-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsparsify_large_mat.m
34 lines (29 loc) · 1010 Bytes
/
sparsify_large_mat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
function S = sparsify_large_mat(matobj, fieldname, threshold_percentage)
[nrows, ncols] = size(matobj, fieldname);
if nrows ~= ncols
error('non square adjacency matrix');
end
S = logical(sparse(0,0));
% Find maximum weight
zmax=-inf;
handle_waitbar = waitbar(0,'Computing maximum edge weight');
for row=1:nrows
zrow = matobj.(fieldname)(row, row+1:nrows);
%histogram(zrow);
zrow(isinf(zrow))=0;
%error(['contains inf or nan at row ' num2str(row) ]);
zrowmax = max(zrow);
if zrowmax > zmax
zmax = zrowmax;
end
waitbar(row/nrows,handle_waitbar,sprintf('Computing maximum edge weight %.1f percent done',row/nrows*100));
end
close(handle_waitbar);
handle_waitbar = waitbar(0,'Generating the sparse graph');
for row=1:nrows
z = matobj.(fieldname)(row, row+1:nrows);
[~,s,~] = find(z./zrowmax >= threshold);
S(row,s)=true;
S(s,row)=true;
waitbar(row/nrows,handle_waitbar,sprintf('Generating sparsified graph %.1f percent done',row/nrows*100));
end