logger.debug("Done copying model..")
return cp
def project_stims(self, stimwords):
"""Projects the stimuli given in [stimwords], which should be a list of lists
of words, into this feature space. Returns the average feature vector across
all the words in each stimulus.
"""
logger.debug("Projecting stimuli..")
stimlen = len(stimwords)
ndim = self.data.shape[0]
pstim = np.zeros((stimlen, ndim))
vset = set(self.vocab)
for t in range(stimlen):
dropped = 0
for w in stimwords[t]:
dropped = 0
if w in vset:
pstim[t] += self[w]
else:
dropped += 1
pstim[t] /= (len(stimwords[t])-dropped)
return pstim
def uniformize(self):
"""Uniformizes each feature.
"""
logger.debug("Uniformizing features..")
R = np.zeros_like(self.data).astype(np.uint32)
for ri in range(self.data.shape[0]):
R[ri] = np.argsort(np.argsort(self.data[ri]))
self.data = R.astype(np.float64)
logger.debug("Done uniformizing...")
def gaussianize(self):
"""Gaussianizes each feature.
"""
logger.debug("Gaussianizing features..")
self.data = gaussianize_mat(self.data.T).T
logger.debug("Done gaussianizing..")
def zscore(self, axis=0):
"""Z-scores either each feature (if axis is 0) or each word (if axis is 1).
If axis is None nothing will be Z-scored.
"""
if axis is None:
logger.debug("Not Z-scoring..")
return
logger.debug("Z-scoring on axis %d"%axis)
if axis==1:
self.data = zscore(self.data.T).T
elif axis==0:
self.data = zscore(self.data)
def rectify(self):
"""Rectifies the features.
"""
self.data = np.vstack([-np.clip(self.data, -np.inf, 0), np.clip(self.data, 0, np.inf)])
def clip(self, sds):
"""Clips feature values more than [sds] standard deviations away from the mean
to that value. Another method for dealing with outliers.
"""
logger.debug("Truncating features to %d SDs.."%sds)
fsds = self.data.std(1)
fms = self.data.mean(1)
newdata = np.zeros(self.data.shape)
for fi in range(self.data.shape[0]):
newdata[fi] = np.clip(self.data[fi],
fms[fi]-sds*fsds[fi],
fms[fi]+sds*fsds[fi])
self.data = newdata
logger.debug("Done truncating..")
def find_words_like_word(self, word, n=10):
"""Finds the [n] words most like the given [word].
"""
return self.find_words_like_vec(self.data[:,self.vocab.index(word)], n)
def find_words_like_vec(self, vec, n=10, corr=True):
"""Finds the [n] words most like the given [vector].
"""
nwords = len(self.vocab)
if corr:
corrs = np.nan_to_num([np.corrcoef(vec, self.data[:,wi])[1,0] for wi in range(nwords)])
scorrs = np.argsort(corrs)
words = list(reversed([(corrs[i], self.vocab[i]) for i in scorrs[-n:]]))
else:
proj = np.nan_to_num(np.dot(vec, self.data))
sproj = np.argsort(proj)
words = list(reversed([(proj[i], self.vocab[i]) for i in sproj[-n:]]))
return words
def find_words_like_vecs(self, vecs, n=10, corr=True, distance_cull=None):
"""Find the `n` words most like each vector in `vecs`.
"""
if corr:
from text.npp import xcorr
vproj = xcorr(vecs, self.data.T)
else:
vproj = np.dot(vecs, self.data)
return np.vstack([self._get_best_words(vp, n, distance_cull) for vp in vproj])
def _get_best_words(self, proj, n=10, distance_cull=None):
"""Find the `n` words corresponding to the highest values in the vector `proj`.
If `distance_cull` is an int, greedily find words with the following algorithm:
1. Initialize the possible set of words with all words.
2. Add the best possible word, w*. Remove w* from the possible set.
3. Remove the `distance_cull` closest neighbors of w* from the possible set.
4. Goto 2.
"""
vocarr = np.array(self.vocab)
if distance_cull is None:
return vocarr[np.argsort(proj)[-n:][::-1]]
elif not isinstance(distance_cull, int):
raise TypeError("distance_cull should be an integer value, not %s" % str(distance_cull))
poss_set = set(self.vocab)
poss_set = np.arange(len(self.vocab))
best_words = []
while len(best_words) < n:
# Find best word in poss_set
best_poss = poss_set[proj[poss_set].argmax()]
# Add word to best_words
best_words.append(self.vocab[best_poss])
# Remove nearby words (by L2-norm..?)
bwdists = ((self.data.T - self.data[:,best_poss])**2).sum(1)
nearest_inds = np.argsort(bwdists)[:distance_cull+1]
poss_set = np.setdiff1d(poss_set, nearest_inds)
return np.array(best_words)
def similarity(self, word1, word2):
"""Returns the correlation between the vectors for [word1] and [word2].
"""
return np.corrcoef(self.data[:,self.vocab.index(word1)], self.data[:,self.vocab.index(word2)])[0,1]
def print_best_worst(self, ii, n=10):
vector = self.data[ii]
sv = np.argsort(self.data[ii])
print ("Best:")
print ("-------------")
for ni in range(1,n+1):
print ("%s: %0.08f"%(np.array(self.vocab)[sv[-ni]], vector[sv[-ni]]))
print ("\nWorst:")
print ("-------------")
for ni in range(n):
print ("%s: %0.08f"%(np.array(self.vocab)[sv[ni]], vector[sv[ni]]))
print ("\n")
def gaussianize(vec):
"""Uses a look-up table to force the values in [vec] to be gaussian."""
import scipy.stats
ranks = np.argsort(np.argsort(vec))
cranks = (ranks+1).astype(float)/(ranks.max()+2)
vals = scipy.stats.norm.isf(1-cranks)
zvals = vals/vals.std()
return zvals
def gaussianize_mat(mat):
"""Gaussianizes each column of [mat]."""
gmat = np.empty(mat.shape)
for ri in range(mat.shape[1]):
gmat[:,ri] = gaussianize(mat[:,ri])
return gmat
def zscore(mat, return_unzvals=False):
"""Z-scores the rows of [mat] by subtracting off the mean and dividing
by the standard deviation.
If [return_unzvals] is True, a matrix will be returned that can be used
to return the z-scored values to their original state.
"""
zmat = np.empty(mat.shape)
unzvals = np.zeros((zmat.shape[0], 2))
for ri in range(mat.shape[0]):
unzvals[ri,0] = np.std(mat[ri,:])
unzvals[ri,1] = np.mean(mat[ri,:])
zmat[ri,:] = (mat[ri,:]-unzvals[ri,1]) / (1e-10+unzvals[ri,0])
if return_unzvals:
return zmat, unzvals
return zmat