forked from HuthLab/speechmodeltutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpdata.py
233 lines (191 loc) · 9.36 KB
/
interpdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy as np
import logging
logger = logging.getLogger("text.regression.interpdata")
def interpdata(data, oldtime, newtime):
"""Interpolates the columns of [data] to find the values at [newtime], given that the current
values are at [oldtime]. [oldtime] must have the same number of elements as [data] has rows.
"""
## Check input sizes ##
if not len(oldtime) == data.shape[0]:
raise IndexError("oldtime must have same number of elements as data has rows.")
## Set up matrix to hold output ##
newdata = np.empty((len(newtime), data.shape[1]))
## Interpolate each column of data ##
for ci in range(data.shape[1]):
if (ci%100) == 0:
logger.info("Interpolating column %d/%d.." % (ci+1, data.shape[1]))
newdata[:,ci] = np.interp(newtime, oldtime, data[:,ci])
## Return interpolated data ##
return newdata
def sincinterp1D(data, oldtime, newtime, cutoff_mult=1.0, window=1):
"""Interpolates the one-dimensional signal [data] at the times given by [newtime], assuming
that each sample in [data] was collected at the corresponding time in [oldtime]. Clearly,
[oldtime] and [data] must have the same length, but [newtime] can have any length.
This function will assume that the time points in [newtime] are evenly spaced and will use
that frequency multipled by [cutoff_mult] as the cutoff frequency of the sinc filter.
The sinc function will be computed with [window] lobes. With [window]=1, this will
effectively compute the Lanczos filter.
This is a very simplistic filtering algorithm, so will take O(N*M) time, where N is the
length of [oldtime] and M is the length of [newtime].
This filter is non-causal.
"""
## Find the cutoff frequency ##
cutoff = 1/np.mean(np.diff(newtime)) * cutoff_mult
print ("Doing sinc interpolation with cutoff=%0.3f and %d lobes." % (cutoff, window))
## Construct new signal ##
newdata = np.zeros((len(newtime),1))
for ndi in range(len(newtime)):
for di in range(len(oldtime)):
newdata[ndi] += sincfun(cutoff, newtime[ndi]-oldtime[di], window) * data[di]
return newdata
def sincinterp2D(data, oldtime, newtime, cutoff_mult=1.0, window=1, causal=False, renorm=True):
"""Interpolates the columns of [data], assuming that the i'th row of data corresponds to
oldtime(i). A new matrix with the same number of columns and a number of rows given
by the length of [newtime] is returned. If [causal], only past time points will be used
to computed the present value, and future time points will be ignored.
The time points in [newtime] are assumed to be evenly spaced, and their frequency will
be used to calculate the low-pass cutoff of the sinc interpolation filter.
[window] lobes of the sinc function will be used. [window] should be an integer.
"""
## Find the cutoff frequency ##
cutoff = 1/np.mean(np.diff(newtime)) * cutoff_mult
print ("Doing sinc interpolation with cutoff=%0.3f and %d lobes." % (cutoff, window))
## Construct new signal ##
# newdata = np.zeros((len(newtime), data.shape[1]))
# for ndi in range(len(newtime)):
# for di in range(len(oldtime)):
# newdata[ndi,:] += sincfun(cutoff, newtime[ndi]-oldtime[di], window, causal) * data[di,:]
## Build up sinc matrix ##
sincmat = np.zeros((len(newtime), len(oldtime)))
for ndi in range(len(newtime)):
sincmat[ndi,:] = sincfun(cutoff, newtime[ndi]-oldtime, window, causal, renorm)
## Construct new signal by multiplying the sinc matrix by the data ##
newdata = np.dot(sincmat, data)
return newdata
def lanczosinterp2D(data, oldtime, newtime, window=3, cutoff_mult=1.0, rectify=False):
"""Interpolates the columns of [data], assuming that the i'th row of data corresponds to
oldtime(i). A new matrix with the same number of columns and a number of rows given
by the length of [newtime] is returned.
The time points in [newtime] are assumed to be evenly spaced, and their frequency will
be used to calculate the low-pass cutoff of the interpolation filter.
[window] lobes of the sinc function will be used. [window] should be an integer.
"""
## Find the cutoff frequency ##
cutoff = 1/np.mean(np.diff(newtime)) * cutoff_mult
print ("Doing lanczos interpolation with cutoff=%0.3f and %d lobes." % (cutoff, window))
## Build up sinc matrix ##
sincmat = np.zeros((len(newtime), len(oldtime)))
for ndi in range(len(newtime)):
sincmat[ndi,:] = lanczosfun(cutoff, newtime[ndi]-oldtime, window)
if rectify:
newdata = np.hstack([np.dot(sincmat, np.clip(data, -np.inf, 0)),
np.dot(sincmat, np.clip(data, 0, np.inf))])
else:
## Construct new signal by multiplying the sinc matrix by the data ##
newdata = np.dot(sincmat, data)
return newdata
def sincupinterp2D(data, oldtime, newtimes, cutoff, window=1):
"""Uses sinc interpolation to upsample the columns of [data], assuming that the i'th
row of data comes from oldtime[i]. A new matrix with the same number of columns
and a number of rows given by the length of [newtime] is returned.
The times points in [oldtime] are assumed to be evenly spaced, and their frequency
will be used to calculate the low-pass cutoff of the sinc interpolation filter.
[window] lobes of the sinc function will be used. [window] should be an integer.
Setting [window] to 1 yields a Lanczos filter.
"""
#cutoff = 1/np.mean(np.diff(oldtime))
print ("Doing sinc interpolation with cutoff=%0.3f and %d lobes."%(cutoff, window))
sincmat = np.zeros((len(newtimes), len(oldtime)))
for ndi in range(len(newtimes)):
sincmat[ndi,:] = sincfun(cutoff, newtimes[ndi]-oldtime, window, False)
newdata = np.dot(sincmat, data)
return newdata
def sincfun(B, t, window=np.inf, causal=False, renorm=True):
"""Compute the sinc function with some cutoff frequency [B] at some time [t].
[t] can be a scalar or any shaped numpy array.
If given a [window], only the lowest-order [window] lobes of the sinc function
will be non-zero.
If [causal], only past values (i.e. t<0) will have non-zero weights.
"""
val = 2*B*np.sin(2*np.pi*B*t)/(2*np.pi*B*t+1e-20)
if t.shape:
val[np.abs(t)>window/(2*B)] = 0
if causal:
val[t<0] = 0
if not np.sum(val)==0.0 and renorm:
val = val/np.sum(val)
elif np.abs(t)>window/(2*B):
val = 0
if causal and t<0:
val = 0
return val
def lanczosfun(cutoff, t, window=3):
"""Compute the lanczos function with some cutoff frequency [B] at some time [t].
[t] can be a scalar or any shaped numpy array.
If given a [window], only the lowest-order [window] lobes of the sinc function
will be non-zero.
"""
t = t * cutoff
val = window * np.sin(np.pi*t) * np.sin(np.pi*t/window) / (np.pi**2 * t**2)
val[t==0] = 1.0
val[np.abs(t)>window] = 0.0
return val# / (val.sum() + 1e-10)
def expinterp2D(data, oldtime, newtime, theta):
intmat = np.zeros((len(newtime), len(oldtime)))
for ndi in range(len(newtime)):
intmat[ndi,:] = expfun(theta, newtime[ndi]-oldtime)
## Construct new signal by multiplying the sinc matrix by the data ##
newdata = np.dot(intmat, data)
return newdata
def expfun(theta, t):
"""Computes an exponential weighting function for interpolation.
"""
val = np.exp(-t*theta)
val[t<0] = 0.0
if not np.sum(val)==0.0:
val = val/np.sum(val)
return val
def gabor_xfm(data, oldtimes, newtimes, freqs, sigma):
sinvals = np.vstack([np.sin(oldtimes*f*2*np.pi) for f in freqs])
cosvals = np.vstack([np.cos(oldtimes*f*2*np.pi) for f in freqs])
outvals = np.zeros((len(newtimes), len(freqs)), dtype=np.complex128)
for ti,t in enumerate(newtimes):
## Build gaussian function
gaussvals = np.exp(-0.5*(oldtimes-t)**2/(2*sigma**2))*data
## Take product with sin/cos vals
sprod = np.dot(sinvals, gaussvals)
cprod = np.dot(cosvals, gaussvals)
## Store the output
outvals[ti,:] = cprod + 1j*sprod
return outvals
def gabor_xfm2D(ddata, oldtimes, newtimes, freqs, sigma):
return np.vstack([gabor_xfm(d, oldtimes, newtimes, freqs, sigma).T for d in ddata])
def test_interp(**kwargs):
"""Tests sincinterp2D passing it the given [kwargs] and interpolating known signals
between the two time domains.
"""
oldtime = np.linspace(0, 10, 100)
newtime = np.linspace(0, 10, 49)
data = np.zeros((4, 100))
## The first row has a single nonzero value
data[0,50] = 1.0
## The second row has a few nonzero values in a row
data[1,45:55] = 1.0
## The third row has a few nonzero values separated by zeros
data[2,40:45] = 1.0
data[2,55:60] = 1.0
## The fourth row has different values
data[3,40:45] = 1.0
data[3,55:60] = 2.0
## Interpolate the data
interpdata = sincinterp2D(data.T, oldtime, newtime, **kwargs).T
## Plot the results
from matplotlib.pyplot import figure, show
fig = figure()
for d in range(4):
ax = fig.add_subplot(4,1,d+1)
ax.plot(newtime, interpdata[d,:], 'go-')
ax.plot(oldtime, data[d,:], 'bo-')
#ax.tight()
show()
return newtime, interpdata