diff --git a/notebooks/Analyze_user_behavior_across_different_lending_protocols.ipynb b/notebooks/Analyze_user_behavior_across_different_lending_protocols.ipynb index b4624573..4d7633d1 100644 --- a/notebooks/Analyze_user_behavior_across_different_lending_protocols.ipynb +++ b/notebooks/Analyze_user_behavior_across_different_lending_protocols.ipynb @@ -305,6 +305,48 @@ "df_loans.head()" ] }, + { + "cell_type": "markdown", + "id": "8f078115-7933-467c-978b-161a7546b1c8", + "metadata": {}, + "source": [ + "### List of Current prices in USD for given tokens\n", + "Ethereum,Wrapped-Bitcoin,USD-coin,DAI,Tether,Wrapped-Steth,Lords,Strike,UNO-Re,Zenad" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cc699d21-fde6-4265-93cd-be0970fe97ef", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Token Prices in USD: {'dai': {'usd': 1.001}, 'ethereum': {'usd': 2648.31}, 'lords': {'usd': 0.063367}, 'strike': {'usd': 6.87}, 'tether': {'usd': 1.001}, 'uno-re': {'usd': 0.01307447}, 'usd-coin': {'usd': 1.001}, 'wrapped-bitcoin': {'usd': 68686}, 'wrapped-steth': {'usd': 3127.68}, 'zenad': {'usd': 0.00118212}}\n" + ] + } + ], + "source": [ + "import requests\n", + "\n", + "# List of token IDs to fetch from CoinGecko (you can add more tokens if needed)\n", + "token_ids = 'ethereum,wrapped-bitcoin,usd-coin,dai,tether,wrapped-steth,lords,strike,uno-re,zenad'\n", + "\n", + "# API endpoint\n", + "url = 'https://api.coingecko.com/api/v3/simple/price'\n", + "params = {\n", + " 'ids': token_ids,\n", + " 'vs_currencies': 'usd'\n", + "}\n", + "\n", + "response = requests.get(url, params=params)\n", + "prices = response.json()\n", + "\n", + "print(\"Token Prices in USD:\", prices)\n" + ] + }, { "cell_type": "markdown", "id": "1f0db2bb-ca64-4e30-b3d5-9e864289a944", @@ -316,7 +358,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "c6a72339-26b1-49e6-943f-4bea5ba8b3a3", "metadata": {}, "outputs": [ @@ -332,7 +374,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -353,7 +395,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "084931be-14e4-4182-91dd-fa5701265967", "metadata": { "scrolled": true @@ -386,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "e0abeedd-dd39-46f0-a5b7-c8989b53f67c", "metadata": {}, "outputs": [], @@ -397,10 +439,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "e989070b-821a-41f2-84ea-2c4cd19ba8d1", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Users providing liquidity:\n", + "\n" + ] + }, { "data": { "text/html": [ @@ -459,12 +509,13 @@ "3 4 15" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "print(\"Users providing liquidity:\\n\")\n", "protocol_count_df_liquidity" ] }, @@ -478,7 +529,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "25eea99a-b7f6-4ec0-88fd-d528bac3e45c", "metadata": {}, "outputs": [ @@ -505,14 +556,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "2853f77c-143b-4d6a-b584-20a515fa7d09", "metadata": {}, "outputs": [], "source": [ "## Helper funcitons:\n", "# Function to get unique users per protocol\n", - "def get_unique_users(df, value_column):\n", + "def get_unique_users_by_protocol(df):\n", " protocol_users = defaultdict(set)\n", " for protocol in df['Protocol'].unique():\n", " users = set(df[df['Protocol'] == protocol]['User'])\n", @@ -538,13 +589,13 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "9af460f2-dc1a-427c-a564-944ef18499e6", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAKSCAYAAABbWIQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfx0lEQVR4nOzdd5hTVcIG8Pfe9EyvDFOYRu9Kkd6LitgVXQugrl2xr21FLItt7Z8NFdHFAio2VMQVQUBEpEpvQxuYYXpLz/3+yE4kzABTkpwk9/35zCOT3EneZNo7J+eeIymKooCIiIiIiMKGLDoAERERERE1D0s8EREREVGYYYknIiIiIgozLPFERERERGGGJZ6IiIiIKMywxBMRERERhRmWeCIiIiKiMMMST0REREQUZljiiYiIiIjCDEs8EZ1QTk4OpkyZcsrj3nvvPUiShIKCAu9lI0aMwIgRIwKWrbWmTJmCnJycgN+PJEl49NFHT3nco48+CkmSfC5r6vNPpBaNfZ8QqRVLPIWt+h/mJSUljV7fvXv3kC6Rx/v5558hSZL3TafTIS8vD1dffTX27NkjOl5YycnJwTnnnCM6ht9t2bIFjz76qM8fS/526aWXQpIk/OMf/wjYfYgyZcoUn++xE70F4w+nWbNmYfjw4WjTpg0MBgNyc3MxderUJn9uc3JyfDKnpqZi6NChWLBggV9zrly5Eo8++igqKir8ertE1Hpa0QGIyNftt9+Ofv36weFwYO3atXjrrbewcOFCbNq0Cenp6UHNsn37dshyy/7W/+GHH/ycxr9mzZoFt9sd8PuxWCzQalv2o/b453/Lli2YMWMGRowYEZBXEaqqqvD1118jJycHH330EZ566qmIGvW84YYbMGbMGO/7e/fuxSOPPILrr78eQ4cO9V6en58f8Czr1q1Dbm4uzj33XCQkJGDv3r2YNWsWvvnmG2zYsKFJ3+u9e/fG3XffDQAoLCzEm2++iQsvvBCvv/46brzxRr/kXLlyJWbMmIEpU6YgPj7eL7dJRP7BEk/kJ1arFXq9vsWlt97QoUNx8cUXAwCmTp2Kjh074vbbb8ecOXPwwAMPNPoxtbW1iIqKatX9NsZgMLT4Y/V6vR+T+J9OpwvK/RiNxhZ/bGue/5b47LPP4HK58O6772LUqFFYtmwZhg8f7pfbDtTXaHMMHDgQAwcO9L6/Zs0aPPLIIxg4cCCuvPLKoGZ57bXXGlx2/vnno2/fvnj//fdx//33n/I2MjIyfHJfffXVaN++PV544YUTlnin0wm32x3y359EdGqcTkOq8sorr6Bbt24wm81ISEhA37598eGHH/occ+jQIVxzzTXel7m7deuGd9991+eY+qkvH3/8MR5++GFkZGTAbDajqqoKDocDM2bMQIcOHWA0GpGUlIQhQ4Zg8eLFLco8atQoAJ5RQ+CvaURbtmzB3/72NyQkJGDIkCEAPL+gH3/8ceTn58NgMCAnJwcPPvggbDab9/bOOecc5OXlNXpfAwcORN++fb3vNzYne/PmzRg1ahRMJhMyMzPxxBNPNDqiffyc+PrnbN68eXjyySeRmZkJo9GI0aNHY9euXQ0+/v/+7/+Ql5cHk8mE/v3745dffvHrPPvG5sRXVFRgypQpiIuLQ3x8PCZPnoz169dDkiS89957J3xsJ7vNxubEL1++HP369YPRaER+fj7efPPNRjMe+/y/9957uOSSSwAAI0eO9E6j+PnnnzF58mQkJyfD4XA0uI1x48ahU6dOJ30u6s2dOxdjx47FyJEj0aVLF8ydO7fR47Zt24ZLL70UKSkpMJlM6NSpEx566CHv9a39GgU8BXv8+PFITk6GyWRCbm4urrnmGp9jPv74Y/Tp0wcxMTGIjY1Fjx498NJLLzXpsZ7M/Pnz0adPH5hMJiQnJ+PKK6/EoUOHfI6ZMmUKoqOjsWfPHowfPx5RUVFIT0/HY489BkVRWnS/9V87LZ26kpaWhi5dunh/VhQUFECSJDz33HN48cUXvc/5li1bAAA//fQThg4diqioKMTHx+O8887D1q1bvbf36KOP4t577wUA5Obmer/m6qf8NPVzCQDfffcdhg8f7v1c9evXr8HP3qY8741ZvHgxhgwZgvj4eERHR6NTp0548MEHW/QcEoUTjsSTasyaNQu33347Lr74YkybNg1WqxUbN27Eb7/9hr/97W8AgKKiIgwYMACSJOHWW29FSkoKvvvuO1x77bWoqqrCHXfc4XObjz/+OPR6Pe655x7YbDbo9Xo8+uijmDlzJq677jr0798fVVVVWLNmDdauXYuxY8c2O/fu3bsBAElJST6XX3LJJejQoQP+9a9/eUvDddddhzlz5uDiiy/G3Xffjd9++w0zZ87E1q1bvXNlJ02ahKuvvhq///47+vXr5729ffv2YdWqVXj22WdPmOXIkSMYOXIknE4n7r//fkRFReGtt96CyWRq8uN56qmnIMsy7rnnHlRWVuKZZ57BFVdcgd9++817zOuvv45bb70VQ4cOxZ133omCggKcf/75SEhIQGZmZpPvqzkURcF5552H5cuX48Ybb0SXLl2wYMECTJ482a/3s2nTJowbNw4pKSl49NFH4XQ6MX36dLRp0+akHzds2DDcfvvtePnll/Hggw+iS5cuAIAuXbrgqquuwvvvv49Fixb5nAtw5MgR/PTTT5g+ffopcxUWFmLJkiWYM2cOAODyyy/HCy+8gFdffdVn1Hbjxo0YOnQodDodrr/+euTk5GD37t34+uuv8eSTT/rcZku/RouLi73P0f3334/4+HgUFBTg888/99724sWLcfnll2P06NF4+umnAQBbt27FihUrMG3atFM+3hN57733MHXqVPTr1w8zZ85EUVERXnrpJaxYsQLr1q3zmVLicrlw5plnYsCAAXjmmWfw/fffY/r06XA6nXjssceadH+lpaVwuVzYv3+/92NGjx7douwOhwMHDhxo8LNi9uzZsFqtuP7662EwGJCYmIgff/wRZ511FvLy8vDoo4/CYrHglVdeweDBg7F27Vrk5OTgwgsvxI4dO/DRRx/hhRdeQHJyMgAgJSUFQNM+l/XP6TXXXINu3brhgQceQHx8PNatW4fvv//e+7O3Oc/7sTZv3oxzzjkHPXv2xGOPPQaDwYBdu3ZhxYoVLXoOicKKQhSmpk+frgBQjh492uj13bp1U4YPH+59/7zzzlO6det20tu89tprlbZt2yolJSU+l1922WVKXFycUldXpyiKoixZskQBoOTl5Xkvq9erVy9lwoQJzX489bf57rvvKkePHlUKCwuVhQsXKjk5OYokScrvv/+uKMpfj/vyyy/3+fj169crAJTrrrvO5/J77rlHAaD89NNPiqIoSmVlpWIwGJS7777b57hnnnlGkSRJ2bdvn/ey7OxsZfLkyd7377jjDgWA8ttvv3kvKy4uVuLi4hQAyt69e72XDx8+3Of5r398Xbp0UWw2m/fyl156SQGgbNq0SVEURbHZbEpSUpLSr18/xeFweI977733FAA+t3ki2dnZp/wcTJ48WcnOzva+/8UXXygAlGeeecZ7mdPpVIYOHaoAUGbPnn3Cx3ai21QURQGgTJ8+3fv++eefrxiNRp/necuWLYpGo1GO/5F8/PM/f/58BYCyZMkSn+NcLpeSmZmpTJo0yefy559/XpEkSdmzZ0/jT8IxnnvuOcVkMilVVVWKoijKjh07FADKggULfI4bNmyYEhMT45NfURTF7XZ7/93ar9EFCxYoALxf842ZNm2aEhsbqzidzlM+thP5/ffffT63drtdSU1NVbp3765YLBbvcd98840CQHnkkUe8l02ePFkBoNx2223ey9xutzJhwgRFr9ef8OfS8QwGgwJAAaAkJSUpL7/8cpM+Ljs7Wxk3bpxy9OhR5ejRo8qGDRuUyy67zCfT3r17FQBKbGysUlxc7PPxvXv3VlJTU5XS0lLvZRs2bFBkWVauvvpq72XPPvtsg+9tRWn657KiokKJiYlRzjjjDJ/nVFH++pppzvNe/7VV74UXXjjp7wGiSMbpNKQa8fHxOHjwIH7//fdGr1cUBZ999hkmTpwIRVFQUlLifRs/fjwqKyuxdu1an4+ZPHlyg1Ho+Ph4bN68GTt37mxRzmuuuQYpKSlIT0/HhAkTUFtbizlz5vhMcwHQYM7rt99+CwC46667fC6vP/Ft4cKFAIDY2FicddZZmDdvns/L/p988gkGDBiAdu3anTDbt99+iwEDBqB///7ey1JSUnDFFVc0+fFNnTrVZ2S3/oTC+hV41qxZg9LSUvz973/3OSH0iiuuQEJCQpPvp7m+/fZbaLVa3HTTTd7LNBoNbrvtNr/dh8vlwqJFi3D++ef7PM9dunTB+PHjW3y7sizjiiuuwFdffYXq6mrv5XPnzsWgQYOQm5t7ytuYO3cuJkyYgJiYGABAhw4d0KdPH58pNUePHsWyZctwzTXXNPg6aewE2JZ+jdaPun7zzTeNThGqP6a2trbF09Qas2bNGhQXF+Pmm2/2OZdhwoQJ6Ny5szffsW699Vbvv+tfwbPb7fjxxx+bdJ/fffcdvv32W/z73/9Gu3btUFtb2+S8P/zwA1JSUpCSkoJevXph/vz5uOqqq7yvTNS76KKLvKPnAHD48GGsX78eU6ZMQWJiovfynj17YuzYsd7P08k09XO5ePFiVFdX4/77729wfkj910xLnvd69V8rX375ZVBOVCcKJSzxFNGOLRb/+Mc/EB0djf79+6NDhw645ZZbfF5yPXr0KCoqKvDWW295fzHWv02dOhWA52X+YzVWjh577DFUVFSgY8eO6NGjB+69915s3LixyZkfeeQRLF68GD/99BM2btyIwsJCXHXVVQ2OO/6+9+3bB1mW0b59e5/L09LSEB8fj3379nkvmzRpEg4cOIBff/0VgGfKzh9//IFJkyadNNu+ffvQoUOHBpc3dc41gAblr76Yl5eXe+8DQIPHodVqA7qu+759+9C2bVtER0f7XN6cx3YqR48ehcViafVz2Jirr74aFovFO41h+/bt+OOPPxr92jne1q1bsW7dOgwePBi7du3yvo0YMQLffPMNqqqqAPz1h1b37t2blKmlX6PDhw/HRRddhBkzZiA5ORnnnXceZs+e7TPX+uabb0bHjh1x1llnITMzE9dccw2+//77JuU6kfr7b+xz0blzZ5/vIcDzx9Px55d07NgRAJq8VOTIkSNx1lln4a677sL8+fMxY8YMvPrqq0362DPOOAOLFy/Gjz/+iJUrV6KkpATvv/9+g4GFxj4PQOOPs0uXLigpKTnlHxNN/VzWTwc82ddMc5/3Y02aNAmDBw/GddddhzZt2uCyyy7DvHnzWOhJFVjiKWzVj9hYLJZGr6+rq/MZ1enSpQu2b9+Ojz/+GEOGDMFnn32GIUOGeOcL1//Qv/LKK7F48eJG3wYPHuxzH43NBR82bBh2796Nd999F927d8fbb7+N008/HW+//XaTHlePHj0wZswYjBw5Ej169Djh8oQnmofelCUBJ06cCLPZjHnz5gEA5s2bB1mWvSdOBpJGo2n0cqWFJwOKcKLn2OVyBTnJX7p27Yo+ffrgP//5DwDgP//5D/R6PS699NJTfmz9x9x5553o0KGD9+3f//43rFYrPvvssxZlaunXqCRJ+PTTT/Hrr7/i1ltv9Z5s3qdPH9TU1AAAUlNTsX79enz11Vc499xzsWTJEpx11ll+P4chmPLz83Haaaed8ITi4yUnJ2PMmDEYPXo0Bg4ceMJ54805Z6W5RC9BajKZsGzZMvz444+46qqrsHHjRkyaNAljx44V+v1IFAws8RS2srOzAXhGHI9XV1eHAwcOeI+pFxUVhUmTJmH27NnYv38/JkyYgCeffBJWqxUpKSmIiYmBy+XCmDFjGn1LTU1tUrbExERMnToVH330EQ4cOICePXs2adfO1sjOzobb7W4wjaeoqAgVFRU+z0VUVBTOOecczJ8/H263G5988gmGDh16yrWps7OzG50m1NjnoKXqcx6/Yo3T6QzoJkfZ2dk4fPiwtyTWa+yxJSQkNLqCyMlGDAF4V3Np6XN4qsJ09dVX46effsLhw4fx4YcfYsKECaecgqQoCj788EOMHDkS8+fPb/DWs2dPb6msH3X+888/T5m1Mc35GgWAAQMG4Mknn8SaNWswd+5cbN68GR9//LH3er1ej4kTJ+K1117D7t27ccMNN+D9999vdLWjpuYDGv9cbN++vUE+t9vdYCO2HTt2AECLXzWyWCyorKxs0cc21cke57Zt25CcnOxdDvREX3NN/VzWr7l/sq+Z5j7vx5NlGaNHj8bzzz+PLVu24Mknn8RPP/2EJUuWnPTjiMIdSzyFrdGjR0Ov1+P1119v8NLpW2+9BafTibPOOst7WWlpqc8xer0eXbt2haIocDgc0Gg0uOiii/DZZ581+gvn6NGjTcp1/P1ER0ejffv2jS675k9nn302AODFF1/0ufz5558H4JlfeqxJkyahsLAQb7/9NjZs2HDKqTT197Fq1SqsXr3ae9nRo0ebPHLYFH379kVSUhJmzZoFp9PpvXzu3LneKTeBcPbZZ8PpdOL111/3XuZyufDKK680ODY/Px/btm3z+ZrYsGHDKVfE0Gg0GD9+PL744gvs37/fe/nWrVuxaNGiU2asL1YnWoLw8ssvhyRJmDZtGvbs2dOktc9XrFiBgoICTJ06FRdffHGDt0mTJmHJkiUoLCxESkoKhg0bhnfffdcnP9C0V1Ka+jVaXl7e4PZ69+4NAN7vo+O/z2RZRs+ePX2Oaa6+ffsiNTUVb7zxhs9tfPfdd9i6dWuD7yEAPlNfFEXBq6++Cp1Od9IVZpxOZ6Nfy6tXr8amTZsanP/ib23btkXv3r0xZ84cn6+lP//8Ez/88IP38wSc+GuuqZ/LcePGISYmBjNnzoTVavU5tv5z3JLnvV5ZWVmDy47/WiGKVFxiksJWamoqHnnkETz88MMYNmwYzj33XJjNZqxcuRIfffQRxo0bh4kTJ3qPHzduHNLS0jB48GC0adMGW7duxauvvupzMt9TTz2FJUuW4IwzzsDf//53dO3aFWVlZVi7di1+/PHHRn9hHK9r164YMWIE+vTpg8TERKxZswaffvqpzwlwgdCrVy9MnjwZb731FioqKjB8+HCsXr0ac+bMwfnnn4+RI0f6HH/22WcjJiYG99xzj/cPmFO577778MEHH+DMM8/EtGnTvEtMZmdnN2ve/8nUL9N52223YdSoUbj00ktRUFCA9957D/n5+U1++X7Xrl144oknGlx+2mmnNVoKJk6ciMGDB+P+++9HQUEBunbtis8//7zRUdFrrrkGzz//PMaPH49rr70WxcXFeOONN9CtWzfv/PETmTFjBr7//nsMHToUN998M5xOp3f/glM9h71794ZGo8HTTz+NyspKGAwGjBo1yvsKUUpKCs4880zMnz8f8fHxJy0/9ebOnQuNRnPCY88991w89NBD+Pjjj3HXXXfh5ZdfxpAhQ3D66afj+uuvR25uLgoKCrBw4UKsX7/+pPfV1K/ROXPm4LXXXsMFF1yA/Px8VFdXY9asWYiNjfWWx+uuuw5lZWUYNWoUMjMzsW/fPrzyyivo3bu3d/nN5tLpdHj66acxdepUDB8+HJdffrl3qcOcnBzceeedPscbjUZ8//33mDx5Ms444wx89913WLhwIR588EGfE0mPV1NTg6ysLEyaNAndunVDVFQUNm3ahNmzZyMuLg7//Oc/W5S/OZ599lmcddZZGDhwIK699lrvEpNxcXE+rxr26dMHAPDQQw/hsssug06nw8SJE5v8uYyNjcULL7yA6667Dv369fPuG7BhwwbU1dVhzpw5zX7ej/XYY49h2bJlmDBhArKzs1FcXIzXXnsNmZmZ3r0JiCKWqGVxiPzlP//5jzJgwAAlKipKMRgMSufOnZUZM2YoVqvV57g333xTGTZsmJKUlKQYDAYlPz9fuffee5XKykqf44qKipRbbrlFycrKUnQ6nZKWlqaMHj1aeeutt7zH1C+XOH/+/AZ5nnjiCaV///5KfHy8YjKZlM6dOytPPvmkYrfbT/o4TnabxzrZ0poOh0OZMWOGkpubq+h0OiUrK0t54IEHGjwX9a644goFgDJmzJhGrz9+iUNFUZSNGzcqw4cPV4xGo5KRkaE8/vjjyjvvvNPkJSaPf3z1y+Adu4SjoijKyy+/rGRnZysGg0Hp37+/smLFCqVPnz7KmWeeeeIn55jc+N+yfce/XXvttYqiNL4cZGlpqXLVVVcpsbGxSlxcnHLVVVcp69atazTff/7zHyUvL0/R6/VK7969lUWLFjVpiUlFUZSlS5cqffr0UfR6vZKXl6e88cYbDZbOq38cxz//s2bNUvLy8rxLUh6/3OS8efMUAMr1119/yufJbrcrSUlJytChQ096XG5urnLaaad53//zzz+VCy64QImPj1eMRqPSqVMn5Z///Kf3+tZ+ja5du1a5/PLLlXbt2ikGg0FJTU1VzjnnHGXNmjXeYz799FNl3LhxSmpqqqLX65V27dopN9xwg3L48OFTPu56xy8xWe+TTz5RTjvtNMVgMCiJiYnKFVdcoRw8eNDnmMmTJytRUVHK7t27lXHjxilms1lp06aNMn36dMXlcp30fm02mzJt2jSlZ8+eSmxsrKLT6ZTs7Gzl2muvbbCU44k0ZRnV+u+tZ599ttHrf/zxR2Xw4MGKyWRSYmNjlYkTJypbtmxpcNzjjz+uZGRkKLIs+3yfN+fnzVdffaUMGjTIe1/9+/dXPvroI59jmvK8H/998t///lc577zzlPT0dEWv1yvp6enK5ZdfruzYseOkzw1RJJAUJYzOJiMi1XK73UhJScGFF16IWbNmBe1+CwoKkJubi9mzZzfYvTYUffnllzj//POxbNky7/Kd5H9TpkzBp59+2uAcCiKiYOGceCIKOVartcGc6Pfffx9lZWUYMWKEmFBhYtasWcjLy+NUAiKiCMc58UQUclatWoU777wTl1xyCZKSkrB27Vq888476N69e1CWwQxHH3/8MTZu3IiFCxfipZdeEr70HxERBRZLPBGFnJycHGRlZeHll19GWVkZEhMTcfXVV+Opp57y2e2V/nL55ZcjOjoa1157LW6++WbRcYiIKMA4J56IiIiIKMxwTjwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPXiNGjED37t1PeVxOTg6mTJkS+ECNmDJlCnJycoTcNxEREVGoYIknIiIiIgozLPFERERERGGGJZ6IiIiIKMywxKtEQUEBJEk64duJ/PDDDzCbzbj88svhdDpPeFxFRQXuuOMOZGVlwWAwoH379nj66afhdrsbZHjuuefw1ltvIT8/HwaDAf369cPvv//e4Da/+OILdO/eHUajEd27d8eCBQta9yQQERERRQit6AAUHCkpKfjggw98LnM4HLjzzjuh1+sb/ZhvvvkGF198MSZNmoR3330XGo2m0ePq6uowfPhwHDp0CDfccAPatWuHlStX4oEHHsDhw4fx4osv+hz/4Ycforq6GjfccAMkScIzzzyDCy+8EHv27IFOpwPg+ePhoosuQteuXTFz5kyUlpZi6tSpyMzMbP2TQURERBTmWOJVIioqCldeeaXPZbfccgtqamqwePHiBsd//vnnuOyyyzBlyhS88cYbkOUTv2jz/PPPY/fu3Vi3bh06dOgAALjhhhuQnp6OZ599FnfffTeysrK8x+/fvx87d+5EQkICAKBTp04477zzsGjRIpxzzjkAgH/84x9o06YNli9fjri4OADA8OHDMW7cOGRnZ7fuySAiIiIKc5xOo1Lvv/8+XnvtNTzzzDMYOXKkz3UfffQRJk2ahBtuuAFvvvnmSQs8AMyfPx9Dhw5FQkICSkpKvG9jxoyBy+XCsmXLfI6fNGmSt8ADwNChQwEAe/bsAQAcPnwY69evx+TJk70FHgDGjh2Lrl27tupxExEREUUCjsSr0Pr163HjjTfi8ssvx1133eVz3d69e3HllVfikksuwSuvvNKk29u5cyc2btyIlJSURq8vLi72eb9du3Y+79cX+vLycgDAvn37AMA7qn+sTp06Ye3atU3KRURERBSpWOJVpry8HBdddBE6duyIt99+u8H1bdu2Rdu2bfHtt99izZo16Nu37ylv0+12Y+zYsbjvvvsavb5jx44+759obr2iKE14BERERETEEq8ibrcbV1xxBSoqKvDjjz/CbDY3OMZoNOKbb77BqFGjcOaZZ2Lp0qXo1q3bSW83Pz8fNTU1GDNmjF9y1s9537lzZ4Prtm/f7pf7ICIiIgpnnBOvIjNmzMCiRYvw0UcfITc394THxcXFYdGiRUhNTcXYsWOxe/fuk97upZdeil9//RWLFi1qcF1FRcVJl6ZsTNu2bdG7d2/MmTMHlZWV3ssXL16MLVu2NOu2iIiIiCIRR+JVYtOmTXj88ccxbNgwFBcX4z//+Y/P9cevXJOcnIzFixdjyJAhGDNmDJYvX46MjIxGb/vee+/FV199hXPOOQdTpkxBnz59UFtbi02bNuHTTz9FQUEBkpOTm5V35syZmDBhAoYMGYJrrrkGZWVleOWVV9CtWzfU1NQ078ETERERRRiWeJUoLS2FoihYunQpli5d2uD640s8AGRkZODHH3/E0KFDMXbsWCxbtqzRMm42m7F06VL861//wvz58/H+++8jNjYWHTt2xIwZM3xWmGmqM888E/Pnz8fDDz+MBx54APn5+Zg9eza+/PJL/Pzzz82+PQoSlwuwWj1vNttf/65/32YDjtkADIrieav/9/H/b+wyrRbQ6wGDwfNW/+/j/28weI4lIiKKQJLCswmJ6GQcDqCqyvNWW9uwpB9b1ps5dSrgZLlhuTeZgJgYIDb2r7dGzg8hIiIKZSzxROQp4BUVQGWlp6xXV/9V3K1W0ekCT6v1FPvjy339+ydYUYmIiEgUlngitVAUTzmvqGj4poai3hpm81/FPi4OSEkBkpMBo1F0MiIiUimWeKJIZbUCRUVAcbHn/0ePeqbGkP/ExHgKff1bcrJn2g4REVGAscQTRQK3Gygp8RT2+tJeXS06lTrFx/sW+6QknmBLRER+xxJPFI6qq30Le2mpZ2UYCj2SBCQk/FXq27TxFHsiIqJWYIknCgcVFcCBA8Dhw57iXlcnOhG1hskEZGYCWVme/3NuPRERNRNLPFEocrk8hX3/fs9bVZXoRBRIycmeQp+VBaSmepbGJCIiOgmWeKJQUVPjGW3fvx84dCj01lyn4NDrgfT0v0bpY2JEJyIiohDEEk8kiqJ45rPXj7aXlYlORKEoLu6vQp+ezpNkiYgIAEs8UXBZrX+Nth886NntlKipNBogIwNo3x7IyWGhJyJSMZZ4okBzOoG9e4EdO4DCQs8IPFFr6XSeIt++vWeUXpJEJyIioiBiiScKlMJCT3Hfu5ebLFFgmUxAfr6n0Kemik5DRERBwBJP5E+VlZ7ivnOn50RVomCLjfWU+Q4dPPPpiYgoIrHEE7WWzQbs3u0p78XFotMQ/SUlxVPo8/MBs1l0GiIi8iOWeKKWcLs9J6ju2AHs2+d5nyhUSZJnZZsOHTyFXqMRnYiIiFqJJZ6oOcrKgG3bgF27PCvNEIUboxHo1Ano2pVr0BMRhTGWeKKmOHgQ2LjR83+iSCBJQLt2QLduntVtiIgorLDEE52I2+0Zcd+4kRsxUWSLj/eMzHfq5Fm6koiIQh5LPNHxbDZgyxZg82agrk50GqLg0euBzp2B7t2B6GjRaYiI6CRY4onqVVUBmzYB27d7NmgiUitZBvLygJ49geRk0WmIiKgRLPFER454pszs28fdVImOl57uKfPt2olOQkREx2CJJ3VSFM9Oqhs3cm13oqaIjwf69PEsUUlERMKxxJO6uN2etd3XrQOqq0WnIQo/SUlAv34cmSciEowlntRjzx5gzRqgokJ0EqLw16aNp8ynp4tOQkSkSizxFPkKC4HVqzlthigQMjI8ZT41VXQSIiJVYYmnyFVaCvz2GzdoIgqGnBygb18gMVF0EiIiVWCJp8hTVeWZNrNrl+gkROoiSZ4TX/v2BWJjRachIopoLPEUOSwWYO1aYOtWzwmsRCSGLAMdO3pWs4mKEp2GiCgiscRT+HM4PEtFbtzo+TcRhQaNBujaFTjtNMBoFJ2GiCiisMRT+HK7gS1bPKPvVqvoNER0IgYD0L8/0KWL6CRERBGDJZ7C06FDwC+/eOa/E1F4SE0Fhg71rDVPREStwhJP4cVqBVau5EmrROFKkoDu3T0nv+p0otMQEYUtlngKH9u3A6tWATab6CRE1FpRUcDAgUBenugkRERhiSWeQl9FhWfqzOHDopMQkb9lZQGDB3NJSiKiZmKJp9DlcgHr13veXC7RaYgoUDQazwo2vXt7lqckIqJTYomn0HT4sGf0vaJCdBIiCpa4OGDIECAjQ3QSIqKQxxJPocVm88x7375ddBIiEqV9e2DAAMBsFp2EiChkscRT6Ni1C/j1V8/Oq0Skbnq9p8h37iw6CRFRSGKJJ/Gqqz1TZw4eFJ2EiEJNbi4wbJhnwygiIvJiiSexdu3yFHiHQ3QSIgpVUVHAyJFAerroJEREIYMlnsRwOoHly4EdO0QnIaJwIElAz55Av35cwYaICCzxJEJJCfDf/wKVlaKTEFG4SU4GRo0C4uNFJyEiEoolnoLrzz89q8+43aKTEFG40mqBQYN40isRqRpLPAWH1Qr8/DOwf7/oJEQUKXJyPCe9Go2ikxARBR1LPAVeYSHw009AXZ3oJEQUacxmz0mv3CCKiFSGJZ4CR1GAP/4A1q3z/JuIKFB69gT69+dJr0SkGizxFBg1NZ7R9yNHRCchIrXgSa9EpCIs8eR/e/cCy5YBNpvoJESkNjqdp8hnZ4tOQkQUUCzx5D9uN7ByJbBli+gkRKRmkuRZT753b9FJiIgChiWe/MNqBX74gdNniCh0tG8PDB8OaDSikxAR+R1LPLVeWRmwaBFQXS06CRGRr5QUYPx4zyo2REQRhCWeWqegAFiyBHA4RCchImqc2ewp8ikpopMQEfkNSzy13Nq1wJo1olMQEZ2aRuOZWtO+vegkRER+wRJPzed0AkuXArt3i05CRNQ8vXt7TnqVJNFJiIhahSWemsdi8cx/Ly4WnYSIqGWysz3LUOp0opMQEbUYSzw1XUUF8N13PIGViMJfQoJnnnxsrOgkREQtwhJPTVNYCCxezA2ciChyGI3AmDFAerroJEREzcYST6e2Y4dnB1a3W3QSIiL/kmVg2DCgY0fRSYiImoUlnk5uzRrPKjRERJFsyBCga1fRKYiImowlnhqnKMAvvwDbtolOQkQUHP37e1avISIKAyzx1JCieJaQ3LFDdBIiouA67TTPEpRERCGOJZ58ud2eHVi5BjwRqVX37sCgQaJTEBGdFEs8/cXtBn78ESgoEJ2EiEisTp08J7xyUygiClEs8eThcnmWkNy/X3QSIqLQkJfn2RRKlkUnISJqgCWeAKcT+OEH4OBB0UmIiEJLu3bA2LGARiM6CRGRD5Z4tXM4gO+/Bw4fFp2EiCg0pad7dnfV6UQnISLyYolXM7sd+O47oKhIdBIiotCWmgqcdRZgMIhOQkQEgCVevWw24NtvgaNHRSchIgoPiYnAhAmAySQ6CRERS7wqWa3AwoVAaanoJERE4SUuDpg4ETCbRSchIpXjKfdqY7EAX3/NAk9E1BKVlZ5XMe120UmISOVY4tWkvsCXl4tOQkQUvsrKPAsCOJ2ikxCRirHEq4XD4TmJtaJCdBIiovB35Ihnczy3W3QSIlIplng1cLs968CXlIhOQkQUOfbvB5YuFZ2CiFSKJV4Nfv4ZOHRIdAoiosizcyfw66+iUxCRCrHER7pVq4Bdu0SnICKKXJs2AevWiU5BRCrDEh/JNm70vBERUWD9/juwdavoFESkIizxkWrXLs8oPBERBcfy5cDevaJTEJFKsMRHokOHPPPgiYgoeBQF+OknnoNEFMJGjBiBESNGiI7hFyzxkaa01LMSDZc9IyIKPpfL8zP46FHRSYiarK6uDo8++ih+5gBg0P3rX//CF1980aKPlRRFUfwbh4Sprga+/BKoqxOdhIhI3YxG4Nxzgfh40UmITqmkpAQpKSmYPn06Hn30UdFxAsr+v92W9Xq94CQe0dHRuPjii/Hee+81+2M5Eh8prFbPVuAs8ERE4vFnMkWw2tpa0RFaTK/Xh0yBby2W+EjgdHq2AK+sFJ2EiIjq1dQAixdzeiM126OPPgpJkrBr1y5MmTIF8fHxiIuLw9SpU1F3zB+GTqcTjz/+OPLz82EwGJCTk4MHH3wQNpvN5/bWrFmD8ePHIzk5GSaTCbm5ubjmmmsAAAUFBUhJSQEAzJgxA5IkQZIk74j8lClTEB0djd27d+Pss89GTEwMrrjiCgDAL7/8gksuuQTt2rWDwWBAVlYW7rzzTlgslmY93p9//hmSJGHevHmYMWMGMjIyEBMTg4svvhiVlZWw2Wy44447kJqaiujoaEydOrXBY5w9ezZGjRqF1NRUGAwGdO3aFa+//nqD+zp+Tvyx9/3kk08iMzMTRqMRo0ePxq7jlugeMWIEunfvji1btmDkyJEwm83IyMjAM8880+B+bDYbpk+fjvbt23ufm/vuu88ntyRJqK2txZw5c7zP+5QpU5r8vGmbfCSFJkXxbP1dXCw6CRERHa+oCFixAhg6VHQSCkOXXnopcnNzMXPmTKxduxZvv/02UlNT8fTTTwMArrvuOsyZMwcXX3wx7r77bvz222+YOXMmtm7digULFgAAiouLMW7cOKSkpOD+++9HfHw8CgoK8PnnnwMAUlJS8Prrr+Omm27CBRdcgAsvvBAA0LNnT28Op9OJ8ePHY8iQIXjuuedgNpsBAPPnz0ddXR1uuukmJCUlYfXq1XjllVdw8OBBzJ8/v9mPd+bMmTCZTLj//vuxa9cuvPLKK9DpdJBlGeXl5Xj00UexatUqvPfee8jNzcUjjzzi/djXX38d3bp1w7nnngutVouvv/4aN998M9xuN2655ZZT3vdTTz0FWZZxzz33oLKyEs888wyuuOIK/Pbbbz7HlZeX48wzz8SFF16ISy+9FJ9++in+8Y9/oEePHjjrrLMAAG63G+eeey6WL1+O66+/Hl26dMGmTZvwwgsvYMeOHd458B988AGuu+469O/fH9dffz0AID8/v8nPF0t8uPv9d8/W30REFJq2bgVSUoDOnUUnoTBz2mmn4Z133vG+X1painfeeQdPP/00NmzYgDlz5uC6667DrFmzAAA333wzUlNT8dxzz2HJkiUYOXIkVq5cifLycvzwww/o27ev97aeeOIJAEBUVBQuvvhi3HTTTejZsyeuvPLKBjlsNhsuueQSzJw50+fyp59+GiaTyfv+9ddfj/bt2+PBBx/E/v370a5du2Y9XqfTiaVLl0Kn0wEAjh49io8//hhnnnkmvv32W+9j3LVrF959912fEr906VKfLLfeeivOPPNMPP/8800q8VarFevXr/dOtUlISMC0adPw559/onv37t7jCgsL8f777+Oqq64CAFx77bXIzs7GO++84y3xH374IX788UcsXboUQ4YM8X5s9+7dceONN2LlypUYNGgQrrzyStx4443Iy8tr9Hk/FU6nCWcFBcD69aJTEBHRqSxfzldMqdluvPFGn/eHDh2K0tJSVFVVeUvtXXfd5XPM3XffDQBYuHAhACD+fydXf/PNN3A4HC3OctNNNzW47NjSXFtbi5KSEgwaNAiKomBdC3Yxvvrqq70FHgDOOOMMKIrinfpz7OUHDhyA0+lsNEtlZSVKSkowfPhw7NmzB5VNmG48depUn7nyQ//36tmePXt8jouOjvYp3Hq9Hv379/c5bv78+ejSpQs6d+6MkpIS79uoUaMAAEuWLDllnqZgiQ9XlZVcC56IKFy43Z6lJ3miKzXD8SPZCQkJADxTOvbt2wdZltG+fXufY9LS0hAfH499+/YBAIYPH46LLroIM2bMQHJyMs477zzMnj27wZzyk9FqtcjMzGxw+f79+zFlyhQkJiYiOjoaKSkpGD58OAA0qTgf7/jHGxcXBwDIyspqcLnb7fa5jxUrVmDMmDGIiopCfHw8UlJS8OCDDzY5y8me62NlZmZCkqQGxx573M6dO7F582akpKT4vHXs2BGAZ4qTP3A6TThyOj0nS/1vmSQiIgoDdXWec5jOOQeQOYZGp6bRaBq9/NjVwY8vlMeTJAmffvopVq1aha+//hqLFi3CNddcg3//+99YtWoVoqOjT5nDYDBAPu5r1uVyYezYsSgrK8M//vEPdO7cGVFRUTh06BCmTJkCdwtO6D7R4z3V87B7926MHj0anTt3xvPPP4+srCzo9Xp8++23eOGFF5qUpSnPdVOPc7vd6NGjB55//vlGjz3+j5KWYokPR8uWAWVlolMQEVFzHTkCrFwJHDNPlqglsrOz4Xa7sXPnTnTp0sV7eVFRESoqKpCdne1z/IABAzBgwAA8+eST+PDDD3HFFVfg448/xnXXXXfKPwQas2nTJuzYsQNz5szB1Vdf7b188eLFLX9QLfT111/DZrPhq6++8hlR99e0lebKz8/Hhg0bMHr06Cb9kdVSHAoIN5s3A8cteURERGFkyxZg+3bRKSjMnX322QCAF1980efy+tHfCRMmAPBMBzl+NLl3794A4J1SU7/aTEVFRZPvv35E+tjbVhQFL730UpNvw18ay1JZWYnZs2cHPQvgWVXo0KFD3hOOj2WxWHzW2Y+KimrW834sjsSHk6Ii4NdfRacgIqLWWr4cSEgAUlNFJwkoRVGgQGn035IkQSNpWjUSqWa9evXC5MmT8dZbb6GiogLDhw/H6tWrMWfOHJx//vkYOXIkAGDOnDl47bXXcMEFFyA/Px/V1dWYNWsWYmNjvX8ImEwmdO3aFZ988gk6duyIxMREdO/e3WdVluN17twZ+fn5uOeee3Do0CHExsbis88+azCHPBjGjRsHvV6PiRMn4oYbbkBNTQ1mzZqF1NRUHD58OOh5rrrqKsybNw833ngjlixZgsGDB8PlcmHbtm2YN28eFi1a5F0pqE+fPvjxxx/x/PPPIz09Hbm5uTjjjDOadD8s8eHCYvHMpeSmIURE4c/l8pzbdOGFwDGraoQyu8uOWnstauw1qHV4/m91WmF32U/41hQaSQOtrIVOo4Neo/e+GbVGmHVmmHVmROmiPP/Xe/4vS5xIAABvv/028vLy8N5772HBggVIS0vDAw88gOnTp3uPqS/3H3/8MYqKihAXF4f+/ftj7ty5yM3N9bmt2267DXfeeSfsdjumT59+0hKv0+nw9ddf4/bbb8fMmTNhNBpxwQUX4NZbb0WvXr0C+riP16lTJ3z66ad4+OGHcc899yAtLQ033XQTUlJSGqxsEwyyLOOLL77ACy+8gPfffx8LFiyA2WxGXl4epk2b5j3BFfC8cnL99dfj4YcfhsViweTJk5tc4iXl+NdYKPQoCrBwIVBYKDoJERH5U1paSJ3oanfZUW4pR7m1HOWWclRYK7ylvamlPBiMWiPiDHGIN8b7vMUaYjmyT6rBEh8OVq/mevBERJGqWzdg8OCg322FtQLFtcUoqStBhbUCZZYy1DnCewlMWZIRZ4hDgikBqVGpSDGnICUqBVqZEw8o8rDEh7qCAs/awkREFLlGjgQ6dAjYzdtddhTXFqO4thhFNUUori2GzdX0dcLDmQTJp9SnRqUi0ZTIEfsgsNvtKDvFanpxcXE+GzVR07HEh7LKSmDBAq4HT0QU6fR64KKLgJgYv9ycy+3C4ZrDOFB5AIeqD6HcUu49qZQ803HSY9KREZOBzNhMxBj887yTr59//tl7gu2JzJ49G1OmTAlOoAjDEh+qnE7giy+4HjwRkVqkpQETJwItHCEut5TjYNVBHKg6gMPVh+FSXH4OGLliDbHIiMlARqyn1Os1etGRIkJ5eTn++OOPkx7TrVs3tG3bNkiJIgtLfKj69Vdg0ybRKYiIKJj69gVOP71JhyqKgiM1R7C7fDf2V+5Hjb0mwOHUQZZkZMRkIDchFznxOTBqjaIjETWKJT4UHTkCfP21Z1UaIiJSD1kGzj33pOvHH6k5gt1lu7G3Ym/Yn4ga6iRIaBvTFnkJeciJz4FZZxYdiciLJT7UOJ3Ap58CVVWikxARkQhxcZ758dq/VlQpri3GrrJd2Fu+F7WO2pN8MAWKBAlp0WnolNwJeQl5XPGGhGOJDzUrVgCbN4tOQUREInXuDOug/thRugPbS7aj3Br8XTDpxHSyDvmJ+eic3BmpUZG96y6FLpb4UFJYCHzzjegUREQkkDXegOp4GeuSJBSA02VCXYIxAZ2SO6FjUkfOn6egYokPFQ6HZxpNdbXoJEREFGRujYSaVBNqzA444AAAuDQa/BKtwCa5BaejppAlGe0T26Nnm55INCWKjkMqwBIfKn75Bdi6VXQKIiIKIpdeg+pUA6oNVrjRsKxXmE34TW8RkIxaIzM2Ez3b9ERmbKboKBTBWOJDwcGDwLffik5BRERB4jRpUZWiQ43OespNmLbHGVEgWYOUjPwpwZiAnm16on1ie2hkjeg4FGFY4kWz2z3TaGq4vi8RUaSzR+tRlaxBrabpo+sujQbLYxRYGxmpp/Bg1pnRq00vdEnpwlVtyG9Y4kVbuhTYvl10CiIiCiB7tB4VKTIscstG1KtMRvxq4Gh8uKsv811TunJknlqNJV6kAweA774TnYKIiALEadSiIk3XrJH3E9keZ0KBxPnxkSBKF4XT256OTsmdIEuy6DgUpljiRbHbgfnzgVpu2kFEFGlcOhlVaUZU6y2nnPPeVE6NFktjXHD66fZIvDhDHPpl9ENeQp7oKBSGWOJFWbIE2LlTdAoiIvIjtyyhOs2IKpOt0dVmWutItAkbtByNjzRp0WkYnDUYSeYk0VEojLDEi8DVaIiIIk5tihHlsQ644ArcnUjAb3E6VPxvLXmKHBIkdE7ujH4Z/bhpFDUJS3ywud2e1WgqKkQnISIiP3CYtChL08LawpNWm6vWaMRyI09yjVQGjQF90vuga0pXzpenk2KJD7Y//wRWrhSdgoiIWkmRJVS2NaLKeOq13v2NJ7lGvgRjAoZmD0VadJroKBSiWOKDyWoFPvkEsNlEJyEiolawJBhQnuiGQ9C0Fp7kqh7dUrqhf0Z/6DQ60VEoxLDEB9Py5cCWLaJTEBFRC7l0MsozDH5ZMrK1eJKresToYzAsexgyYjNER6EQwhIfLGVlwGefAXy6iYjCkiXRiNKEAJ+42hw8yVV1Oid3xoDMAdBr9KKjUAhgiQ+WhQuBQ4dEpyAiomZyyxIqMo2o1oXeqDdPclWfKF0UhmUPQ1ZclugoJBhLfDAUFAA//CA6BRERNZM9Ro+SVEXY3Pem4Emu6tQjtQfOyDyDK9ioGD/zgeZ2A6tWiU5BRETNoACozDDjSKo9pAs8AOTXOKCFJDoGBdmm4k34ctuXqLJViY5CgnAkPtDWrwdWrxadgoiImshp0KAkQwubFD4rifEkV/XSyToMzR6K9ontRUehIONIfCDV1QHr1olOQURETWSNN+BIJsKqwANAWq0FMYpWdAwSwOF24Ke9P2HZvmVwup2i41AQscQH0u+/A47QfhmWiIg8qtqaUZxkC53VZ5pDAbo4uY64mm0r2YYFWxdweo2KsMQHytGjwPbtolMQEdEpuGUJJTkmlJvrwnrrpIRaC+LBIq9m5dZyLNi6AIequBqeGrDEB8qvv4pOQEREp+A0aVGUqwuJzZv8obOdU2rUzuay4btd3+HP4j9FR6EAY4kPhD17gCNHRKcgIqKTsCQYcDjdDTvsoqP4TVydBYkcjVc9t+LGygMrsWzfMrgVt+g4FCAs8YGwdq3oBEREdBI1qSYcTbTBjcgrOJ1s/NVOHttKtuGbHd/A6uSGYJGI3+n+VlAAlJWJTkFERCdQmW5CaYwlrOe/n0ysxYYURS86BoWIIzVHsGDrAlRaK0VHIT9jifc3jsITEYUkBUBZOxMqTJEx//1kOBpPx6q2V+PL7V+ipK5EdBTyI36X+9OBA0AJv0GIiEKNIksoyTWiWhf5BR4AoqxWpMEgOgaFEKvTiq+3f43C6kLRUchPWOL9iaPwREQhx6WTUZSjR52srnnBHSyROmGIWsrhduC7nd9hT/ke0VHID1ji/aWwECgqEp2CiIiO4dJrUNROE3Y7sPqD2WZHhmIUHYNCjEtx4b97/outR7eKjkKtxBLvLxyFJyIKKS69BkVZMhxQ787Z7a2Rt/oOtZ4CBb/s/wUbjmwQHYVagSXeH44c8YzEExFRSGCB9zDa7GjH0Xg6gd8O/YaNRRtFx6AWYon3B47CExGFDBZ4X3kWjsbTia06uIq7u4YplvjWOnoUOHhQdAoiIgILfGMMdjvSFa5UQye28sBKbDm6RXQMaiaW+NbiKDwRUUhggT+xHLskOgKFuOX7l/Nk1zDDEt8apaXAvn2iUxARqZ5LJ6MoS8MCfwIxFitioRUdg0LcL/t/wfaS7aJjUBOxxLcGR+GJiIRzyxKOZunggF10lJDW3qETHYHCwLJ9y7CvggOU4YAlvqXKy4G9e0WnICJSNQVASbZBlevAN1eyxQY9f+3TKShQ8N+9/0VxbbHoKHQK/G5uqU2bRCcgIlK9smwTLCrbibWlJLcb7d1cbpJOzel24vtd36PKViU6Cp0ES3xL2O3Arl2iUxARqVplhhk1WovoGGGlbZ0dkiI6BYUDq9OKb3d+C6uTfySHKpb4lti5E3A6RacgIlKt2hQTKox1omOEHa3TiWxu/kRNVGWrwve7vofTzc4TiljiW2Irl2AiIhLFGmdAaSxH4FuqnY1D8dR0xbXF+GnvT1AUft2EGpb45ioqAsrKRKcgIlIll0GDkmQnWCdazmSzIUXRi45BYaSgogBrCteIjkHHYYlvri3c0YyISARFAo5maOGCS3SUsJfn0IiOQGFm3ZF12FvOVflCCUt8c9hswJ49olMQEalSeZaJS0n6SbzFAjNY5Kl5fi74GWUWzkYIFSzxzbFjB+DiCBARUbDVpJpQreM8eL9RgA5OTqmh5nG4HVi8ezHsLm6sFgpY4puDJ7QSEQWdPUaPshguc+dvKRY7SwA1W6WtEksLloqOQWCJb7rCQqCiQnQKIiJVcelkHE11Q+GprH6ncbmQweUmqQX2VuzFxqKNomOoHkt8U3EUnogo6Eoz9XCCa1QHSoZDEh2BwtTqQ6tRUlciOoaqscQ3hdUK7OUZ2UREwVSdZoJF5jSaQIq1WKFnFaAWcCtu/LT3J24EJRC/c5ti+3bA7RadgohINRxmHcqjWOADTVIUZLsNomNQmKqwVuDXA7+KjqFaLPFNwak0RERBo0hAaZrEefBBkmbjqmvUcltLtmJfxT7RMVSJJf5UDh4EqqpEpyAiUo3KdBNsEpewCxazzY4YRSs6BoWxpfuWos5RJzqG6rDEn8r27aITEBGphi1Wjyoj14MPthw314ynlrM6rVx2UgCW+JNxOoF9fImIiCgY3LKE0hROohEhxeoQHYHC3IGqA9hewoHPYGKJP5n9+z1FnoiIAq4ywwQHWCZF0DkcSAVH46l1Vh1cBauTJ6QHC0v8yezeLToBEZEq2KN1qNZzTq1I7Rwa0REozNlcNqw8sFJ0DNVgiT8RhwM4cEB0CiIiVShLlTmNRrAEi42lgFptV9kuHKw6KDqGKvD79UT27eNUGiKiIKhpY4JNsomOoXqy240sxSg6BkWA5fuXcxOoIGCJP5E9e0QnICKKeC6djPJoFvhQkc6VPckPqmxVWHt4regYEY8lvjF2O6fSEBEFQUW6AW5wR+xQEWO1QQtJdAyKABuLNqLcUi46RkRjiW/M/v2AizvYEREFkjXOgBot14QPJZKiIEMxiI5BEcCtuLHq4CrRMSIaS3xjCgpEJyAiinjlyTyVNRSlOjkST/5xoOoAT3INIJb447lcnEpDRBRgtSkm2MEJ2KEozsrPC/nPqoOroCj8gz0QWOKPd+iQZ3lJIiIKCEUCKmL5czZUaVwuJHPjJ/KTMksZtpdyJ9dAYIk/HqfSEBEFVHWaGU5w+blQ1tbFjZ/If9YUroHDxT/c/Y0l/liK4lkfnoiIAsKtkVBl5pKSoS7RxsUdyH/qHHXYULRBdIyIwxJ/rKIiwMKVEoiIAqWqrQkusCCGOqPdDpPC0Xjyn41FG2F1WkXHiCgs8cfiKDwRUcC49BpUGThQEi4yFc6LJ/9xup3YWLRRdIyIwhJ/LK5KQ0QUMJVpBijgKhXhItnBzxX51+bizbA5OZ3OX1ji61mtQFmZ6BRERBHJpZNRo+MofDiJsdlZEsivHG4HNhVvEh0jYvD7s97hw6ITEBFFrOo2Ro7ChxnJ7UYad28lP/uz+E/YXdyLwB9Y4uuxxBMRBYRbllBt4Alt4aiNkzWB/MvusuPP4j9Fx4gI/O6sV1goOgERUUSqaWOCG27RMagFEuxc25v8b1PRJq4b7wcs8QBgs3E+PBFRACgSUG3mS+fhSudwIhZa0TEowthcNmwr2SY6RthjiQc4lYaIKEBqU0zcnTXMpSo60REoAm0+ull0hLDHEg9wKg0RUYBUxbDAh7t4fgopAKpsVdhfuV90jLDGEg+wxBMRBYAlwQgHOO813EXb2eIpMHiCa+uwxHM+PBFRQNTESaIjkB8YHA7oWRcoAA5WHUSltVJ0jLDF70rOhyci8juXXgOLhps7RYpURS86AkUozo1vOZZ4TqUhIvK72mQDt3aKIIlu1gUKjO0l27ncZAvxu5Ij8UREfldj4i/lSBLncImOQBHK4XZgd/lu0THCkrpLvM0GlJaKTkFEFFGs8Qae0BphTHY7JL60QgGyo3SH6AhhSd0lnqPwRER+VxOv7l8tkUhyK0iSOC+eAuNIzRFU26pFxwg76v5JyxJPRORXLp2MOo1VdAwKgGS3RnQEimA7y3aKjhB21F3ijx4VnYCIKKLUJRmg8JTWiBTn5OeVAmdnKUt8c6m7xHN9eCIiv6ozuUVHoADhpk8USJW2ShTXFouOEVbUW+JragC7XXQKIqKI4dLJsMk20TEoQLROJ6IUTqmhwOEJrs2j3hLPUXgiIr+yJHJt+EiXAp7cSoGzp3wPFIU/RZqKJZ6IiPyi1sypNJEujsvFUwBZnVYU1RaJjhE2WOKJiKjVOJVGHcwujpJSYBVUFIiOEDZY4omIqNUsCZxKowZGJ09upcDaV7FPdISwoc4S73YDFRWiUxARRYy6KFZ4NdA7nCotDhQslbZKVFgrRMcIC+r8Xqyo8BR5IiJqNbcswcqpNKoRp+hER6AIx9H4plFniedUGiIiv7HFcYMnNYmDVnQEinD7Klnim4IlnoiIWsUarc5fJWoV45ZER6AIV1RTBKvTKjpGyFPnT16WeCIiv7HoHaIjUBBFcYUaCjAFCgqrC0XHCHnqLPGlpaITEBFFBJdBAwdY4tXE6ORi8RR4h6oOiY4Q8tRX4u12oLZWdAoioohgjeUOnmqjdzggcTCeAowj8aemvhLPqTRERH5jNYtOQMEmKQpiJJ7cSoFVaatEnaNOdIyQxhJPREQtZtVyKo0axSss8RR4h6sPi44Q0tRX4isrRScgIooILoMGTnAHTzWKcauvPlDwHak5IjpCSFPfdyHnwxMR+YUtmpv+qFWUm5PiKfAO13Ak/mRY4omIqEXsJvX9CiEPE1eooSAot5TD4eKUvRNR309glngiIr+w61jk1ErHEk9BoEBBqYXLgp+I+kp8Hc90JiLyB7vM+fBqpXG5VFggSITSOpb4E1HX96DFArjdolMQEYU9p1ELFzgaq2ZmRSM6AqlASV2J6AghS10lnlNpiIj8wh7NJQbVLpprxVMQcDrNianrO5AlXnVmfvcdPl+3DtuOHIFJr8egvDw8feGF6JSW5j3mSGUl7v3sMyzeuhXVVis6tWmDh84+Gxedfrr3mB1FRbj3s8+wYtcu2F0u9MzIwOPnnYeRnToBADYcOICnFi3C8l27UFJTg5ykJNw4bBimjR7tk+fn7dtx1/z52Hz4MLISEvDw2WdjyqBBPsf835IleHbxYhyprESvzEy8ctll6J+bG8Bniaj5bDypVfVMblltQ4EkQJmlDG7FDVniF9vx1PWMsMSrztIdO3DLiBFYdf/9WDxtGhwuF8a99BJqbTbvMVfPno3tRUX46uabsemRR3Dhaafh0rfewrr9+73HnPPqq3C6XPjprrvwx4MPoldmJs559VUc+d++A3/s34/UmBj855prsHn6dDx01ll4YMECvLpkifc29paUYMKrr2Jkp05Y//DDuGP0aFz3wQdYtHmz95hPfv8dd336KaZPmIC1Dz2EXpmZGP/yyyiuqgrCs0XUdA4tpyaqnQmS6AikAm7FjXJLuegYIUldJZ4ntarO99OmYcqgQeiWno5eWVl4b8oU7C8rwx/79nmPWblnD24bORL9c3ORl5KChydMQLzZjD/+V+JLamqws7gY9595JnpmZqJDmzZ46sILUWe348/CQgDANYMH46VJkzC8Y0fkpaTgygEDMHXQIHy+bp33ft5YuhS5ycn49yWXoEvbtrh15EhcfPrpeOHHH73HPP/jj/j7kCGYOngwuqan440rroBZr8e7K1cG6RkjahoHT2pVPSP/jqMg4ZSaxqmrxHMkXvUqLRYAQGJUlPeyQXl5+GTNGpTV1sLtduPj33+H1eHAiI4dAQBJUVHo1KYN3l+1CrU2G5wuF95ctgypMTHo067dSe/r2Pv5dc8ejOnc2eeY8V274tc9ewAAdqcTf+zfjzFdunivl2UZYzp39h5DFAoUCdyplaDnhk8UJBXWCtERQhLnxJNquN1u3DFvHgbn56N7Rob38nnXX49Js2Yh6a67oJVlmPV6LLjpJrRPTQUASJKEH++8E+e/9hpipk2DLElIjYnB97ffjoRjSvqxVu7ejU/WrMHC227zXnakqgptYmN9jmsTG4sqqxUWux3ldXVwud1oExPT4JhtR7j1NIUOp0kHgBuwqJ2Oq71RkFTZOKW0MRyJJ9W45aOP8GdhIT7++999Lv/nl1+ioq4OP95xB9Y8+CDuGjMGl771FjYdOgQAUBQFt3z0EVJjY/HLPfdg9QMP4PzevTHx//4Ph/83J/5Yfx46hPNeew3TzzkH47p2DcpjIwomp5FLCxKgdbHEU3CwxDeOJZ5U4daPPsI3mzZhyV13ITMhwXv57qNH8erPP+PdyZMxuksX9MrKwvSJE9E3Oxv/9/PPAICftm3DNxs34uPrrsPg9u1xert2eO1vf4NJr8ecX3/1uZ8thYUY/cILuH7oUDw8YYLPdWmxsSg67gTVoqoqxBqNMOn1SI6OhkaWUVRd3eCYtLg4Pz4bRK3jMKjrVwc1TsOReAoSlvjGqecnsdMJ2O2iU1CQKYqCWz/6CAvWr8dPd96J3ORkn+vr/vc1IUu+qyxoZBnu//2COtExsiR5jwGAzYWFGPn885g8cCCePP/8BlkG5uXhv9u2+Vy2eOtWDMzLAwDotVr0adcO/9261Xu92+3Gf7dt8x5DFAqcOs6FJs+urRK/FCgI7C47bE7bqQ9UGfXMiecovCrd8tFH+HD1anx5882IMRq9S0LGmUww6fXonJaG9qmpuOE//8FzF1+MpOhofLF+PRZv3YpvbrkFADAwPx8JZjMmv/ceHpkwASa9HrN++cWzZGSPHgA8U2hGvfACxnftirvGjPHej0aWkfK/Oe43Dh+OV3/+Gfd99hmuGTwYP23bhnl//IGFt97qzXvXmDGY/N576JuTg/45OXjxv/9Frd2OqcetJU8kkkPD5kYeRsiwgCPyrfXgxAdRerjhCizDLxmOcVeNw0PnPtTox13/1PXoM6YPAKBgcwE+f/Vz7N+6H5IkIadbDi68/UJkdcwCADhsDsydORf7tu7DkYIj6DGkB27+980NbvO3737DD+//gKL9RTBFm9B9UHdcNO0iRMdH+/ERN1+VrQop2hShGUKNpCiKOn4aHzkCfPWV6BQUZNINNzR6+ezJk72bLO0sKsL9CxZg+a5dqLHZ0D41FfeMHYurBgzwHr+moAAPffkl1uzbB4fLhW5t2+KRc87BWd27AwAe/fprzPjmmwb3k52UhIJ//cv7/s/bt+PO+fOx5fBhZMbH458TJjTY7OnVJUvw7A8/4EhVFXpnZuLlyy7DGdzsiULIoXwtV6chAMDv8TqU8STnVqsur4b7mHMMCncX4sVbXsRdb9yFDqd1QHW57zTLXxb8gh8++AHPfP8MjGYjrHVWPDjxQfQc1hNnTj4TbpcbX7/5NXZt2IWnFj4FjVYDm8WGT1/8FO06t8Pan9ZCp9c1KPG71u/Cc9c/h0vvuhQ9h/ZExdEKzP3XXKRmp+KmZ28KynNxIqNzRyM/MV9ohlCjnpF4J3/hqJHy5punPKZDmzb47MYbT3pM35wcLJo27YTXPzpxIh6dOPGU9zWiUyese/jhkx5z68iRuHXkyFPeFpEoLrhER6AQYVRkcM+n1otJ8F2V7Ps53yMlMwUd+3SEJEmIS/Y9L2r9kvXoO6YvjGYjAOBIwRHUVtbi3BvORWJaIgDgnOvPwWOXPYbSw6VIzUqFwWTAFQ9cAQDYvWE36qob7p2zZ9MeJLVNwqjLRgEAkjOSMfTCoVj0/iK/P+bmqrZXn/oglVHXnHgiImoVtwwoUMcLuHRqWjZ4v3M6nPjt298w6NxBkKSGz+++rftwYMcBDD5vsPeytOw0RMVFYcWXK+B0OGG32rH8y+Vom9sWSW2TmnzfeT3yUF5Ujk3LN0FRFFSVVmHtT2vRfXB3vzy21rA6raIjhBz1jMS7OHJERNRaLr0G4Eg8/Y/MEu93639eD0uNBYMmNn4u1IovV6Btblvk9/praokxyoi737wbr9/zOha+sxAAkJqVimmvToNG2/QlYdv3bo9rn7gWsx6cBYfNAbfLjZ5De+Jv//hb6x6UH1gcFtERQg5H4omIqMnceq4RT39Rz0hg8Kz4cgW6DeqG+JT4BtfZrXas/n61zyh8/eXvP/4+8nvl4/7Z9+O+d+5DRn4GXp32KuzWpq/MV7inEJ889wkmXDcBD/3nIdz+yu0oPVyKuf+a29qH1WociW+IJZ6IiJrMpQvNXxuvffQ9csbcgBmvfQIAOHCkBDljbmj0beHSPxp8fHllDQZc9g/kjLkBlTV/zRUuLq3E7U++jZGT/4ncsTd6b/94C5f+gVFTH0HHs27B+OtmYMlvmwLzQEOMzIVp/Kr0cCm2rt6KIecNafT6tf9dC7vVjgETBvhcvvr71Sg9XIrJ0ycjp1sO8nrk4donr0VJYQk2LN3Q5Pv/fvb3yO+Vj/FXj0dmh0x0G9gNf7v/b1jx1QpUljTc3DCYLE6OxB9PPX9EczoNEVGruUNwIH7DtgJ8uHAZOudlei9LT0nE6nnP+Bz30cJf8Na8HzCif7cGt3Hfv99H57xMHCmp8Lnc5nAgMT4Gt15xNt757L+N3v8fm3fj9iffxn3Xno/RA3riy59W4/rpr+Ob1x9Cp9yM1j/AEKbhdBq/WvnVSsQkxKDHkB6NXr/iyxXoNaxXgxNh7VY7JEnymUNf/35zFiG0W+2Qtb5/qEuy5zZFL2bIkfiGQnNIJRA4Ek9E1GoubWj92qi1WHHHzHfw1J1XIS7a7L1co5GRmhjn87Zo+XpMGN4XUSajz2188NVSVNVYcP0lYxvcflZaMh69ZRIuGjcQMVGmRjO8+/l/MbxfN9wwaTzaZ7fF3VPPQ7f27TDny5/9+lhDUWh9NYQ3t9uNlV+vxMBzBjY6j734QDF2rtuJwecPbnBd1wFdUVddh4+e/giH9x5G4e5CzJkxB7JGRqe+nbzHFe4pxIHtB1BbWQtLjQUHth/Age0HvNf3HNYT635ah6WfLsXRg0exa/0ufPLcJ8jpltPo9J5g4pz4htQzEs8ST0TUaqE2Ev/Plz/CyDN6YEifLnhl7rcnPG7Tjn3YsvsAHr/9cp/Ld+4rxMv/+QZfvPIA9h8+2qIM67bswbUXj/G5bFi/rvhhRdOnMYSrEPtyCGvbVm9D2ZEyDD63YUkHgBVfrUB8ajy6Duja4Lq0nDTc8vwt+GbWN3h66tOQZAlZnbJw+yu3+yxP+eq0V302lXriiicAAG+u8SzHPGjiIFhrrVgybwnmvzAf5hgzOvXrhAtvu9CfD7VFXIoLDpcDOo1OdJSQwRJPRERN5pZDZ3nJr5b8js079+PL1x485bGffLcC7du1RZ9uf63oYbM7cNuT7+DB6y9CRpvEFpf4o+VVSE6I9bksJT4WJWVi5xAHQwh9OYS9rgO6est0Yy645QJccMsFJ/34xgr+sf719b9Oej0AjLpslHed+FDjcLPEH0s9r4SxxBMRtZoSIlOgC4vL8Nj/fYIXH7wWRv3Jf6lbbXZ8+dNqTDrLd4TzmXcWoH27NFwwZsAJPpJORT0lgkKBy83zG4+lnpF4nthKRNRqoTLwumnnfpRUVOOcG5/0XuZyu7F60068/8XP2PHd/0Gj8VTMb5ethdVmx4Vjfcv6yvXbsX3vIeSPWwvgr02sTr/wbtxyxVm4a/K5TcqSkhCLkvIqn8uOVlQhOTHuBB8ROTSCT3YkdXEp7HLHUk+J50g8EVHrSaFR2gaf1hmLZj3ic9m9z85Bfrs03DhpvLfAA56pNGMG9kJSvO+KHm9MvxFW219raG/YXoD7nnsf8168B9ltU5qc5bSueVi5bhuuveivefHL/9iK07vmNfdhhR1Op6Fg4ki8L5Z4IiJqslDpbNFmY4PlG01GA+Jjo3wuLzhUjNWbdmL2k7c2uI3sdN+iXlZZAwBo366tz0o3m3d5Vu+os1pRVlGDzbsOQK/ToEN2OgDgmgtHY9Jdz2HW/MUYeUYPfL3kd2zasQ8z77zSPw82hMkciacg4ki8L/WUeE6nISJqNSVERuKbat73K9A2OR7D+p78hL+TmXDjE95/b9qxH1/+tBoZbZKwYq7nJME+3fLx0oPX4d+zv8Sz736BnIxUvDXjpohfIx7gnHgKLqebA7LHkhTRq/cHyxdfAMXFolMQEYW1I3kG2CSb6BgUIuqMBvxi5NcDBcfZHc5GZmzmqQ9UCfX8Ec2ReCKiVlPgFh2BQkiYvTBDYY5z4n2pp8TL6nmoREQBI4XIGpMUEkJlyVFSB4k/f3yop9lquK8cEVFrceSVjuUGSxUFj0ZilzuWekq8Vj3n8BIRBQpLPB3LzQ5PQSRL6qmtTaGeZ4Mj8UREfsDWRn9ROL2Bgkgjs8sdiyWeiIiaTGaJp2NwJJ6CiSPxvtTzbHA6DRFRq0k8k5GOwbWKKJhY4n2p59ngSDwRUetxTjwdw83pNBREPLHVF0s8ERE1GU9spWNxJJ6CSStzVsWx1FPiOZ2GiKjVZE6noWNwTjwFk1FrFB0hpKinxHMknoio1WQOvdIx+OVAwaKVtVyd5jgs8URE1GQaJ+fT0F84Ek/BwlH4htRT4jmdhoio1WSWeDqGi2c6U5CwxDeknhLPkXgiolbTODiBgv7CrwYKFpb4htRT4jkST0TUaizxdCyOxFOwsMQ3pJ4Sz5F4IqJWk20u0REohHBOPAULS3xD6inxHIknImo12a1AVtGvDjo5KzcOoCCJ1keLjhBy1POT2GAQnYCIKCKwxFO9OvCVGQqOGH2M6AghRz0/iaOiRCcgIooIWoXTE8mjTnGKjkAqEWNgiT+eekq82Sw6ARFRRNA51fOrg07MLUlwck48BUmsIVZ0hJCjnp/EsgwYeVIEEVFraR1sbgS4tHxFhoJDr9FDr9GLjhFy1FPiAU6pISLyA52Ny0wS4JRZ4ik4OArfOHWVeE6pISJqNa2F86AJsMt8RYaCgye1Nk5dJZ4j8UREraa1OMH6Rg6WeAqSOGOc6AghSV0lniPxREStJgHQQic6BgnGkXgKlgRjgugIIUldJZ4j8UREfqF1cz602nGjJwqWRFOi6AghSV0lniPxRER+wWUmySrxBGcKPFmSkWDiSHxj1PVTmCPxRER+obdwFFbtrODXAAVenCEOsqSuutpU6npWOBJPROQX+lqH6AgkWB1coiOQCiSbk0VHCFnqKvEmk2fTJyIiahWdxQlZZb9CyJdFYomnwGOJPzF1/QSWJE+RJyKiVtMr3EFRrVwaDTgjnoKBJf7E1FXiAU6pISLyE72dSwyqlU2rFR2BVECWZJb4k1BfiefJrUREfmHgya2qZdGqrz5Q8CWZkqDTcE+KE1Hfd2EMt+4lIvIHQ5VddAQSpJYbPVEQtI1pKzpCSFNfiU/gWqNERP6gcbihBadVqFG1zBnxFHhto1niT0Z9JT6Ru34REfmL0cmXutWoAlxilAIvLTpNdISQxhJPREQtZqzlvHi1UWQJNVxekgIs0ZQIg9YgOkZIU1+J12o5L56IyE+MlZwXrzZ2LV99ocDjVJpTU1+JBzgaT0TkJxqHGwauF68qXJmGgoEntZ6aOr8TWeKJiPzGaOfJrWpSp1FndaDgkSUZmbGZomOEPHV+J3KFGiIivzFWO0VHoCCqlnkeBAVWWnQa9Bq+wncq6izxHIknIvIbQ5Udskp/nahRlcQ/2iiwsuOyRUcIC+r8qRsfD8jqfOhERP4mKYDBzVEztahUWOIpsLLjWeKbQp1NVpY9RZ6IiPzCXCs6AQWDQ6eFS+J0GgqceGM8Yg2xomOEBXWWeIDz4omI/MhcZockOgQFnE3Lk5gpsNrFtRMdIWyot8RzXjwRkd/ITjeMbqPoGBRgNVyZhgKM8+GbTr3fjSzxRER+Za7lWHykK9O4RUegCGbWmZEWnSY6RthQb4nndBoiIr8yl9k4pSbCHZW4Qy8FTvvE9pAk/hRpKvWW+NhYQMeto4mI/IVTaiKbQ6eDFRyJp8Bpn9hedISwot4SD3BKDRGRn3FKTeSq0fOkVgqceGM8ks3JomOEFXWX+DZtRCcgIooonik1LPKRqEIjOgFFsg6JHURHCDvqLvFpPHmCiMifZKcbZhen1ESiEpmbPFHgcCpN87HEExGRX0VXcN50pFFkGeWKQ3QMilBp0WmIMcSIjhF21F3ijUbu3EpE5GfGCht04MIBkaROr4fCWVIUIJ2SOomOEJbUXeIBjsYTEQVAdB1PgowkVTrWBQoMg8aA/MR80THCEr8rWeKJiPwuqoQnuEaSMplTpCgwOiV3glbmH/0twRLPEk9E5HcaB09wjSRHwU2eyP8kSOia0lV0jLDFEh8bC5jNolMQEUUcnuAaGew6HWwSP5fkf1lxWYg1xIqOEbZY4gEgPV10AiKiiMMTXCNDjY5THSgwOArfOizxAJCRIToBEVFEiq1mAQx3FfwUUgDEGmLRLq6d6BhhjSUeYIknIgqQqKMWaMEWGM4Oy1wfnvyve2p30RHCHks8AERHAzHcZICIyN8kBYip04uOQS1k0+tRA+7USv5l0prQObmz6BhhjyW+HkfjiYgCIrrIAg00omNQC1To+SoK+V/PNj25rKQfsMTX48mtREQBIbsVxFgNomNQCxzRukRHoAhj0Bh4QqufsMTX40g8EVHARBdbIfNXTlhxyzKKFJvoGBRhuqd2h07DVav8gT9R65lMQGKi6BRERBFJ43Aj2s7Nn8JJtdEAhZvukh/pZB1PaPUjlvhj5eaKTkBEFLFii2wcjQ8jR7WK6AgUYbqldoNBy6l1/sKfpsdiiSciChiN3YUYG0fjw8Uh2S46AkUQvUaPnm16io4RUVjij5WYCMRy+18iokCJPcyVasKB1aCHFW7RMSiC9E7rDaOWf8T7E0v88TgaT0QUMLJLQVwt140PdWV6/qFF/hOtj0aP1B6iY0QclvjjscQTEQVUdJEFOnB1ilB2RObSkuQ//dL7QSPzD0N/Y4k/XmoqEBUlOgURUcSSFCCukhu9hCqXRoOjEufDk38km5PRIamD6BgRiSW+MRyNJyIKqKgSCwwKp9WEoiojPy/kP2dknCE6QsRiiW8MSzwRUcDFl3IR8lBUzBdJyE+yYrOQEcvNNAOFJb4xaWmezZ+IiChgjJU2RDv5szaUKLKEg5JVdAyKABpJg0FZg0THiGgs8Y2RJCA7W3QKIqKIF19o45KTIaTCYIAT3OSJWu+0tqchzhgnOkZEY4k/EU6pISIKOI3DjfhqzsEOFYf0LPDUevHGePRO6y06RsRjiT+RjAxAz18sRESBFl1sgVHhVuyiuTQaFMImOgZFgCHthkCWWDEDjc/wicgy0K6d6BRERKqQeMQNnuYqVpnJAIWfBGqljkkdkR6TLjqGKrDEn0xenugERESqoKtzINZmFh1D1fZrnaIjUJgzao0YkDlAdAzVYIk/mcxMQMu1toiIgiGukDu5imLX6VACbvBErTMgcwCMWqPoGKrBEn8yWi1PcCUiChLJrSDpqMRpNQIUGzlgRa2TE5+DjkkdRcdQFZb4U+nSRXQCIiLVMFTZEWfltJpg26dxiI5AYcyoNWJou6GiY6gOS/yppKUBCQmiUxARqUbsoToYwmC1GgUaIAJeN6gz6FEDzoenlhuWPQwmHTduCza+ftYUXboAK1eKTkFEpAoSgOTDLhxOl+GGOyj36ZZ0cCEKDsUEl6KDW5GhKDLcbhluRfK8uevfANdxsWTZs0+gLAGyrECWFWhkt+ffkgtayQmtbIVWqYOMupCq/kcM3GyLWq5zcmfkxOeIjqFKLPFN0aEDsHo14ORIBRFRMGgtTiRUm1AaY/Hr7bpghEsyw6GY4HTpYXfpYLfLcLpad7tud/3tA54/QyT89WJ3/cm60QA8RV+nU6DXuqDTOqCTrdDAAq1SCwmtDNJMiiRhn8y14all4o3xGJQ1SHQM1WKJbwqDwbPc5I4dopMQEalGdLEFVrMJtZqWFXkFgFOKh80dizq7EXa73GAEXQS3AtjsEmx2LTy/hk0APNM29TrAZLDDqK2FXimHHOAVY6qNBthhDeh9UGSSJRmjckdBK7NKisJnvqk6d2aJJyIKssSDNtiytXA2cc62S4qCTYmDxWGGxaoNidLeHHYHYHfoUQk9gAQY9G6YDXYYNdXQKRV+H6kv5Mbk1EKDsgYh2ZwsOoaqscQ3Vf0JruXlopMQEamG7HQjpViLI6kSFCgNrndLOtiVBFhd0bDY9LBH2CIrNrsMm90IwAgJKTAZXTDprDDIVdChslW37dJocEDiKDw1X8ekjuia0lV0DNVjiW8OnuBKRBR0+mo7Es0mlEZ7ptUokGFDMmodcait0zRS7SOTAqDOqkGdNQpAFPS6NMSY6mCWiyErzZ/XXmw2wI06v+ekyJZsTuZykiGCJb45OnbkCa5ERAJEF1lQY2yDIikKNXX6sJsmEwh2h4RSRxRKkYtoswtR+koYlaNAU/6skYBdGp7QSs1j0BgwNm8sNDJXNAoFLPHNodfzBFcioiByy3rUGnJR7WoLx34D7CnFcLn9u2JNJKip06CmLhEaTSJizFZEaUqhVapPeHylyYQ68HmkppMgYVTuKMQYYkRHof9hiW+uLl1Y4omIAsyuS0C1tj1qrQlQLH+tqp5cnozDCYfhdPMV0ca4XEBFtREVyIDRoCDGWAUTiiAdt95+gZ4vZVDz9Envg6y4LNEx6Bgs8c3Vpg2QmAiUlYlOQkQUcRy6eFRqOqHWGg80cpKq7JCRWpOKI1FH4FYCW0Tnfj4Xb819CxdPuBi3XXObz3WKouC+J+/D6nWr8cR9T2DoGb5zhL/76TvM+3oeDh4+CLPJjBGDRuDOv98JAFj35zrM/2Y+tu7cijpLHTLbZuKy8y7D2GFj/ZrfapNgtcVBq41DvLkaZukIJLhg0+txBJxKQ03XIbEDTm97uugYdByW+Jbo3JknuBIR+ZFDF/e/8p7QaHk/lq5OhxR9Coq0RQHLs3XXVny1+CvkZ+c3ev38b+ZDOsG+q5989QnmfT0PN159I7p26Aqr1YojR494r/9z+5/Iz87H387/GxLiE/Drml/xr1f+hShzFAb19f/GOU4nUFIVA60mBnFRNThiqAACvP48RY70mHQMzxkuOgY1giW+JXiCKxGRXzi0sajUdUat5dTl/VjGCiOSE5NRIpf4PVOdpQ5PvPgE7r3xXnzw2QcNrt+5dyfmfTUPbz7zJi687kKf66prqvHOR+9g5gMz0adnH+/l+Tl//TFw1UVX+XzMxedcjN83/I5lvy0LSImv53QBpbVx2K/tDLP5ECzyDihScHeIpfCSYEzAuPxxkCX51AdT0PGz0hJ6PdChg+gURERhy6mNQampHw47B3oKfAtElUUhAS372JN58e0XMbDPQPTt1bfBdVabFY+/+Dju+PsdSEpIanD97xt+h6IoOFp2FFfdfhUu/vvFmP7cdBSXFJ/0PmvrahEbHeu3x3Ailqg4OFwa1FW3g6Z2BEzuDoDS+CsKpG5mnRlndTgLeg13BAtVLPEt1bs3IPPpIyJqDrekRbm5Nwqdg1BjSWz1Gu+xJbGIk+P8kg0A/rv8v9ixZwf+fsXfG73+1dmvonun7hjSf0ij1x8uOgy34sbcz+bitqm3Yca9M1BdU427Z9wNh6Pxlxp+WvETtu3ahrNGnuW3x9EoScZhKcr7rtOphaUqD3rLcOiVlMDeN4UVrazFme3PRLQ+WnQUOgm20JaKiQHyG58rSUREDVkM6TisGYaqujZ+3aAprjgO0XLry0ZxSTFeefcV/HPaP2HQGxpcv+L3FVi7aS1unXrrCW/DrbjhdDpx+7W3o/9p/dGtYzc8cucjOHjkINb9ua7B8Ws3rcXT//c07rnpHuS2y231YzgZR1Q07I382rfbDbBXng6Tow9kcNRV7WRJxpi8MUg2J4uOQqfAOfGtcdppwK5dgKKW/QKJiJrPJRtQru+JWmtiQG5fgoTEo4lwpbpgcbV87fPtu7ejvLIcf7/3r1F4l9uFDVs2YMF3C3Du+HNRWFSIc64+x+fjHnnuEfTs0hMvPfaSd4pNdla29/r4uHjExcShqMT3RNz1m9fjwacexC1TbsGZI85sce6mKtbGnHQfKEttMjSaYTBF74JFKgh4Hgo99WvBt4trJzoKNQFLfGvExwO5ucCePaKTEBGFpFpTLsrt+XBZA7vDo6RISClJQVFSEWzuli2f2KdnH8x+YbbPZU+9+hTaZbTD3y74G+Ji4nDuuHN9rp9651TcMuUWDO47GADQo3MPAMCBQweQmpQKAKiqrkJldSXSUtK8H7fuz3V4YOYDuOHKGxrcZiC4zFGoVk79K9/l0sBS2QlGUwac+o1wSifeMIoiiwQJI3NHIi8hT3QUaiKW+NY67TSWeCKi4zi10SjT9oLFErw5tZJLQmp5KooTiltU5M0mM/La+RYYk9GEuJg47+WNnczaJrkN2rZpCwDISs/CkH5D8Mq7r+CeG++B2WzGW/95C+3S2+G07qcB8EyheWDmA7howkUYNmAYSstLAQA6rQ6xMYE5ubVY17zzBqyWaEi2gTBHHUCdZmtAMlFoGZY9DO0T24uOQc3AEt9aSUlAu3bA/v2ikxARhYRqU0dU2HLgtgZ/1RPZIbeqyPvDg7c/iFdnv4p//OsfkCUZvbr1wrP/fBZaredX7qKfF8Fqs2Lu53Mx9/O53o/r3a03XnrsJb/ncRnNqISu2R+nuCXUVbeD0ZQIu34N3BI3iIpUQ9oNQafkTqJjUDNJisIJ3a1WXAx88YXoFEREQrklLcqMp7d4yUh/UrQKihOLYXVbRUcR7kh8W1QorTthVat1QhP1J2xS4DbYIjEGZg5EjzY9RMegFuDqNP6QmgpkZIhOQUQkjFMbgyLdkJAo8AAgOSWklqbCJJtERxHKbTK3usADnuUobVW9YXZ180MqChVD2g1hgQ9jLPH+ctppohMQEQlhMWbgsHsA7PaGyzKKJLk8J7uaNOot8kf1/ltDHwpQV50Jo20wZBj9d7sUdLIkY1TuKHRN6So6CrUCS7y/pKcDaWmnPo6IKIJUmruh2Nodbndo/jqR3BJSjqbArDGLjhJ0bqMZ5QFY991qiYZcPRh6pPr9tinwtLIW4/LH8STWCBCaP3XDFUfjiUgl3JIOR40DUVGXKTrKKUluCcnFyX7ZECqcHDX4cRT+OE6XFo6q3jAq2ac+mEKGXqPH2R3O5jrwEYIl3p+ysoBk7nBGRJHNoYvHEe0Q1FkDsxxiIEiKhMTiRMRL8aKjBIXbaArIKPyxFLcEa2VnmNwdA3o/5B8mrQkTO05EWjRnDUQKlnh/O/100QmIiALGpk9BkbsvHI7AFsRAkCAh7mgckt2RP9hSGsBR+ONZqnJhdvUM2v1R88Ub43Fe5/OQZG64zwGFL5Z4f8vJARIDs7U4EZFIVkNbFDtPg8sV2N1XAy2qLApp9jTIUmT+CnQbTShFcE8yrqtuC5O9H1grQk9WbBbO73w+Yg3h88oZNQ2/2wKhf3/RCYiI/MpizEKxvQfc7uBv4BQIhioD2ta0hU5u/iZIoa7YGC/kfi11iTDaBkLiPpIho3tqd5zZ/kzoNeH3yhmdGkt8ILRrB2SG/sleRERNUWvKwVFrVyhKZBT4elqLFmnlaRG1lrzTHO2XdeFbymqJhs4yGHKA5+PTycmSjGHZwzAoaxAkKbK+b+kvLPGBMnAgwG8cIgpztaYclFo6IVK39pYdMlJKUhAjx4iO4heH9fGiI8BuM0JrGQhJibxXOcKBUWvE2R3ORufkzqKjUICxxAdKQgLQlZsoEFH4ivQCX09ye1auSVaSISF8B1/s0XGoVULjfAW7zQi9lVNrgi3FnIILOl+A9Jh00VEoCFjiA6lPH8AQWjsYEhE1RZ1RHQX+WFGlUWhraQutHIbFU5JxSBtaJy7abCZPkQ+RPywiXY/UHjiv83mIMUTGq0p0aizxgWQ0eoo8EVEYsRrSUGLrqKoCX09Xq0N6WTqi5CjRUZqlLiYBNiX0fqXbrGYY7P2BCDufIpQYNAaMzx+PgVkDI3bFJWocP9uB1rUrEB8vOgURUZM4tTEocXaPuJNYm0NyenZ4DZvpNVodDkmh+0eH1RILk7Ov6BgRqU1UG1zU9SJkx3PnXDViiQ80WQYGDBCdgojolNyyHsVS37BfB95fokqj0LauLfRyaK+0Uh6dCFeI/7FhqU2E2dlLdIyIIUFCrza9MLHTRETro0XHIUFY4oOhXTsgK0t0CiKiE1Ig4ai+f1juxBpIujod0krSECcHbwfU5nAbTChSjKJjNEldTRpM7lzRMcJenCEOEztNxBmZZ3D6jMqF4dk7YWrgQODQIcDtFp2EiKiBclMfWC2hOyVDJMktIb44HuZoM0rMJXC4HaIjeRUZE1p9G99/9BoWvPMMRl04FZNunu5znaIoeOXBKdj8+1LcNONN9B483nvdDWNyGtzWdQ+9jH4jz/W+v+TL9/Hzl3NQeuQgElMzcPaVN2PoxdlwoKzVudVGgoTuqd3RL6NfeJ58TX7Hr4JgiY8HunQBNm8WnYSIyEeVuTOq65JExwh5+ho92ta1RU1SDcoU8SXUHh2HSrRuLfaCbRuwbOGHyMxrfE3x/372zkk3C5p877Po1m+4931z9F8r5Cz96gN88c4zuPLOmcjp1AsF29fjg+cfQHTsv9FznAFu2FuVXU3iDHEYnjMcadFpoqNQCOHrMMHUty+XnCSikGIxZqG8jifFNZXklhBzNAbpdekwygKnsWi02K9p3RQfq6UW78y8A1fd+RTM0Q1v68CuzVj86du4+p5nTngb5uhYxCWmet90+r+ek1U/LsDQCX9Dv5ETkZLeDv1GnouhEy7Ht3Pfht7Wr1XZ1UKChB6pPXBR14tY4KkBlvhgMhi45CQRhQyHLg4l9i6iY4QlXZ0ObY62QZKSJGRecnlMEpytPJn1o5f/iR5njESXPkMaXGe3WvDOv6bh8tseQ1xi6klu4xHcdeFpmHnLeVjx3Twoyl8Lkzodduj0vgNXOr0RBds3oLbaALOrZ6vyR7oUcwrO73w+BmYN5PQZahS/KoKta1dgyxagokJ0EiJSMQUySqTecLtDe1WTkKYA0aXRMBlNKI8tR627Nih36zKZW30y6+9LvsL+nZvx4GtfNnr9vNcfQ163Pug9eNwJb+PcKXehU+9B0BuM2PLHL/jw5Ydhs9Zi1AVTAQBd+w7D8u8+Ru/B49CuQ3fs27EJK777GC6nAzWV5dBo28IYVwGrtL9VjyXSGDQG9Mvohy7JXU46lYmIJT7YZBkYOhT4+mvRSYhIxarM3WCvC49VTUKdxqpBsjUZsbGxKDOWwea2Be7OJBmFhkS0ZieusuJCfPJ/j+GOZz7wmf5Sb8PKxdi+/lc89MbCk97OhCtv9/67XYfusFst+GHeW94SP+HK21FVdhRP3XYBoCiITUjGgHEX4YdP3oQke8qpvboTtDHlcErVLX9AEUKChC4pXdA3vS+MWn5v0qlJyrGvfVHwrFjBk1yJSAi7PhlH7H1UuSNroClQYEmwoFxbDqfi9Pvt18UmYb/UunXB169YhNen3wBZ/ms/ALfbBUmSIEkyhk28Eku/eh/SMdOE3G4XJFlGh+79cPfznzR6u5tW/YRXH74Gr3673WcajcvpQFV5CeISU/HLwg/x+dtP44UvNkKWPbdvMNbBZvylVY8p3KXHpGNQ1iAkmhJFR6EwwpF4Uc44AzhwAKiqEp2EiFREkTQoUXqwwAeIBAnmcjNMsgk1iTWokCrgVvyztLCiM+BAKws8AHQ+bTAembXI57I5z96LtHb5GD/pRkTHJWDYOX/zuf6xv4/HpTf9Ez0HjDnh7R7YvQXmmLgG8+A1Wh0SUtoCAH7/+Wv0OGOUt8ADgM1qhknfCRZ5e2sfWthJNiejf0Z/ZMZmio5CYYglXhStFhg+nNNqiCioKkw94ajjhk6BJrklxJTEwKw3oyq+ClXu1g/YHI1KhD9eOzeao5GR28nnMoPRhKjYeO/ljZ3MmpiajuS2no0LN/z6I6rLS5Db5TTo9AZs/eMXfPfR/2HsJX/3Hl90cA/2btuA3M69UVdTiR8/fRuFe3dgyn3/bnDbtppsaGMPwYma1j/AMJBgTEDf9L7ITeDmV9RyLPEitW0LdOvGaTVEFBRWQ1tU1Z14pRHyP41dg4TiBMSYYlAdU41qdzWUFrwO4oiORZkSOn98aTRa/Pzl+5j3+uOAoiAlIxuX3Pgwhpx9ufcYt8uNH+fPwpGDe6DR6NCp9wDc9/JnSE5ruIO52y1Bb+0Np3F5MB9G0MXoY9AnvQ86JHbgSavUapwTL5rTCXz6KafVEFFAuSUdDmuGwenk2I1ILoMLNbE1qEJV06fZaLTYE50OeyuXlAwHptg9sMg7Rcfwu1hDLHq26YnOyZ2FLElKkYklPhQcPsxpNUQUUKWmfqix8KS5UOHWuVEbX4sKnHrOfGl8Go4q6tgoUJbdkGN/jZhpNalRqejVphdy4nM48k5+xxIfKlauBP78U3QKIopAdn0yDtu50VwocmvcqEuoQ4VUAZfianC9PSoWe7QJApKJYzTWwGpcITpGq2THZaNXWi/uskoBxddVQ0X//sD+/ZxWQ0R+Vy5xV9ZQJbtkRJdEI0qOgiXWgmp9Naxuq+dKrRb7tfFC84lgtUbDaMiAVTokOkqz6GQd2ie2R482PRBvjBcdh1SAI/GhhNNqiMjPLMYsFFu7io5BzeAwO1AbU4vd0VEogU50HCH0ehvspqWAFPoVJTUqFZ2TOyM/IR86jTo/XyQGR+JDSdu2QPfunFZDRH6hQEK5q73oGNRMujodnEoWykrjYUquhctcC7sUwF1gQ5DdboDRmAertFt0lEYZNAZ0SOqAzsmduUETCcMSH2o4rYaI/KTW1B4OS+gsS0hNY9fpsMEaD7ciw3IkBkAMdNF26BJqYdfXwQn/7wQbipx1OZCiCqBIDc8VEEEjaZAZm4n8xHzkxudCc8yOt0QicDpNKDpyBPjqK9EpiCiMuSUtCuURcLlYNMKLhDX6NJTaT/zHlz7GDk1cLZwGCxxwBDFb8JljD6BO3iLs/uuLe15CHrLjs6HX8I9iCh0s8aHq11+BTZtEpyCiMFVp6o4KS4boGNRMB8wJ2FIX2+TjddF26OLr4DDURWShl2U3ELMM7iBOJ9LKWmTEZLC4U8hjiQ9VbrdnNL64WHQSIgozLo0JhcpQuN1clzqc1BqNWG5t0+KP15kd0MZaoJhssMtWuNHEzaRCnCmqCBbd+oDeR6IpEZmxmciMzUTb6LacKkNhgSU+lNXUAJ9/DlitopMQURgpM5+O6roU0TGoGdyyjJVSW9S6/HWqmgJ9rB3aaCtcBivssg0KwvPXvSQpkOOWw4U6v92mWWdGeky6t7ibdWa/3TZRsLDEh7qDB4HvvgP4aSKiJnDJBhxShkNROAofTrYbU1BgDVyRlGQF+jgrNGY73Ho7nLI9rE6QNUcfQZ12Q4s+ViNpkGROQpuoNkiNSkVqVCpiDDF+TkgUfCzx4WDtWmDNGtEpiCgMVJq6ocKSKToGNUOpKRprLElBv19Z54I+xg7ZFPrFXpbdUGKXQDlFPr1GjwRjAuKN8UgyJyE1KhXJ5mTIkhykpETBwyUmw8Hpp3vmxu/fLzoJEYUwBTKq7W1Fx6BmsBgMWGsRs86426GBtcwEwOS9TNa5oDU5oTE6AJ0T0Dngkp1wSS64IG6pR7dbhsnVHhbNNsiSjChdFGIMMYg3xiPeGI8EYwISTAmcFkOqwpH4cGGzeebHV1eLTkJEIarGlI9Sy6k3d/ptx29464e3sGn/JhRXFuPNm97E+N7jvdcfrTqKpz5/Cr9s+QVVdVXo36E/Zlw2A7ltcgEAFbUVeOGrF/DL1l9wqOwQkqKTMK73ONx13l2INXlWVpm/cj7unXNvo/e/5tk1SI5N9r1s1xpM+vckdEzviO/++V1Ln4Kw4tRqsFJpC0uYLAMqadzQGp3Q6F2QtG5IWhegcUOR3YDshiK54JbdcMMNxfsfgGP+fzwZMiRIkBQZsiQB7v9dosiAIkFyaaA4NVAcGuhlCeeeo8CkNUGSOF2MiCPx4cJgAMaOBb78EnCFxsYXRBRaql1Nm0ZTZ69Dl8wuuGTwJbjxjRt9rlMUBde/dj10Gh1m3TwL0cZovP3j27jyxSux+NHFMBvMKKooQlFlER686EF0SO+AQ6WH8NDch1BUWYTXb3gdADCx70QM7zbc57bvee8e2Jy2BgW+sq4Sd82+C4M6D0JJVUkrnoHwoUgSNsipsNjDo8ADgOKS4ajVw1Hb6lsCJACK1Kz1c6wASo8AWVmtvX+iyMASH06Sk4HBg4Fly0QnIaIQY9cnw243NunYkd1HYmT3kY1et7d4L9btXYcfpv+AjukdAQBP/u1J9LuvH776/StcNuQydMrohDdufMP7Mdkp2bjn/Htw57t3wulyQqvRwqg3wqj/K09pdSl+3f4rnr766Qb3+dDch3Be//MgyzJ+WP9Dcx522NplTEKJanfTlRoblG+SzZtZ4onq8UyPcNO5M9Cpk+gURBRiqjW5frkdu9MOADDoDN7LZFmGXqvH77t+P/H9W6oRbYyGVtP42NDnqz6HUW/E2aef7XP5vBXzcKDkAKadM80P6cNDkTkWeyxRomOEpQMHOKuUqB5LfDgaPBhICv5KBkQUmtyyHrXWBL/cVn5aPjISM/DMgmdQWVsJu9OO179/HYfLD6O4svHN58pqyvDKwldw+dDLT3i7n6z4BOf1P89ndH5v0V48s+AZvHDNCycs/5GmxmjChrp40THClqIAW7aITkEUGljiw5FW65kfr1frS7FEdKxaQ67f1oXXaXR448Y3sKdoD3rd1QtdbuuCX7f/ihHdRzS6TF+1pRpTX5mK9m3b446JdzR6m3/s/gO7Du/CpMGTvJe53C5Me2ca7ph4B/La5Pkle6hz6HT43Z4MBTwpszV27xadgCg0qGPoIxLFxgIjRwKLFolOQkSC1blT/Xp7PbJ74Lt/focqSxUcTgeSYpJw3szz0DO7p89xNdYaTH55MqKN0Xjzpjeh0+gavb1PVnyCrlld0SO7h8/Hbty3EZsPbMb0j6cDANyKG4qiIP+mfHww7QMM6jzIr49LJLcsYy1SYHdz7Ky1amo8qy6n+vfLnijssMSHs+xs4LTTgHXrRCchIkFcshFWW2DWxq5fLnJv0V5s2rcJd593t/e6aks1rn7pauh1erx9y9sw6ho/qbbWWouFaxbivgvu87k8xhiDRY/4DkJ8sPQDrNy2Eq/f8DqykiPr7MVt+mRUWBv/I4eab+9elngilvhw16+f5yyfXbtEJyEiASyGTMDSvI+ptdai4GiB9/0DJQew+cBmxEfFIyMxAwv/WIjE6ERkJGZg26FtmDFvBsb1HodhXYcB8BT4q166Cla7FS9e+yKqLdWotnjONkyKSYJG/mvZxG/WfAOn24nzzzjfJ4Msy+iU4XuSflJMEgw6Q4PLw91BUzwOWEynPpCabO9e4IwzRKcgEoslPhKMGAFYLMChQ6KTEFGQWZSUZn/Mxn0bcfnzf52E+sT8JwAAFw28CP+e8m8UVxbjiflPoKSqBKlxqbhwwIW4bcJt3uP/3P8n1u9dDwAY/rDvWvC/PPmLzyj6Jys+wZmnnYk4c1yzc0aCSpMZmy3qfOyBVFUFlJZyjQdSN+7YGinsduDrrz0/1YhIFdySFgcxym8ntZJ/2fR6LHe0gVPhPPhAOP10oG9f0SmIxOFPlkih1wNnnQVER4tOQkRBYjVksMCHKJdGgzXuFBb4ANq7V3QCIrH40yWSmM3A2WcDBsOpjyWisFcHntkXmiRs1iajxskZq4FUXg5UVIhOQSQOS3ykiY8Hxo8HNJpTHkpE4UuBBKuDc61D0XZjMg7bGl+th/yLo/GkZizxkSgtDRg9GpD4MjtRpLIZ0uBy8Y/1ULPblIQCa2CW/KSG9u8XnYBIHJb4SJWTAwyKnI1SiMiXRdNGdAQ6ToEpEbssPC8pmEpKALdbdAoiMVjiI1m3bkDv3qJTEFEA2F0xoiPQMQ6YE7Ddws9JsLlcXJSN1IslPtL17w907Cg6BRH5md3BzYNCRaEpDlvqYkXHUK2iItEJiMRgiVeDYcOAzEzRKYjITxy6eLjdPOclFBSbY7HJEi86hqoVF4tOQCQGS7wayDIwdiyQnCw6CRH5gU3LbSpDQakpGuvqEkTHUD2WeFIrlni10Ok8a8hzj2qisGeXuLSkaBWmKPxhSRQdgwBUVQFWq+gURMHHEq8mRiMwYQKLPFGYszujREdQtSqjGastSVDAKU2hgqPxpEYs8WrDIk8U1hRIPKlVoBqjCb9Zk1ngQwxPbiU1YolXIxZ5orDl0CVAUVggRagzGPGbLRluFviQw5F4UiOWeLVikScKS3ae1CqEVW/AKnsKnAp/bYaiykrRCYiCjz+N1IxFnijsOCRuKBRsNr0Oq5wpcLDAh6zaWkBRRKcgCi7+RFI7oxE45xwgNVV0EiJqAqdbLzqCqlj1eqxytoHNrREdhU5CUTxFnkhNWOIJMBg8I/Jt24pOQkSn4FJY4oOl1mjESkcbWFngw0JNjegERMHFEk8eOh1w1llAVpboJER0Ei6XVnQEVagwRWGlNZVTaMIISzypDX860V+0WmD8eCA3V3QSIjoBlvjAKzLH4jcLV6EJNyzxpDYs8eRLloExY4AOHUQnIaLjuGQDl5cMsH3mBKyvSxAdg1qAJZ7UhiWeGpIkYMQIoHt30UmI6BgujVl0hIilSBK2m5KxrS5WdBRqIZZ4UhuWeGqcJAGDBgGDB3v+TUTCscQHhluW8ac+FQWWKNFRqBVY4kltWOLp5Lp1A84803PiKxEJ5ZJMoiNEHJdGgz80bVBoM4qOQq3EJSZJbVji6dSysoDzzgOio0UnIVI1FwyiI0QUu06HVVIayhxctjMSOByiExAFF0s8NU1iInDBBdwUikggt8Sy6S8WgwG/utqgxsnVfiKF2+15I1ILlnhqOpMJmDgRyM8XnYRIlRQueegX1UYTVtpTuYlTBHK5RCcgCh6WeGoejQYYPRo4/XTRSYjUhxsPtVqZKRq/WlPg5HMZkVjiSU34U4xapm9fYORIT6knoqDgSHzrFJrj8bslic9jBHM6RScgCh5OBqSW69ABiIkBfvgBsFpFpyGKeCyfLeOWZWzXJ2F/HZfojHSKIjoBUfBwJJ5aJy0NOP98ID5edBIiogZseh1+k9Ow38oCT0SRhSWeWi821lPkMzJEJyGKaBI4zNgclaYoLHekocrJfS6IKPKwxJN/6PXA2WcDp53GHV6JSDAJ+80JWGVJ5gmsRBSx+NON/EeSgH79PGXezJeuifyNI/Gn5tJosNGQiq11saKjkAAcQyI1YYkn/8vIAC66CMjMFJ2EKMJwJ5uTqTMYsRJtcdhmFB2FBDFwU2NSEZZ4CgyTyTMif8YZgMwvMyJ/kCSW+BM5bI7Dclsq6lxc9latNBpAx9MfSEW4xCQFVq9eQNu2wH//C1RXi05DFNY0sImOEHJcGg22aJNQWGcSHYUEM/IFGFIZDpFS4KWmeqbX5OWJTkIU1jQK92M4Vq3RM32m0MYCTyzxpD4s8RQcej0wZgwwdCig5QtARC2hcVlERwgZheZ4rLBy+gz9xcS/5Uhl2KYouLp0Adq08UyvKS8XnYYorGjcdaIjCOfUarBFk4zDdRx2JV8ciSe14Ug8BV9iInDBBUDnzqKTEIUVjUvdJb7UFI1f3OlcfYYaxRJPasOReBJDqwWGDfMsR7l8OWDjCXtEpyIrTsiSG26VbWDk0GqxTZOEQgtbGp0Yp9OQ2rDEk1j5+UB6OrByJbB7t+g0RCFPo3XC7dCLjhE0RaZY/GmNg9Oprj9cqPk4Ek9qwxJP4plMwOjRQIcOnlH5mhrRiYhClkZ2woHIL/E2vQ6bkYSjFu7eQ03DjcJJbTi0QaGjXTvg0kuBHj24dzbRCWhku+gIAaVIEg6Z47HM3hZH7Szw1HQJCaITEAUXR+IptGi1wMCBQPv2wLJlQGmp6EREIUUrRe5a8RaDARvdSaio47ab1Dw6HRAbKzoFUXBxJJ5CU0qKZwWbM87guvJEx9C7K0VH8DtFlrHPlIhltjRUOFjgqfkSE0UnIAo+lngKXbIM9OoFXHwxkJkpOg1RSNA7S0RH8Ksaowkr5bbYZokRHYXCWFKS6AREwccST6EvNhY4+2xg5EguP0Cqp3XWQKNxiY7Rai6NBrtMSVhhTUWNk6+2UetwJJ7UiD85KXx06ABkZQGrVgE7dohOQySMTmeFyxUlOkaLVZqisN6WAKtFIzoKRQiOxJMascRTeDEagREjgI4dPWvLl5WJTkQUdAa5GlaEX4m3GAzYgXgc4aZN5GcciSc1Yomn8JSeDlx0EbBrF/D771xbnlRF764AkCY6RpPZdTrs0cRjn5ULeZP/xcZ6VqchUhuWeApfkuSZYpOXB2zeDKxfD1gjd/k9onp6Z3gsverSaLBPH49dligoDu79QIHBUXhSK5Z4Cn8aDdCzJ9C5s6fI//kn4HSKTkUUMPUnt7pcoTmn3C3LKDTGYrslBk4L10+gwGrTRnQCIjFY4ily6PVA//5At27AH38A27cDiiI6FVFA6HUWWFzRomP4UCQJR40x2GqLhbUuNP/AoMiTlSU6AZEYLPEUeaKigGHDPKPzq1cDBQWiExH5nUGugAWhU+IrTFHY7IhHjYW/Vih4oqI4nYbUiz9tKXLFxwPjxgFHjgC//QYUFYlOROQ3ZschVED8Jmg1BiO2KQkotehFRyEV4ig8qZmkKJxvQCpRUOAZma+oEJ2EyC8KdaPgcIhZlsOq12OnlIBCG5eLJHHGjgVyc0WnIBKDI/GkHjk5QHY2sHs3sGEDUBoeK3wQnYhJVw6HIzWo92nX6bBXE4cCa/itU0+RRZaBjAzRKYjEYYkndZEkoH17z9uhQ54yf/Cg6FRELWJyHUYVglPia41GFCAWB60mwBGUuyQ6qTZtPOsZEKkVSzypV0aG562sDNi40bNxlNstOhVRkxlsRQFdalKRJJQborDbFYMyK9sShRbOhye145x4onq1tZ415rduBex20WmImqTE1B+1lgS/3qZLo0GxIRo7bTGwhOha9EQXX8yVaUjdWOKJjudweIr8n38CNTWi0xCdVJ0xG0etnf1yWza9Doc0sdhjjYJL4Q6rFLqiooArrhCdgkgslniiE3G7gT17PFNtSkpEpyFqlFvS4iBGQWlF6a4xmlCAGByymvyYjChwevUCzjhDdAoisTgnnuhEZNn3JNiNG4EDB0SnIvIhK04YjTWwWGOa9XGKJKHMGIVdzlhUWMUsU0nUUp06iU5AJB5LPFFT1J8EW10N7NjheauuFp2KCAAQjUOwoGlTalwaDYoMMdhpjYbVwvnuFH5SUz17+RGpHafTELXU4cOeMr9nj2cePZEgCmQc0ow6ySo1EmqMRhRKUdhnMcMNznen8DVkCNC1q+gUROKxxBO1ltMJ7N3rKfSFhQC/pUiACnNPVNa19bnMptejSBuFAlsUV5mhiKDVAldeyfXhiQCWeCL/qqkBdu70FPrKStFpSEWc2mgccg6GS6NBiSEK+x1RKHOw6VBk6dwZGDZMdAqi0MASTxQoRUWeMr97N9ed///27j6qqjrf4/jnHJ7lUZ41VBAfwcTKzEoXahla3pJMs5yb5LVVmlpONlm35cPM6jLdslKnrMa5hqPdTMMatcmJWzp1xYfSysZKQcHUEZUHURAQzrl/7Ct4xAcwYJ8N79dae3nOPvv8zneftdQPP777t9G8vL2luDjtKL9B3/zsLyftMmil7r1XCg83uwrAPRDigeZWUyPl5Rkz9EeOGO03wC/l7S116SLFx0sxMZLdrsOHpQ0bzC4MaB6RkdLo0WZXAbgPVqcBmpuHhxG04uONAH/kiHTwoLFxMyk0hpeXEdy7djXuOe/h2ud+zTXGHSyLikyqD2hGiYlmVwC4F2biATMVFtYF+mPHuCgW9YWGGjPtMTFShw71gvuFfvpJ2ry5hWoDWkhgoHT//cbtOwAYCPGAu6ioMG4mlZ8vHTpEH31b5etbF9pjYqR27Rr19poa6d13pTNnmqk+wARDhkg9ephdBeBeCPGAO3I4pKNH62bpS0rMrgjNxW6XoqPrQnsTXLW3e7eUnd0EtQFuICREGjtWsnG9NuCCEA9YQWmpMTt/9Kix0UtvbcHBRmDv1MlokfHyatLhHQ5p1SpuKozW4bbbjEuKALgixANWVFZWF+gLCozeev4quye7XQoLM2bYIyKMq08DA5v9Y3NypM8+a/aPAZpVaKh0331mVwG4J0I80BqcPWtcGHv8eN2fZWVmV9X22O1G6jgX2CMijOcmXY2XmSmdOGHKRwNN4o47pNhYs6sA3BMhHmitystdQ31hIVc7NiW7XWrf3gjq50J7aOgVV49pSawbDysLDzdu7gTg4gjxQFtSVWVcJHvypLGd/5ibUF2czSYFBBgtMEFBRrIIDzdaZNwosF/Kxx8bl1MAVjNypHHZCICL42ZPQFvi7W3c9jAysv5rZWV1gf78gH/qlHGlZGvm62sE9MDAurB+7nFAgKUXp77pJmNGnukaWEl0NAEeuBJCPACDv7+xdezout/hMIJ8aanRjlNRcemtstK90qKXl/GDy7nN1/fiQb2JV4dxJ2FhUrdu0r59ZlcCNIzdLg0aZHYVgPsjxAO4PLvdWBIxOPjKxzqdRpC/VMCvqTGOOX+T6mb6L3ztws3DwzWU+/i4Pr9wPwtLS5JuvFE6cICOKVhDv37G5SUALo+eeABoA77/XtqyxewqgMtr314aM8bSHWxAi+GvCQC0AX361O+UAtyJzSYlJxPggYbirwoAtBFDhrTq9n9YXGLixa+5B3BxhHgAaCMCAqSbbza7CqC+wEBpwACzqwCshRAPAG1Ir14s3Qf3M3iw5MlSG0CjEOIBoI1JTjYW8AHcQY8eUkyM2VUA1sPqNADQBu3bJ33+udlVtB2bNy/R5s1LVFiYJ0nq0CFRo0bNUZ8+I2uPyc3N1kcf/bsOHNgmu91DMTH99MQTG+Xt7SdJOnhwpzIzn1Fe3g7Z7R667roxGjv2Ffn6Brh81pYt7ygr6xUVFOyVn1+Qrr9+rB588HVJ0tmzFVq58jHl53+to0d/0LXXjtLUqR+2yHdwMSEh0ujRxoqwABqHX14BQBvUvbuUl2esH4/mFxISo9TU3ysysrskp7KzM/TGG/fo+ed3qWPHROXmZmvRohEaOfJZjR+/WHa7pw4d+lY2m/EL85KSI3r11dvVv//9Gj/+D6qoKNX77z+pjIw0PfromtrP+fTTV5SVtUBjxrykuLibVFlZVvuDgyQ5HDXy8vLTsGEztHPnBy38Lbjy8pLuuIMAD1wtQjwAtFHJyVJJiVRcbHYlrV9S0r+4PB89+gVt3rxE+/dvVceOiVq9eqaGDZuhESNm1x4THd2z9vF3362Xh4eXHnjgddn/fw3GCRPe1G9/21fHjuUoMrKbysqK9dFHz+vxx9epd+/bat8bE9O39rGPj78mTFgiScrN/V+Vl5c0x+k2yNChxkw8gKtDTzwAtFHe3lJKiuTra3YlbYvDUaMdO95TVVWZuna9WaWlx3TgwDYFBkbqxRdv0axZUXr55WTl5HxZ+57q6kp5enrXBnhJ8vIy2mzOHffDD5/K6XSopOSw5s7trWeeidHbb49TUdHPLXuCDXD99VJsrNlVANZGiAeANiwoSBo+nBvstITDh3drxowAPf64j1aufEyPPbZWHTsm6MSJ/ZKk9evnadCgRzRjxifq3Pl6vfrqbSoo2CdJ6tVrmE6ePKqNG19SdXWVysqKtXatMWt/8uQ/JUknTuyX0+nQX//6Hxo37jU9+ugalZUV6bXXhqu6usqck76Izp2lG24wuwrA+vhnGwDauA4dpEGDzK6i9YuK6qnnn/9Gs2dvU3LyFL3zzkQdObJHTqdDkjR48KO69daH1bnzdRo37lVFRfXUli3/JUnq2DFRDz+coaysBZo+vZ1+85tohYXFKSgoqrZv3uFwqKbmrMaPX6TExBR17TpQkyf/t44d26effnKPq5iDgqRhw4y7swL4ZeiJBwCoVy+jN373brMrab08Pb0VGdlNktSlyw3Ky9uhzz5bWNsH36FDgsvx0dG9VVR0sPb5gAEPasCAB1VaWiBvb3/ZbDZlZb2iiIiukqTg4A71xgkMjFBAQLjLOGbx8jLat7iQFWgazMQDACRJAwdyI6iW5HQ6VF1dqbCwWIWEdFRBwU8urx87tlehoV3qvS8oKEq+vgH66qtV8vLyVe/ewyVJ3brdKkk6erRunLKyIp0+fUJhYfXHaWnJyVL79mZXAbQezMQDACQZLQ633SZ9+KGxag2aztq1zyoxcaRCQzursvKUtm9/V3v3btKMGRtls9k0fPjTWrdurmJiktSpUz9lZ2fo6NEfXZaP/PzzPyg+/hb5+ARoz55P9cEHT+vee3+vdu1CJElRUT2UlHSP3n//Cf3qV2/L1zdIa9c+q+joXurZc2jtOEeO7FFNTZXKyopUUXFKP//8jSSpU6d+zXb+t94qde3abMMDbRI3ewIAuCgtlf7yF6m83OxKWo/ly/9NP/74Pzp58p/y8wvWNdf0VUrKM0pIGF57zCef/F6bNr2usrIixcQkacyY/1S3bnUXKyxb9pB2796gysrTio7upeHDZ2ngwH91+ZwzZ0q1evVM7dqVKZvNru7dk3X//QsVGlr3K5bnnotVYWF+vRrfeqt54sCNN0rXXdcsQwNtGiEeAFBPSYm0bp105ozZlcDKkpKkm24yuwqgdaInHgBQT0iINGoUa8jj6iUkEOCB5kSIBwBcVPv2BHlcnYQEli0FmhvtNACAyyoqkj7+mB55NExionEhK4DmRYgHAFzRyZPShg3S6dNmVwJ31qePdMstZlcBtA2EeABAg5w+La1fb6xeA5zPZpMGDDAuZAXQMgjxAIAGKy+X/vY36dgxsyuBu/D0lIYNk2Jjza4EaFsI8QCARqmpkb74Qtq71+xKYDZ/fyklRQoPN7sSoO0hxAMArsr330tbt0oOh9mVwAzh4dKIEVK7dmZXArRNhHgAwFU7ckTKypIqKsyuBC0pLk4aOtRopQFgDkI8AOAXOXXK6JMvLDS7ErSEfv2Mi1gBmIsQDwD4xaqrpc2bpdxcsytBc/HxMW7gFB9vdiUAJEI8AKAJffedtH07ffKtTUyMNGQI/e+AOyHEAwCaVHGxMSvPMpTW5+kpDRwoJSSYXQmACxHiAQBNzumUdu+WvvrKaLWB9URFGRevBgWZXQmAiyHEAwCaTWmpMSv/z3+aXQkaym6X+vc37r5qs5ldDYBLIcQDAJrdP/5h9MqfPWt2Jbic0FBj9j0szOxKAFwJIR4A0CJOn5b+/nfp0CGzK8GF2rUzZt979mT2HbAKQjwAoEXl50s7dkhFRWZXAk9Po20mKYkbNwFWQ4gHAJgiJ0f6+mvp5EmzK2l7bDZj1r1/f5aNBKyKEA8AMI3DIe3da4T5sjKzq2kbOneWbrpJat/e7EoA/BKEeACA6WpqpD17pF27pIoKs6tpnaKipBtvlDp2NLsSAE2BEA8AcBtnz0rff2+sZlNebnY11mezSXFxUt++UmSk2dUAaEqEeACA23E4pAMHjEBfUGB2Ndbj7S316CFde60UGGh2NQCaAyEeAODWTpwwWm1yc1ln/krCw6WEBKlbN1abAVo7QjwAwBKqq6X9+6WffuIOsOdr107q0kXq1UuKiDC7GgAthRAPALCc0lKj3ebgQaPdxuEwu6KWFRQkxcYa/e6RkdygCWiLCPEAAEurqjLuAnvwoLG11tVtwsLqgntoqNnVADAbIR4A0Go4ndLx43WB/sQJsyu6ev7+RntMhw5Gu0xQkNkVAXAnhHgAQKtVUSEVFhrbiRPGnyUlRth3J97eRmCPiDDaYyIjuZMqgMsjxAMA2pSaGqmoyDXYl5Yagb85/0e02SQ/PykgwJhlDwgwWmQiI6WQkOb7XACtEyEeAAAZAb6iQjpz5tJbdXXdsef+97TZJA8P183Xty6o+/sbW7t2kt1u3vkBaF0I8QAAAIDFMCcAAAAAWAwhHgAAALAYQjwAAABgMYR4AAAAwGII8QAAAIDFEOIBAAAAiyHEAwAAABZDiAcAAAAshhAPAAAAWAwhHgAAN2Cz2TRv3ryrfu+0adOatiAAbo0QDwBotcrLyzVv3jxt2rTJ7FIAoEkR4gEArVZ5ebnmz59PiAfQ6hDiAQD4f2VlZWaXAAANQogHALSYefPmyWazKScnR2lpaQoJCVFwcLAefvhhlZeX1x5XXV2t3/3ud4qPj5ePj49iY2P13HPPqbKy0mW8r776SikpKQoPD5efn5/i4uI0adIkSVJeXp4iIiIkSfPnz5fNZnPpO09LS1NAQIByc3N15513KjAwUBMmTJAkffHFFxo7dqw6d+4sHx8fderUSTNnztSZM2cadb5VVVWaM2eObrjhBgUHB8vf31+DBw/W559/3uDv6scff9S4ceMUFBSksLAwPfHEE6qoqLjoez788EP16dNHPj4+SkxM1CeffOLyen5+vqZOnaqePXvKz89PYWFhGjt2rPLy8hp1XgDM52l2AQCAtmfcuHGKi4tTenq6du7cqaVLlyoyMlIvvviiJGny5MnKyMjQfffdp6eeekrbtm1Tenq6fvjhB61du1aSdOzYMd1xxx2KiIjQ7NmzFRISory8PGVmZkqSIiIitGTJEk2ZMkWpqam69957JUl9+/atraO6ulopKSkaNGiQXn75ZbVr106StHr1apWXl2vKlCkKCwvT9u3btXjxYh06dEirV69u8HmWlpZq6dKleuCBB/TII4/o1KlT+tOf/qSUlBRt375d/fr1a9B3FRsbq/T0dG3dulWLFi1ScXGxli9f7nLcl19+qczMTE2dOlWBgYFatGiRxowZo4MHDyosLEyStGPHDm3ZskXjx49XTEyM8vLytGTJEg0ZMkR79uypPX8AFuAEAKCFzJ071ynJOWnSJJf9qampzrCwMKfT6XR+8803TknOyZMnuxwza9YspyTnZ5995nQ6nc61a9c6JTl37Nhxyc87fvy4U5Jz7ty59V6bOHGiU5Jz9uzZ9V4rLy+vty89Pd1ps9mc+fn5VzzPc6qrq52VlZUu+4qLi51RUVH1voML6zz3Xd19990ux02dOtUpyfntt9+6vNfb29uZk5NTu+/bb791SnIuXrz4sueVnZ3tlORcvnx5g88LgPlopwEAtLjHHnvM5fngwYNVWFio0tJSffzxx5KkX//61y7HPPXUU5KkDRs2SJJCQkIkSevXr9fZs2evupYpU6bU2+fn51f7uKysTCdOnNAtt9wip9OpXbt2NXhsDw8PeXt7S5IcDoeKiopUXV2t/v37a+fOnQ0a4/HHH3d5Pn36dEmq/Z7Ouf322xUfH1/7vG/fvgoKCtL+/fsvel5nz55VYWGhunXrppCQkAbXA8A9EOIBAC2uc+fOLs/bt28vSSouLlZ+fr7sdru6devmckx0dLRCQkKUn58vSUpOTtaYMWM0f/58hYeH65577tGyZcvq9c1fjqenp2JiYurtP3jwoNLS0hQaGqqAgABFREQoOTlZknTy5MlGnWtGRob69u0rX19fhYWFKSIiQhs2bGjwON27d3d5Hh8fL7vdXq+P/cLvVDK+1+Li4trnZ86c0Zw5c9SpUyf5+PgoPDxcERERKikpafR5ATAXPfEAgBbn4eFx0f1Op7P2sc1mu+wYNptNa9as0datW7Vu3Tpt3LhRkyZN0oIFC7R161YFBARcsQ4fHx/Z7a7zWTU1NRo+fLiKior0zDPPqFevXvL399fhw4eVlpYmh8PRgDM0rFixQmlpaRo9erSefvppRUZGysPDQ+np6crNzW3wOOe71PfSkO90+vTpWrZsmZ588kndfPPNCg4Ols1m0/jx4xt1XgDMR4gHALiVLl26yOFwaN++ferdu3ft/oKCApWUlKhLly4uxw8cOFADBw7UCy+8oHfffVcTJkzQe++9p8mTJ1/xB4GL2b17t/bu3auMjAw99NBDtfs//fTTRo+1Zs0ade3aVZmZmS61zJ07t8Fj7Nu3T3FxcbXPc3Jy5HA4FBsbe1X1TJw4UQsWLKjdV1FRoZKSkkaPBcBctNMAANzKnXfeKUl67bXXXPa/8sorkqS77rpLktF6c/4ss6Ta1V7OtdScW22lMSH13Iz2+WM7nU4tXLiwwWNcbqxt27YpOzu7wWO8/vrrLs8XL14sSRo5cuRV1XPhd7Z48WLV1NQ0eiwA5mImHgDgVpKSkjRx4kS9/fbbKikpUXJysrZv366MjAyNHj1aQ4cOlWT0mr/xxhtKTU1VfHy8Tp06pT/+8Y8KCgqq/UHAz89PCQkJWrVqlXr06KHQ0FD16dNHffr0ueTn9+rVS/Hx8Zo1a5YOHz6soKAgffDBBy695Q01atQoZWZmKjU1VXfddZcOHDigN998UwkJCTp9+nSDxjhw4IDuvvtujRgxQtnZ2VqxYoUefPBBJSUlXVU9f/7znxUcHKyEhARlZ2crKyurdglKANZBiAcAuJ2lS5eqa9eueuedd7R27VpFR0fr2WefdWlDORfu33vvPRUUFCg4OFgDBgzQypUrXdpPli5dqunTp2vmzJmqqqrS3LlzLxvivby8tG7dOs2YMUPp6eny9fVVamqqpk2b1ujgnJaWpqNHj+qtt97Sxo0blZCQoBUrVmj16tXatGlTg8ZYtWqV5syZo9mzZ8vT01PTpk3TSy+91Kg6zlm4cKE8PDy0cuVKVVRU6NZbb1VWVpZSUlKuajwA5rE5L/y9GgAAMN28efM0f/58HT9+XOHh4WaXA8DN0BMPAAAAWAztNAAANFJVVZWKiooue0xwcLDLzZUAoCkR4gEAaKQtW7bUXmB7KcuWLVNaWlrLFASgzaEnHgCARiouLtbXX3992WMSExPVoUOHFqoIQFtDiAcAAAAshgtbAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFjM/wHnj0Fi+Bwu3gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAKSCAYAAABbWIQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfx0lEQVR4nOzdd5hTVcIG8Pfe9EyvDFOYRu9Kkd6LitgVXQugrl2xr21FLItt7Z8NFdHFAio2VMQVQUBEpEpvQxuYYXpLz/3+yE4kzABTkpwk9/35zCOT3EneZNo7J+eeIymKooCIiIiIiMKGLDoAERERERE1D0s8EREREVGYYYknIiIiIgozLPFERERERGGGJZ6IiIiIKMywxBMRERERhRmWeCIiIiKiMMMST0REREQUZljiiYiIiIjCDEs8EZ1QTk4OpkyZcsrj3nvvPUiShIKCAu9lI0aMwIgRIwKWrbWmTJmCnJycgN+PJEl49NFHT3nco48+CkmSfC5r6vNPpBaNfZ8QqRVLPIWt+h/mJSUljV7fvXv3kC6Rx/v5558hSZL3TafTIS8vD1dffTX27NkjOl5YycnJwTnnnCM6ht9t2bIFjz76qM8fS/526aWXQpIk/OMf/wjYfYgyZcoUn++xE70F4w+nWbNmYfjw4WjTpg0MBgNyc3MxderUJn9uc3JyfDKnpqZi6NChWLBggV9zrly5Eo8++igqKir8ertE1Hpa0QGIyNftt9+Ofv36weFwYO3atXjrrbewcOFCbNq0Cenp6UHNsn37dshyy/7W/+GHH/ycxr9mzZoFt9sd8PuxWCzQalv2o/b453/Lli2YMWMGRowYEZBXEaqqqvD1118jJycHH330EZ566qmIGvW84YYbMGbMGO/7e/fuxSOPPILrr78eQ4cO9V6en58f8Czr1q1Dbm4uzj33XCQkJGDv3r2YNWsWvvnmG2zYsKFJ3+u9e/fG3XffDQAoLCzEm2++iQsvvBCvv/46brzxRr/kXLlyJWbMmIEpU6YgPj7eL7dJRP7BEk/kJ1arFXq9vsWlt97QoUNx8cUXAwCmTp2Kjh074vbbb8ecOXPwwAMPNPoxtbW1iIqKatX9NsZgMLT4Y/V6vR+T+J9OpwvK/RiNxhZ/bGue/5b47LPP4HK58O6772LUqFFYtmwZhg8f7pfbDtTXaHMMHDgQAwcO9L6/Zs0aPPLIIxg4cCCuvPLKoGZ57bXXGlx2/vnno2/fvnj//fdx//33n/I2MjIyfHJfffXVaN++PV544YUTlnin0wm32x3y359EdGqcTkOq8sorr6Bbt24wm81ISEhA37598eGHH/occ+jQIVxzzTXel7m7deuGd9991+eY+qkvH3/8MR5++GFkZGTAbDajqqoKDocDM2bMQIcOHWA0GpGUlIQhQ4Zg8eLFLco8atQoAJ5RQ+CvaURbtmzB3/72NyQkJGDIkCEAPL+gH3/8ceTn58NgMCAnJwcPPvggbDab9/bOOecc5OXlNXpfAwcORN++fb3vNzYne/PmzRg1ahRMJhMyMzPxxBNPNDqiffyc+PrnbN68eXjyySeRmZkJo9GI0aNHY9euXQ0+/v/+7/+Ql5cHk8mE/v3745dffvHrPPvG5sRXVFRgypQpiIuLQ3x8PCZPnoz169dDkiS89957J3xsJ7vNxubEL1++HP369YPRaER+fj7efPPNRjMe+/y/9957uOSSSwAAI0eO9E6j+PnnnzF58mQkJyfD4XA0uI1x48ahU6dOJ30u6s2dOxdjx47FyJEj0aVLF8ydO7fR47Zt24ZLL70UKSkpMJlM6NSpEx566CHv9a39GgU8BXv8+PFITk6GyWRCbm4urrnmGp9jPv74Y/Tp0wcxMTGIjY1Fjx498NJLLzXpsZ7M/Pnz0adPH5hMJiQnJ+PKK6/EoUOHfI6ZMmUKoqOjsWfPHowfPx5RUVFIT0/HY489BkVRWnS/9V87LZ26kpaWhi5dunh/VhQUFECSJDz33HN48cUXvc/5li1bAAA//fQThg4diqioKMTHx+O8887D1q1bvbf36KOP4t577wUA5Obmer/m6qf8NPVzCQDfffcdhg8f7v1c9evXr8HP3qY8741ZvHgxhgwZgvj4eERHR6NTp0548MEHW/QcEoUTjsSTasyaNQu33347Lr74YkybNg1WqxUbN27Eb7/9hr/97W8AgKKiIgwYMACSJOHWW29FSkoKvvvuO1x77bWoqqrCHXfc4XObjz/+OPR6Pe655x7YbDbo9Xo8+uijmDlzJq677jr0798fVVVVWLNmDdauXYuxY8c2O/fu3bsBAElJST6XX3LJJejQoQP+9a9/eUvDddddhzlz5uDiiy/G3Xffjd9++w0zZ87E1q1bvXNlJ02ahKuvvhq///47+vXr5729ffv2YdWqVXj22WdPmOXIkSMYOXIknE4n7r//fkRFReGtt96CyWRq8uN56qmnIMsy7rnnHlRWVuKZZ57BFVdcgd9++817zOuvv45bb70VQ4cOxZ133omCggKcf/75SEhIQGZmZpPvqzkURcF5552H5cuX48Ybb0SXLl2wYMECTJ482a/3s2nTJowbNw4pKSl49NFH4XQ6MX36dLRp0+akHzds2DDcfvvtePnll/Hggw+iS5cuAIAuXbrgqquuwvvvv49Fixb5nAtw5MgR/PTTT5g+ffopcxUWFmLJkiWYM2cOAODyyy/HCy+8gFdffdVn1Hbjxo0YOnQodDodrr/+euTk5GD37t34+uuv8eSTT/rcZku/RouLi73P0f3334/4+HgUFBTg888/99724sWLcfnll2P06NF4+umnAQBbt27FihUrMG3atFM+3hN57733MHXqVPTr1w8zZ85EUVERXnrpJaxYsQLr1q3zmVLicrlw5plnYsCAAXjmmWfw/fffY/r06XA6nXjssceadH+lpaVwuVzYv3+/92NGjx7douwOhwMHDhxo8LNi9uzZsFqtuP7662EwGJCYmIgff/wRZ511FvLy8vDoo4/CYrHglVdeweDBg7F27Vrk5OTgwgsvxI4dO/DRRx/hhRdeQHJyMgAgJSUFQNM+l/XP6TXXXINu3brhgQceQHx8PNatW4fvv//e+7O3Oc/7sTZv3oxzzjkHPXv2xGOPPQaDwYBdu3ZhxYoVLXoOicKKQhSmpk+frgBQjh492uj13bp1U4YPH+59/7zzzlO6det20tu89tprlbZt2yolJSU+l1922WVKXFycUldXpyiKoixZskQBoOTl5Xkvq9erVy9lwoQJzX489bf57rvvKkePHlUKCwuVhQsXKjk5OYokScrvv/+uKMpfj/vyyy/3+fj169crAJTrrrvO5/J77rlHAaD89NNPiqIoSmVlpWIwGJS7777b57hnnnlGkSRJ2bdvn/ey7OxsZfLkyd7377jjDgWA8ttvv3kvKy4uVuLi4hQAyt69e72XDx8+3Of5r398Xbp0UWw2m/fyl156SQGgbNq0SVEURbHZbEpSUpLSr18/xeFweI977733FAA+t3ki2dnZp/wcTJ48WcnOzva+/8UXXygAlGeeecZ7mdPpVIYOHaoAUGbPnn3Cx3ai21QURQGgTJ8+3fv++eefrxiNRp/necuWLYpGo1GO/5F8/PM/f/58BYCyZMkSn+NcLpeSmZmpTJo0yefy559/XpEkSdmzZ0/jT8IxnnvuOcVkMilVVVWKoijKjh07FADKggULfI4bNmyYEhMT45NfURTF7XZ7/93ar9EFCxYoALxf842ZNm2aEhsbqzidzlM+thP5/ffffT63drtdSU1NVbp3765YLBbvcd98840CQHnkkUe8l02ePFkBoNx2223ey9xutzJhwgRFr9ef8OfS8QwGgwJAAaAkJSUpL7/8cpM+Ljs7Wxk3bpxy9OhR5ejRo8qGDRuUyy67zCfT3r17FQBKbGysUlxc7PPxvXv3VlJTU5XS0lLvZRs2bFBkWVauvvpq72XPPvtsg+9tRWn657KiokKJiYlRzjjjDJ/nVFH++pppzvNe/7VV74UXXjjp7wGiSMbpNKQa8fHxOHjwIH7//fdGr1cUBZ999hkmTpwIRVFQUlLifRs/fjwqKyuxdu1an4+ZPHlyg1Ho+Ph4bN68GTt37mxRzmuuuQYpKSlIT0/HhAkTUFtbizlz5vhMcwHQYM7rt99+CwC46667fC6vP/Ft4cKFAIDY2FicddZZmDdvns/L/p988gkGDBiAdu3anTDbt99+iwEDBqB///7ey1JSUnDFFVc0+fFNnTrVZ2S3/oTC+hV41qxZg9LSUvz973/3OSH0iiuuQEJCQpPvp7m+/fZbaLVa3HTTTd7LNBoNbrvtNr/dh8vlwqJFi3D++ef7PM9dunTB+PHjW3y7sizjiiuuwFdffYXq6mrv5XPnzsWgQYOQm5t7ytuYO3cuJkyYgJiYGABAhw4d0KdPH58pNUePHsWyZctwzTXXNPg6aewE2JZ+jdaPun7zzTeNThGqP6a2trbF09Qas2bNGhQXF+Pmm2/2OZdhwoQJ6Ny5szffsW699Vbvv+tfwbPb7fjxxx+bdJ/fffcdvv32W/z73/9Gu3btUFtb2+S8P/zwA1JSUpCSkoJevXph/vz5uOqqq7yvTNS76KKLvKPnAHD48GGsX78eU6ZMQWJiovfynj17YuzYsd7P08k09XO5ePFiVFdX4/77729wfkj910xLnvd69V8rX375ZVBOVCcKJSzxFNGOLRb/+Mc/EB0djf79+6NDhw645ZZbfF5yPXr0KCoqKvDWW295fzHWv02dOhWA52X+YzVWjh577DFUVFSgY8eO6NGjB+69915s3LixyZkfeeQRLF68GD/99BM2btyIwsJCXHXVVQ2OO/6+9+3bB1mW0b59e5/L09LSEB8fj3379nkvmzRpEg4cOIBff/0VgGfKzh9//IFJkyadNNu+ffvQoUOHBpc3dc41gAblr76Yl5eXe+8DQIPHodVqA7qu+759+9C2bVtER0f7XN6cx3YqR48ehcViafVz2Jirr74aFovFO41h+/bt+OOPPxr92jne1q1bsW7dOgwePBi7du3yvo0YMQLffPMNqqqqAPz1h1b37t2blKmlX6PDhw/HRRddhBkzZiA5ORnnnXceZs+e7TPX+uabb0bHjh1x1llnITMzE9dccw2+//77JuU6kfr7b+xz0blzZ5/vIcDzx9Px55d07NgRAJq8VOTIkSNx1lln4a677sL8+fMxY8YMvPrqq0362DPOOAOLFy/Gjz/+iJUrV6KkpATvv/9+g4GFxj4PQOOPs0uXLigpKTnlHxNN/VzWTwc82ddMc5/3Y02aNAmDBw/GddddhzZt2uCyyy7DvHnzWOhJFVjiKWzVj9hYLJZGr6+rq/MZ1enSpQu2b9+Ojz/+GEOGDMFnn32GIUOGeOcL1//Qv/LKK7F48eJG3wYPHuxzH43NBR82bBh2796Nd999F927d8fbb7+N008/HW+//XaTHlePHj0wZswYjBw5Ej169Djh8oQnmofelCUBJ06cCLPZjHnz5gEA5s2bB1mWvSdOBpJGo2n0cqWFJwOKcKLn2OVyBTnJX7p27Yo+ffrgP//5DwDgP//5D/R6PS699NJTfmz9x9x5553o0KGD9+3f//43rFYrPvvssxZlaunXqCRJ+PTTT/Hrr7/i1ltv9Z5s3qdPH9TU1AAAUlNTsX79enz11Vc499xzsWTJEpx11ll+P4chmPLz83Haaaed8ITi4yUnJ2PMmDEYPXo0Bg4ceMJ54805Z6W5RC9BajKZsGzZMvz444+46qqrsHHjRkyaNAljx44V+v1IFAws8RS2srOzAXhGHI9XV1eHAwcOeI+pFxUVhUmTJmH27NnYv38/JkyYgCeffBJWqxUpKSmIiYmBy+XCmDFjGn1LTU1tUrbExERMnToVH330EQ4cOICePXs2adfO1sjOzobb7W4wjaeoqAgVFRU+z0VUVBTOOecczJ8/H263G5988gmGDh16yrWps7OzG50m1NjnoKXqcx6/Yo3T6QzoJkfZ2dk4fPiwtyTWa+yxJSQkNLqCyMlGDAF4V3Np6XN4qsJ09dVX46effsLhw4fx4YcfYsKECaecgqQoCj788EOMHDkS8+fPb/DWs2dPb6msH3X+888/T5m1Mc35GgWAAQMG4Mknn8SaNWswd+5cbN68GR9//LH3er1ej4kTJ+K1117D7t27ccMNN+D9999vdLWjpuYDGv9cbN++vUE+t9vdYCO2HTt2AECLXzWyWCyorKxs0cc21cke57Zt25CcnOxdDvREX3NN/VzWr7l/sq+Z5j7vx5NlGaNHj8bzzz+PLVu24Mknn8RPP/2EJUuWnPTjiMIdSzyFrdGjR0Ov1+P1119v8NLpW2+9BafTibPOOst7WWlpqc8xer0eXbt2haIocDgc0Gg0uOiii/DZZ581+gvn6NGjTcp1/P1ER0ejffv2jS675k9nn302AODFF1/0ufz5558H4JlfeqxJkyahsLAQb7/9NjZs2HDKqTT197Fq1SqsXr3ae9nRo0ebPHLYFH379kVSUhJmzZoFp9PpvXzu3LneKTeBcPbZZ8PpdOL111/3XuZyufDKK680ODY/Px/btm3z+ZrYsGHDKVfE0Gg0GD9+PL744gvs37/fe/nWrVuxaNGiU2asL1YnWoLw8ssvhyRJmDZtGvbs2dOktc9XrFiBgoICTJ06FRdffHGDt0mTJmHJkiUoLCxESkoKhg0bhnfffdcnP9C0V1Ka+jVaXl7e4PZ69+4NAN7vo+O/z2RZRs+ePX2Oaa6+ffsiNTUVb7zxhs9tfPfdd9i6dWuD7yEAPlNfFEXBq6++Cp1Od9IVZpxOZ6Nfy6tXr8amTZsanP/ib23btkXv3r0xZ84cn6+lP//8Ez/88IP38wSc+GuuqZ/LcePGISYmBjNnzoTVavU5tv5z3JLnvV5ZWVmDy47/WiGKVFxiksJWamoqHnnkETz88MMYNmwYzj33XJjNZqxcuRIfffQRxo0bh4kTJ3qPHzduHNLS0jB48GC0adMGW7duxauvvupzMt9TTz2FJUuW4IwzzsDf//53dO3aFWVlZVi7di1+/PHHRn9hHK9r164YMWIE+vTpg8TERKxZswaffvqpzwlwgdCrVy9MnjwZb731FioqKjB8+HCsXr0ac+bMwfnnn4+RI0f6HH/22WcjJiYG99xzj/cPmFO577778MEHH+DMM8/EtGnTvEtMZmdnN2ve/8nUL9N52223YdSoUbj00ktRUFCA9957D/n5+U1++X7Xrl144oknGlx+2mmnNVoKJk6ciMGDB+P+++9HQUEBunbtis8//7zRUdFrrrkGzz//PMaPH49rr70WxcXFeOONN9CtWzfv/PETmTFjBr7//nsMHToUN998M5xOp3f/glM9h71794ZGo8HTTz+NyspKGAwGjBo1yvsKUUpKCs4880zMnz8f8fHxJy0/9ebOnQuNRnPCY88991w89NBD+Pjjj3HXXXfh5ZdfxpAhQ3D66afj+uuvR25uLgoKCrBw4UKsX7/+pPfV1K/ROXPm4LXXXsMFF1yA/Px8VFdXY9asWYiNjfWWx+uuuw5lZWUYNWoUMjMzsW/fPrzyyivo3bu3d/nN5tLpdHj66acxdepUDB8+HJdffrl3qcOcnBzceeedPscbjUZ8//33mDx5Ms444wx89913WLhwIR588EGfE0mPV1NTg6ysLEyaNAndunVDVFQUNm3ahNmzZyMuLg7//Oc/W5S/OZ599lmcddZZGDhwIK699lrvEpNxcXE+rxr26dMHAPDQQw/hsssug06nw8SJE5v8uYyNjcULL7yA6667Dv369fPuG7BhwwbU1dVhzpw5zX7ej/XYY49h2bJlmDBhArKzs1FcXIzXXnsNmZmZ3r0JiCKWqGVxiPzlP//5jzJgwAAlKipKMRgMSufOnZUZM2YoVqvV57g333xTGTZsmJKUlKQYDAYlPz9fuffee5XKykqf44qKipRbbrlFycrKUnQ6nZKWlqaMHj1aeeutt7zH1C+XOH/+/AZ5nnjiCaV///5KfHy8YjKZlM6dOytPPvmkYrfbT/o4TnabxzrZ0poOh0OZMWOGkpubq+h0OiUrK0t54IEHGjwX9a644goFgDJmzJhGrz9+iUNFUZSNGzcqw4cPV4xGo5KRkaE8/vjjyjvvvNPkJSaPf3z1y+Adu4SjoijKyy+/rGRnZysGg0Hp37+/smLFCqVPnz7KmWeeeeIn55jc+N+yfce/XXvttYqiNL4cZGlpqXLVVVcpsbGxSlxcnHLVVVcp69atazTff/7zHyUvL0/R6/VK7969lUWLFjVpiUlFUZSlS5cqffr0UfR6vZKXl6e88cYbDZbOq38cxz//s2bNUvLy8rxLUh6/3OS8efMUAMr1119/yufJbrcrSUlJytChQ096XG5urnLaaad53//zzz+VCy64QImPj1eMRqPSqVMn5Z///Kf3+tZ+ja5du1a5/PLLlXbt2ikGg0FJTU1VzjnnHGXNmjXeYz799FNl3LhxSmpqqqLX65V27dopN9xwg3L48OFTPu56xy8xWe+TTz5RTjvtNMVgMCiJiYnKFVdcoRw8eNDnmMmTJytRUVHK7t27lXHjxilms1lp06aNMn36dMXlcp30fm02mzJt2jSlZ8+eSmxsrKLT6ZTs7Gzl2muvbbCU44k0ZRnV+u+tZ599ttHrf/zxR2Xw4MGKyWRSYmNjlYkTJypbtmxpcNzjjz+uZGRkKLIs+3yfN+fnzVdffaUMGjTIe1/9+/dXPvroI59jmvK8H/998t///lc577zzlPT0dEWv1yvp6enK5ZdfruzYseOkzw1RJJAUJYzOJiMi1XK73UhJScGFF16IWbNmBe1+CwoKkJubi9mzZzfYvTYUffnllzj//POxbNky7/Kd5H9TpkzBp59+2uAcCiKiYOGceCIKOVartcGc6Pfffx9lZWUYMWKEmFBhYtasWcjLy+NUAiKiCMc58UQUclatWoU777wTl1xyCZKSkrB27Vq888476N69e1CWwQxHH3/8MTZu3IiFCxfipZdeEr70HxERBRZLPBGFnJycHGRlZeHll19GWVkZEhMTcfXVV+Opp57y2e2V/nL55ZcjOjoa1157LW6++WbRcYiIKMA4J56IiIiIKMxwTjwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPRERERBRmWOKJiIiIiMIMSzwRERERUZhhiSciIiIiCjMs8UREREREYYYlnoiIiIgozLDEExERERGFGZZ4IiIiIqIwwxJPXiNGjED37t1PeVxOTg6mTJkS+ECNmDJlCnJycoTcNxEREVGoYIknIiIiIgozLPFERERERGGGJZ6IiIiIKMywxKtEQUEBJEk64duJ/PDDDzCbzbj88svhdDpPeFxFRQXuuOMOZGVlwWAwoH379nj66afhdrsbZHjuuefw1ltvIT8/HwaDAf369cPvv//e4Da/+OILdO/eHUajEd27d8eCBQta9yQQERERRQit6AAUHCkpKfjggw98LnM4HLjzzjuh1+sb/ZhvvvkGF198MSZNmoR3330XGo2m0ePq6uowfPhwHDp0CDfccAPatWuHlStX4oEHHsDhw4fx4osv+hz/4Ycforq6GjfccAMkScIzzzyDCy+8EHv27IFOpwPg+ePhoosuQteuXTFz5kyUlpZi6tSpyMzMbP2TQURERBTmWOJVIioqCldeeaXPZbfccgtqamqwePHiBsd//vnnuOyyyzBlyhS88cYbkOUTv2jz/PPPY/fu3Vi3bh06dOgAALjhhhuQnp6OZ599FnfffTeysrK8x+/fvx87d+5EQkICAKBTp04477zzsGjRIpxzzjkAgH/84x9o06YNli9fjri4OADA8OHDMW7cOGRnZ7fuySAiIiIKc5xOo1Lvv/8+XnvtNTzzzDMYOXKkz3UfffQRJk2ahBtuuAFvvvnmSQs8AMyfPx9Dhw5FQkICSkpKvG9jxoyBy+XCsmXLfI6fNGmSt8ADwNChQwEAe/bsAQAcPnwY69evx+TJk70FHgDGjh2Lrl27tupxExEREUUCjsSr0Pr163HjjTfi8ssvx1133eVz3d69e3HllVfikksuwSuvvNKk29u5cyc2btyIlJSURq8vLi72eb9du3Y+79cX+vLycgDAvn37AMA7qn+sTp06Ye3atU3KRURERBSpWOJVpry8HBdddBE6duyIt99+u8H1bdu2Rdu2bfHtt99izZo16Nu37ylv0+12Y+zYsbjvvvsavb5jx44+759obr2iKE14BERERETEEq8ibrcbV1xxBSoqKvDjjz/CbDY3OMZoNOKbb77BqFGjcOaZZ2Lp0qXo1q3bSW83Pz8fNTU1GDNmjF9y1s9537lzZ4Prtm/f7pf7ICIiIgpnnBOvIjNmzMCiRYvw0UcfITc394THxcXFYdGiRUhNTcXYsWOxe/fuk97upZdeil9//RWLFi1qcF1FRcVJl6ZsTNu2bdG7d2/MmTMHlZWV3ssXL16MLVu2NOu2iIiIiCIRR+JVYtOmTXj88ccxbNgwFBcX4z//+Y/P9cevXJOcnIzFixdjyJAhGDNmDJYvX46MjIxGb/vee+/FV199hXPOOQdTpkxBnz59UFtbi02bNuHTTz9FQUEBkpOTm5V35syZmDBhAoYMGYJrrrkGZWVleOWVV9CtWzfU1NQ078ETERERRRiWeJUoLS2FoihYunQpli5d2uD640s8AGRkZODHH3/E0KFDMXbsWCxbtqzRMm42m7F06VL861//wvz58/H+++8jNjYWHTt2xIwZM3xWmGmqM888E/Pnz8fDDz+MBx54APn5+Zg9eza+/PJL/Pzzz82+PQoSlwuwWj1vNttf/65/32YDjtkADIrieav/9/H/b+wyrRbQ6wGDwfNW/+/j/28weI4lIiKKQJLCswmJ6GQcDqCqyvNWW9uwpB9b1ps5dSrgZLlhuTeZgJgYIDb2r7dGzg8hIiIKZSzxROQp4BUVQGWlp6xXV/9V3K1W0ekCT6v1FPvjy339+ydYUYmIiEgUlngitVAUTzmvqGj4poai3hpm81/FPi4OSEkBkpMBo1F0MiIiUimWeKJIZbUCRUVAcbHn/0ePeqbGkP/ExHgKff1bcrJn2g4REVGAscQTRQK3Gygp8RT2+tJeXS06lTrFx/sW+6QknmBLRER+xxJPFI6qq30Le2mpZ2UYCj2SBCQk/FXq27TxFHsiIqJWYIknCgcVFcCBA8Dhw57iXlcnOhG1hskEZGYCWVme/3NuPRERNRNLPFEocrk8hX3/fs9bVZXoRBRIycmeQp+VBaSmepbGJCIiOgmWeKJQUVPjGW3fvx84dCj01lyn4NDrgfT0v0bpY2JEJyIiohDEEk8kiqJ45rPXj7aXlYlORKEoLu6vQp+ezpNkiYgIAEs8UXBZrX+Nth886NntlKipNBogIwNo3x7IyWGhJyJSMZZ4okBzOoG9e4EdO4DCQs8IPFFr6XSeIt++vWeUXpJEJyIioiBiiScKlMJCT3Hfu5ebLFFgmUxAfr6n0Kemik5DRERBwBJP5E+VlZ7ivnOn50RVomCLjfWU+Q4dPPPpiYgoIrHEE7WWzQbs3u0p78XFotMQ/SUlxVPo8/MBs1l0GiIi8iOWeKKWcLs9J6ju2AHs2+d5nyhUSZJnZZsOHTyFXqMRnYiIiFqJJZ6oOcrKgG3bgF27PCvNEIUboxHo1Ano2pVr0BMRhTGWeKKmOHgQ2LjR83+iSCBJQLt2QLduntVtiIgorLDEE52I2+0Zcd+4kRsxUWSLj/eMzHfq5Fm6koiIQh5LPNHxbDZgyxZg82agrk50GqLg0euBzp2B7t2B6GjRaYiI6CRY4onqVVUBmzYB27d7NmgiUitZBvLygJ49geRk0WmIiKgRLPFER454pszs28fdVImOl57uKfPt2olOQkREx2CJJ3VSFM9Oqhs3cm13oqaIjwf69PEsUUlERMKxxJO6uN2etd3XrQOqq0WnIQo/SUlAv34cmSciEowlntRjzx5gzRqgokJ0EqLw16aNp8ynp4tOQkSkSizxFPkKC4HVqzlthigQMjI8ZT41VXQSIiJVYYmnyFVaCvz2GzdoIgqGnBygb18gMVF0EiIiVWCJp8hTVeWZNrNrl+gkROoiSZ4TX/v2BWJjRachIopoLPEUOSwWYO1aYOtWzwmsRCSGLAMdO3pWs4mKEp2GiCgiscRT+HM4PEtFbtzo+TcRhQaNBujaFTjtNMBoFJ2GiCiisMRT+HK7gS1bPKPvVqvoNER0IgYD0L8/0KWL6CRERBGDJZ7C06FDwC+/eOa/E1F4SE0Fhg71rDVPREStwhJP4cVqBVau5EmrROFKkoDu3T0nv+p0otMQEYUtlngKH9u3A6tWATab6CRE1FpRUcDAgUBenugkRERhiSWeQl9FhWfqzOHDopMQkb9lZQGDB3NJSiKiZmKJp9DlcgHr13veXC7RaYgoUDQazwo2vXt7lqckIqJTYomn0HT4sGf0vaJCdBIiCpa4OGDIECAjQ3QSIqKQxxJPocVm88x7375ddBIiEqV9e2DAAMBsFp2EiChkscRT6Ni1C/j1V8/Oq0Skbnq9p8h37iw6CRFRSGKJJ/Gqqz1TZw4eFJ2EiEJNbi4wbJhnwygiIvJiiSexdu3yFHiHQ3QSIgpVUVHAyJFAerroJEREIYMlnsRwOoHly4EdO0QnIaJwIElAz55Av35cwYaICCzxJEJJCfDf/wKVlaKTEFG4SU4GRo0C4uNFJyEiEoolnoLrzz89q8+43aKTEFG40mqBQYN40isRqRpLPAWH1Qr8/DOwf7/oJEQUKXJyPCe9Go2ikxARBR1LPAVeYSHw009AXZ3oJEQUacxmz0mv3CCKiFSGJZ4CR1GAP/4A1q3z/JuIKFB69gT69+dJr0SkGizxFBg1NZ7R9yNHRCchIrXgSa9EpCIs8eR/e/cCy5YBNpvoJESkNjqdp8hnZ4tOQkQUUCzx5D9uN7ByJbBli+gkRKRmkuRZT753b9FJiIgChiWe/MNqBX74gdNniCh0tG8PDB8OaDSikxAR+R1LPLVeWRmwaBFQXS06CRGRr5QUYPx4zyo2REQRhCWeWqegAFiyBHA4RCchImqc2ewp8ikpopMQEfkNSzy13Nq1wJo1olMQEZ2aRuOZWtO+vegkRER+wRJPzed0AkuXArt3i05CRNQ8vXt7TnqVJNFJiIhahSWemsdi8cx/Ly4WnYSIqGWysz3LUOp0opMQEbUYSzw1XUUF8N13PIGViMJfQoJnnnxsrOgkREQtwhJPTVNYCCxezA2ciChyGI3AmDFAerroJEREzcYST6e2Y4dnB1a3W3QSIiL/kmVg2DCgY0fRSYiImoUlnk5uzRrPKjRERJFsyBCga1fRKYiImowlnhqnKMAvvwDbtolOQkQUHP37e1avISIKAyzx1JCieJaQ3LFDdBIiouA67TTPEpRERCGOJZ58ud2eHVi5BjwRqVX37sCgQaJTEBGdFEs8/cXtBn78ESgoEJ2EiEisTp08J7xyUygiClEs8eThcnmWkNy/X3QSIqLQkJfn2RRKlkUnISJqgCWeAKcT+OEH4OBB0UmIiEJLu3bA2LGARiM6CRGRD5Z4tXM4gO+/Bw4fFp2EiCg0pad7dnfV6UQnISLyYolXM7sd+O47oKhIdBIiotCWmgqcdRZgMIhOQkQEgCVevWw24NtvgaNHRSchIgoPiYnAhAmAySQ6CRERS7wqWa3AwoVAaanoJERE4SUuDpg4ETCbRSchIpXjKfdqY7EAX3/NAk9E1BKVlZ5XMe120UmISOVY4tWkvsCXl4tOQkQUvsrKPAsCOJ2ikxCRirHEq4XD4TmJtaJCdBIiovB35Ihnczy3W3QSIlIplng1cLs968CXlIhOQkQUOfbvB5YuFZ2CiFSKJV4Nfv4ZOHRIdAoiosizcyfw66+iUxCRCrHER7pVq4Bdu0SnICKKXJs2AevWiU5BRCrDEh/JNm70vBERUWD9/juwdavoFESkIizxkWrXLs8oPBERBcfy5cDevaJTEJFKsMRHokOHPPPgiYgoeBQF+OknnoNEFMJGjBiBESNGiI7hFyzxkaa01LMSDZc9IyIKPpfL8zP46FHRSYiarK6uDo8++ih+5gBg0P3rX//CF1980aKPlRRFUfwbh4Sprga+/BKoqxOdhIhI3YxG4Nxzgfh40UmITqmkpAQpKSmYPn06Hn30UdFxAsr+v92W9Xq94CQe0dHRuPjii/Hee+81+2M5Eh8prFbPVuAs8ERE4vFnMkWw2tpa0RFaTK/Xh0yBby2W+EjgdHq2AK+sFJ2EiIjq1dQAixdzeiM126OPPgpJkrBr1y5MmTIF8fHxiIuLw9SpU1F3zB+GTqcTjz/+OPLz82EwGJCTk4MHH3wQNpvN5/bWrFmD8ePHIzk5GSaTCbm5ubjmmmsAAAUFBUhJSQEAzJgxA5IkQZIk74j8lClTEB0djd27d+Pss89GTEwMrrjiCgDAL7/8gksuuQTt2rWDwWBAVlYW7rzzTlgslmY93p9//hmSJGHevHmYMWMGMjIyEBMTg4svvhiVlZWw2Wy44447kJqaiujoaEydOrXBY5w9ezZGjRqF1NRUGAwGdO3aFa+//nqD+zp+Tvyx9/3kk08iMzMTRqMRo0ePxq7jlugeMWIEunfvji1btmDkyJEwm83IyMjAM8880+B+bDYbpk+fjvbt23ufm/vuu88ntyRJqK2txZw5c7zP+5QpU5r8vGmbfCSFJkXxbP1dXCw6CRERHa+oCFixAhg6VHQSCkOXXnopcnNzMXPmTKxduxZvv/02UlNT8fTTTwMArrvuOsyZMwcXX3wx7r77bvz222+YOXMmtm7digULFgAAiouLMW7cOKSkpOD+++9HfHw8CgoK8PnnnwMAUlJS8Prrr+Omm27CBRdcgAsvvBAA0LNnT28Op9OJ8ePHY8iQIXjuuedgNpsBAPPnz0ddXR1uuukmJCUlYfXq1XjllVdw8OBBzJ8/v9mPd+bMmTCZTLj//vuxa9cuvPLKK9DpdJBlGeXl5Xj00UexatUqvPfee8jNzcUjjzzi/djXX38d3bp1w7nnngutVouvv/4aN998M9xuN2655ZZT3vdTTz0FWZZxzz33oLKyEs888wyuuOIK/Pbbbz7HlZeX48wzz8SFF16ISy+9FJ9++in+8Y9/oEePHjjrrLMAAG63G+eeey6WL1+O66+/Hl26dMGmTZvwwgsvYMeOHd458B988AGuu+469O/fH9dffz0AID8/v8nPF0t8uPv9d8/W30REFJq2bgVSUoDOnUUnoTBz2mmn4Z133vG+X1painfeeQdPP/00NmzYgDlz5uC6667DrFmzAAA333wzUlNT8dxzz2HJkiUYOXIkVq5cifLycvzwww/o27ev97aeeOIJAEBUVBQuvvhi3HTTTejZsyeuvPLKBjlsNhsuueQSzJw50+fyp59+GiaTyfv+9ddfj/bt2+PBBx/E/v370a5du2Y9XqfTiaVLl0Kn0wEAjh49io8//hhnnnkmvv32W+9j3LVrF959912fEr906VKfLLfeeivOPPNMPP/8800q8VarFevXr/dOtUlISMC0adPw559/onv37t7jCgsL8f777+Oqq64CAFx77bXIzs7GO++84y3xH374IX788UcsXboUQ4YM8X5s9+7dceONN2LlypUYNGgQrrzyStx4443Iy8tr9Hk/FU6nCWcFBcD69aJTEBHRqSxfzldMqdluvPFGn/eHDh2K0tJSVFVVeUvtXXfd5XPM3XffDQBYuHAhACD+fydXf/PNN3A4HC3OctNNNzW47NjSXFtbi5KSEgwaNAiKomBdC3Yxvvrqq70FHgDOOOMMKIrinfpz7OUHDhyA0+lsNEtlZSVKSkowfPhw7NmzB5VNmG48depUn7nyQ//36tmePXt8jouOjvYp3Hq9Hv379/c5bv78+ejSpQs6d+6MkpIS79uoUaMAAEuWLDllnqZgiQ9XlZVcC56IKFy43Z6lJ3miKzXD8SPZCQkJADxTOvbt2wdZltG+fXufY9LS0hAfH499+/YBAIYPH46LLroIM2bMQHJyMs477zzMnj27wZzyk9FqtcjMzGxw+f79+zFlyhQkJiYiOjoaKSkpGD58OAA0qTgf7/jHGxcXBwDIyspqcLnb7fa5jxUrVmDMmDGIiopCfHw8UlJS8OCDDzY5y8me62NlZmZCkqQGxx573M6dO7F582akpKT4vHXs2BGAZ4qTP3A6TThyOj0nS/1vmSQiIgoDdXWec5jOOQeQOYZGp6bRaBq9/NjVwY8vlMeTJAmffvopVq1aha+//hqLFi3CNddcg3//+99YtWoVoqOjT5nDYDBAPu5r1uVyYezYsSgrK8M//vEPdO7cGVFRUTh06BCmTJkCdwtO6D7R4z3V87B7926MHj0anTt3xvPPP4+srCzo9Xp8++23eOGFF5qUpSnPdVOPc7vd6NGjB55//vlGjz3+j5KWYokPR8uWAWVlolMQEVFzHTkCrFwJHDNPlqglsrOz4Xa7sXPnTnTp0sV7eVFRESoqKpCdne1z/IABAzBgwAA8+eST+PDDD3HFFVfg448/xnXXXXfKPwQas2nTJuzYsQNz5szB1Vdf7b188eLFLX9QLfT111/DZrPhq6++8hlR99e0lebKz8/Hhg0bMHr06Cb9kdVSHAoIN5s3A8cteURERGFkyxZg+3bRKSjMnX322QCAF1980efy+tHfCRMmAPBMBzl+NLl3794A4J1SU7/aTEVFRZPvv35E+tjbVhQFL730UpNvw18ay1JZWYnZs2cHPQvgWVXo0KFD3hOOj2WxWHzW2Y+KimrW834sjsSHk6Ii4NdfRacgIqLWWr4cSEgAUlNFJwkoRVGgQGn035IkQSNpWjUSqWa9evXC5MmT8dZbb6GiogLDhw/H6tWrMWfOHJx//vkYOXIkAGDOnDl47bXXcMEFFyA/Px/V1dWYNWsWYmNjvX8ImEwmdO3aFZ988gk6duyIxMREdO/e3WdVluN17twZ+fn5uOeee3Do0CHExsbis88+azCHPBjGjRsHvV6PiRMn4oYbbkBNTQ1mzZqF1NRUHD58OOh5rrrqKsybNw833ngjlixZgsGDB8PlcmHbtm2YN28eFi1a5F0pqE+fPvjxxx/x/PPPIz09Hbm5uTjjjDOadD8s8eHCYvHMpeSmIURE4c/l8pzbdOGFwDGraoQyu8uOWnstauw1qHV4/m91WmF32U/41hQaSQOtrIVOo4Neo/e+GbVGmHVmmHVmROmiPP/Xe/4vS5xIAABvv/028vLy8N5772HBggVIS0vDAw88gOnTp3uPqS/3H3/8MYqKihAXF4f+/ftj7ty5yM3N9bmt2267DXfeeSfsdjumT59+0hKv0+nw9ddf4/bbb8fMmTNhNBpxwQUX4NZbb0WvXr0C+riP16lTJ3z66ad4+OGHcc899yAtLQ033XQTUlJSGqxsEwyyLOOLL77ACy+8gPfffx8LFiyA2WxGXl4epk2b5j3BFfC8cnL99dfj4YcfhsViweTJk5tc4iXl+NdYKPQoCrBwIVBYKDoJERH5U1paSJ3oanfZUW4pR7m1HOWWclRYK7ylvamlPBiMWiPiDHGIN8b7vMUaYjmyT6rBEh8OVq/mevBERJGqWzdg8OCg322FtQLFtcUoqStBhbUCZZYy1DnCewlMWZIRZ4hDgikBqVGpSDGnICUqBVqZEw8o8rDEh7qCAs/awkREFLlGjgQ6dAjYzdtddhTXFqO4thhFNUUori2GzdX0dcLDmQTJp9SnRqUi0ZTIEfsgsNvtKDvFanpxcXE+GzVR07HEh7LKSmDBAq4HT0QU6fR64KKLgJgYv9ycy+3C4ZrDOFB5AIeqD6HcUu49qZQ803HSY9KREZOBzNhMxBj887yTr59//tl7gu2JzJ49G1OmTAlOoAjDEh+qnE7giy+4HjwRkVqkpQETJwItHCEut5TjYNVBHKg6gMPVh+FSXH4OGLliDbHIiMlARqyn1Os1etGRIkJ5eTn++OOPkx7TrVs3tG3bNkiJIgtLfKj69Vdg0ybRKYiIKJj69gVOP71JhyqKgiM1R7C7fDf2V+5Hjb0mwOHUQZZkZMRkIDchFznxOTBqjaIjETWKJT4UHTkCfP21Z1UaIiJSD1kGzj33pOvHH6k5gt1lu7G3Ym/Yn4ga6iRIaBvTFnkJeciJz4FZZxYdiciLJT7UOJ3Ap58CVVWikxARkQhxcZ758dq/VlQpri3GrrJd2Fu+F7WO2pN8MAWKBAlp0WnolNwJeQl5XPGGhGOJDzUrVgCbN4tOQUREInXuDOug/thRugPbS7aj3Br8XTDpxHSyDvmJ+eic3BmpUZG96y6FLpb4UFJYCHzzjegUREQkkDXegOp4GeuSJBSA02VCXYIxAZ2SO6FjUkfOn6egYokPFQ6HZxpNdbXoJEREFGRujYSaVBNqzA444AAAuDQa/BKtwCa5BaejppAlGe0T26Nnm55INCWKjkMqwBIfKn75Bdi6VXQKIiIKIpdeg+pUA6oNVrjRsKxXmE34TW8RkIxaIzM2Ez3b9ERmbKboKBTBWOJDwcGDwLffik5BRERB4jRpUZWiQ43OespNmLbHGVEgWYOUjPwpwZiAnm16on1ie2hkjeg4FGFY4kWz2z3TaGq4vi8RUaSzR+tRlaxBrabpo+sujQbLYxRYGxmpp/Bg1pnRq00vdEnpwlVtyG9Y4kVbuhTYvl10CiIiCiB7tB4VKTIscstG1KtMRvxq4Gh8uKsv811TunJknlqNJV6kAweA774TnYKIiALEadSiIk3XrJH3E9keZ0KBxPnxkSBKF4XT256OTsmdIEuy6DgUpljiRbHbgfnzgVpu2kFEFGlcOhlVaUZU6y2nnPPeVE6NFktjXHD66fZIvDhDHPpl9ENeQp7oKBSGWOJFWbIE2LlTdAoiIvIjtyyhOs2IKpOt0dVmWutItAkbtByNjzRp0WkYnDUYSeYk0VEojLDEi8DVaIiIIk5tihHlsQ644ArcnUjAb3E6VPxvLXmKHBIkdE7ujH4Z/bhpFDUJS3ywud2e1WgqKkQnISIiP3CYtChL08LawpNWm6vWaMRyI09yjVQGjQF90vuga0pXzpenk2KJD7Y//wRWrhSdgoiIWkmRJVS2NaLKeOq13v2NJ7lGvgRjAoZmD0VadJroKBSiWOKDyWoFPvkEsNlEJyEiolawJBhQnuiGQ9C0Fp7kqh7dUrqhf0Z/6DQ60VEoxLDEB9Py5cCWLaJTEBFRC7l0MsozDH5ZMrK1eJKresToYzAsexgyYjNER6EQwhIfLGVlwGefAXy6iYjCkiXRiNKEAJ+42hw8yVV1Oid3xoDMAdBr9KKjUAhgiQ+WhQuBQ4dEpyAiomZyyxIqMo2o1oXeqDdPclWfKF0UhmUPQ1ZclugoJBhLfDAUFAA//CA6BRERNZM9Ro+SVEXY3Pem4Emu6tQjtQfOyDyDK9ioGD/zgeZ2A6tWiU5BRETNoACozDDjSKo9pAs8AOTXOKCFJDoGBdmm4k34ctuXqLJViY5CgnAkPtDWrwdWrxadgoiImshp0KAkQwubFD4rifEkV/XSyToMzR6K9ontRUehIONIfCDV1QHr1olOQURETWSNN+BIJsKqwANAWq0FMYpWdAwSwOF24Ke9P2HZvmVwup2i41AQscQH0u+/A47QfhmWiIg8qtqaUZxkC53VZ5pDAbo4uY64mm0r2YYFWxdweo2KsMQHytGjwPbtolMQEdEpuGUJJTkmlJvrwnrrpIRaC+LBIq9m5dZyLNi6AIequBqeGrDEB8qvv4pOQEREp+A0aVGUqwuJzZv8obOdU2rUzuay4btd3+HP4j9FR6EAY4kPhD17gCNHRKcgIqKTsCQYcDjdDTvsoqP4TVydBYkcjVc9t+LGygMrsWzfMrgVt+g4FCAs8YGwdq3oBEREdBI1qSYcTbTBjcgrOJ1s/NVOHttKtuGbHd/A6uSGYJGI3+n+VlAAlJWJTkFERCdQmW5CaYwlrOe/n0ysxYYURS86BoWIIzVHsGDrAlRaK0VHIT9jifc3jsITEYUkBUBZOxMqTJEx//1kOBpPx6q2V+PL7V+ipK5EdBTyI36X+9OBA0AJv0GIiEKNIksoyTWiWhf5BR4AoqxWpMEgOgaFEKvTiq+3f43C6kLRUchPWOL9iaPwREQhx6WTUZSjR52srnnBHSyROmGIWsrhduC7nd9hT/ke0VHID1ji/aWwECgqEp2CiIiO4dJrUNROE3Y7sPqD2WZHhmIUHYNCjEtx4b97/outR7eKjkKtxBLvLxyFJyIKKS69BkVZMhxQ787Z7a2Rt/oOtZ4CBb/s/wUbjmwQHYVagSXeH44c8YzEExFRSGCB9zDa7GjH0Xg6gd8O/YaNRRtFx6AWYon3B47CExGFDBZ4X3kWjsbTia06uIq7u4YplvjWOnoUOHhQdAoiIgILfGMMdjvSFa5UQye28sBKbDm6RXQMaiaW+NbiKDwRUUhggT+xHLskOgKFuOX7l/Nk1zDDEt8apaXAvn2iUxARqZ5LJ6MoS8MCfwIxFitioRUdg0LcL/t/wfaS7aJjUBOxxLcGR+GJiIRzyxKOZunggF10lJDW3qETHYHCwLJ9y7CvggOU4YAlvqXKy4G9e0WnICJSNQVASbZBlevAN1eyxQY9f+3TKShQ8N+9/0VxbbHoKHQK/G5uqU2bRCcgIlK9smwTLCrbibWlJLcb7d1cbpJOzel24vtd36PKViU6Cp0ES3xL2O3Arl2iUxARqVplhhk1WovoGGGlbZ0dkiI6BYUDq9OKb3d+C6uTfySHKpb4lti5E3A6RacgIlKt2hQTKox1omOEHa3TiWxu/kRNVGWrwve7vofTzc4TiljiW2Irl2AiIhLFGmdAaSxH4FuqnY1D8dR0xbXF+GnvT1AUft2EGpb45ioqAsrKRKcgIlIll0GDkmQnWCdazmSzIUXRi45BYaSgogBrCteIjkHHYYlvri3c0YyISARFAo5maOGCS3SUsJfn0IiOQGFm3ZF12FvOVflCCUt8c9hswJ49olMQEalSeZaJS0n6SbzFAjNY5Kl5fi74GWUWzkYIFSzxzbFjB+DiCBARUbDVpJpQreM8eL9RgA5OTqmh5nG4HVi8ezHsLm6sFgpY4puDJ7QSEQWdPUaPshguc+dvKRY7SwA1W6WtEksLloqOQWCJb7rCQqCiQnQKIiJVcelkHE11Q+GprH6ncbmQweUmqQX2VuzFxqKNomOoHkt8U3EUnogo6Eoz9XCCa1QHSoZDEh2BwtTqQ6tRUlciOoaqscQ3hdUK7OUZ2UREwVSdZoJF5jSaQIq1WKFnFaAWcCtu/LT3J24EJRC/c5ti+3bA7RadgohINRxmHcqjWOADTVIUZLsNomNQmKqwVuDXA7+KjqFaLPFNwak0RERBo0hAaZrEefBBkmbjqmvUcltLtmJfxT7RMVSJJf5UDh4EqqpEpyAiUo3KdBNsEpewCxazzY4YRSs6BoWxpfuWos5RJzqG6rDEn8r27aITEBGphi1Wjyoj14MPthw314ynlrM6rVx2UgCW+JNxOoF9fImIiCgY3LKE0hROohEhxeoQHYHC3IGqA9hewoHPYGKJP5n9+z1FnoiIAq4ywwQHWCZF0DkcSAVH46l1Vh1cBauTJ6QHC0v8yezeLToBEZEq2KN1qNZzTq1I7Rwa0REozNlcNqw8sFJ0DNVgiT8RhwM4cEB0CiIiVShLlTmNRrAEi42lgFptV9kuHKw6KDqGKvD79UT27eNUGiKiIKhpY4JNsomOoXqy240sxSg6BkWA5fuXcxOoIGCJP5E9e0QnICKKeC6djPJoFvhQkc6VPckPqmxVWHt4regYEY8lvjF2O6fSEBEFQUW6AW5wR+xQEWO1QQtJdAyKABuLNqLcUi46RkRjiW/M/v2AizvYEREFkjXOgBot14QPJZKiIEMxiI5BEcCtuLHq4CrRMSIaS3xjCgpEJyAiinjlyTyVNRSlOjkST/5xoOoAT3INIJb447lcnEpDRBRgtSkm2MEJ2KEozsrPC/nPqoOroCj8gz0QWOKPd+iQZ3lJIiIKCEUCKmL5czZUaVwuJHPjJ/KTMksZtpdyJ9dAYIk/HqfSEBEFVHWaGU5w+blQ1tbFjZ/If9YUroHDxT/c/Y0l/liK4lkfnoiIAsKtkVBl5pKSoS7RxsUdyH/qHHXYULRBdIyIwxJ/rKIiwMKVEoiIAqWqrQkusCCGOqPdDpPC0Xjyn41FG2F1WkXHiCgs8cfiKDwRUcC49BpUGThQEi4yFc6LJ/9xup3YWLRRdIyIwhJ/LK5KQ0QUMJVpBijgKhXhItnBzxX51+bizbA5OZ3OX1ji61mtQFmZ6BRERBHJpZNRo+MofDiJsdlZEsivHG4HNhVvEh0jYvD7s97hw6ITEBFFrOo2Ro7ChxnJ7UYad28lP/uz+E/YXdyLwB9Y4uuxxBMRBYRbllBt4Alt4aiNkzWB/MvusuPP4j9Fx4gI/O6sV1goOgERUUSqaWOCG27RMagFEuxc25v8b1PRJq4b7wcs8QBgs3E+PBFRACgSUG3mS+fhSudwIhZa0TEowthcNmwr2SY6RthjiQc4lYaIKEBqU0zcnTXMpSo60REoAm0+ull0hLDHEg9wKg0RUYBUxbDAh7t4fgopAKpsVdhfuV90jLDGEg+wxBMRBYAlwQgHOO813EXb2eIpMHiCa+uwxHM+PBFRQNTESaIjkB8YHA7oWRcoAA5WHUSltVJ0jLDF70rOhyci8juXXgOLhps7RYpURS86AkUozo1vOZZ4TqUhIvK72mQDt3aKIIlu1gUKjO0l27ncZAvxu5Ij8UREfldj4i/lSBLncImOQBHK4XZgd/lu0THCkrpLvM0GlJaKTkFEFFGs8Qae0BphTHY7JL60QgGyo3SH6AhhSd0lnqPwRER+VxOv7l8tkUhyK0iSOC+eAuNIzRFU26pFxwg76v5JyxJPRORXLp2MOo1VdAwKgGS3RnQEimA7y3aKjhB21F3ijx4VnYCIKKLUJRmg8JTWiBTn5OeVAmdnKUt8c6m7xHN9eCIiv6ozuUVHoADhpk8USJW2ShTXFouOEVbUW+JragC7XXQKIqKI4dLJsMk20TEoQLROJ6IUTqmhwOEJrs2j3hLPUXgiIr+yJHJt+EiXAp7cSoGzp3wPFIU/RZqKJZ6IiPyi1sypNJEujsvFUwBZnVYU1RaJjhE2WOKJiKjVOJVGHcwujpJSYBVUFIiOEDZY4omIqNUsCZxKowZGJ09upcDaV7FPdISwoc4S73YDFRWiUxARRYy6KFZ4NdA7nCotDhQslbZKVFgrRMcIC+r8Xqyo8BR5IiJqNbcswcqpNKoRp+hER6AIx9H4plFniedUGiIiv7HFcYMnNYmDVnQEinD7Klnim4IlnoiIWsUarc5fJWoV45ZER6AIV1RTBKvTKjpGyFPnT16WeCIiv7HoHaIjUBBFcYUaCjAFCgqrC0XHCHnqLPGlpaITEBFFBJdBAwdY4tXE6ORi8RR4h6oOiY4Q8tRX4u12oLZWdAoioohgjeUOnmqjdzggcTCeAowj8aemvhLPqTRERH5jNYtOQMEmKQpiJJ7cSoFVaatEnaNOdIyQxhJPREQtZtVyKo0axSss8RR4h6sPi44Q0tRX4isrRScgIooILoMGTnAHTzWKcauvPlDwHak5IjpCSFPfdyHnwxMR+YUtmpv+qFWUm5PiKfAO13Ak/mRY4omIqEXsJvX9CiEPE1eooSAot5TD4eKUvRNR309glngiIr+w61jk1ErHEk9BoEBBqYXLgp+I+kp8Hc90JiLyB7vM+fBqpXG5VFggSITSOpb4E1HX96DFArjdolMQEYU9p1ELFzgaq2ZmRSM6AqlASV2J6AghS10lnlNpiIj8wh7NJQbVLpprxVMQcDrNianrO5AlXnVmfvcdPl+3DtuOHIFJr8egvDw8feGF6JSW5j3mSGUl7v3sMyzeuhXVVis6tWmDh84+Gxedfrr3mB1FRbj3s8+wYtcu2F0u9MzIwOPnnYeRnToBADYcOICnFi3C8l27UFJTg5ykJNw4bBimjR7tk+fn7dtx1/z52Hz4MLISEvDw2WdjyqBBPsf835IleHbxYhyprESvzEy8ctll6J+bG8Bniaj5bDypVfVMblltQ4EkQJmlDG7FDVniF9vx1PWMsMSrztIdO3DLiBFYdf/9WDxtGhwuF8a99BJqbTbvMVfPno3tRUX46uabsemRR3Dhaafh0rfewrr9+73HnPPqq3C6XPjprrvwx4MPoldmJs559VUc+d++A3/s34/UmBj855prsHn6dDx01ll4YMECvLpkifc29paUYMKrr2Jkp05Y//DDuGP0aFz3wQdYtHmz95hPfv8dd336KaZPmIC1Dz2EXpmZGP/yyyiuqgrCs0XUdA4tpyaqnQmS6AikAm7FjXJLuegYIUldJZ4ntarO99OmYcqgQeiWno5eWVl4b8oU7C8rwx/79nmPWblnD24bORL9c3ORl5KChydMQLzZjD/+V+JLamqws7gY9595JnpmZqJDmzZ46sILUWe348/CQgDANYMH46VJkzC8Y0fkpaTgygEDMHXQIHy+bp33ft5YuhS5ycn49yWXoEvbtrh15EhcfPrpeOHHH73HPP/jj/j7kCGYOngwuqan440rroBZr8e7K1cG6RkjahoHT2pVPSP/jqMg4ZSaxqmrxHMkXvUqLRYAQGJUlPeyQXl5+GTNGpTV1sLtduPj33+H1eHAiI4dAQBJUVHo1KYN3l+1CrU2G5wuF95ctgypMTHo067dSe/r2Pv5dc8ejOnc2eeY8V274tc9ewAAdqcTf+zfjzFdunivl2UZYzp39h5DFAoUCdyplaDnhk8UJBXWCtERQhLnxJNquN1u3DFvHgbn56N7Rob38nnXX49Js2Yh6a67oJVlmPV6LLjpJrRPTQUASJKEH++8E+e/9hpipk2DLElIjYnB97ffjoRjSvqxVu7ejU/WrMHC227zXnakqgptYmN9jmsTG4sqqxUWux3ldXVwud1oExPT4JhtR7j1NIUOp0kHgBuwqJ2Oq71RkFTZOKW0MRyJJ9W45aOP8GdhIT7++999Lv/nl1+ioq4OP95xB9Y8+CDuGjMGl771FjYdOgQAUBQFt3z0EVJjY/HLPfdg9QMP4PzevTHx//4Ph/83J/5Yfx46hPNeew3TzzkH47p2DcpjIwomp5FLCxKgdbHEU3CwxDeOJZ5U4daPPsI3mzZhyV13ITMhwXv57qNH8erPP+PdyZMxuksX9MrKwvSJE9E3Oxv/9/PPAICftm3DNxs34uPrrsPg9u1xert2eO1vf4NJr8ecX3/1uZ8thYUY/cILuH7oUDw8YYLPdWmxsSg67gTVoqoqxBqNMOn1SI6OhkaWUVRd3eCYtLg4Pz4bRK3jMKjrVwc1TsOReAoSlvjGqecnsdMJ2O2iU1CQKYqCWz/6CAvWr8dPd96J3ORkn+vr/vc1IUu+qyxoZBnu//2COtExsiR5jwGAzYWFGPn885g8cCCePP/8BlkG5uXhv9u2+Vy2eOtWDMzLAwDotVr0adcO/9261Xu92+3Gf7dt8x5DFAqcOs6FJs+urRK/FCgI7C47bE7bqQ9UGfXMiecovCrd8tFH+HD1anx5882IMRq9S0LGmUww6fXonJaG9qmpuOE//8FzF1+MpOhofLF+PRZv3YpvbrkFADAwPx8JZjMmv/ceHpkwASa9HrN++cWzZGSPHgA8U2hGvfACxnftirvGjPHej0aWkfK/Oe43Dh+OV3/+Gfd99hmuGTwYP23bhnl//IGFt97qzXvXmDGY/N576JuTg/45OXjxv/9Frd2OqcetJU8kkkPD5kYeRsiwgCPyrfXgxAdRerjhCizDLxmOcVeNw0PnPtTox13/1PXoM6YPAKBgcwE+f/Vz7N+6H5IkIadbDi68/UJkdcwCADhsDsydORf7tu7DkYIj6DGkB27+980NbvO3737DD+//gKL9RTBFm9B9UHdcNO0iRMdH+/ERN1+VrQop2hShGUKNpCiKOn4aHzkCfPWV6BQUZNINNzR6+ezJk72bLO0sKsL9CxZg+a5dqLHZ0D41FfeMHYurBgzwHr+moAAPffkl1uzbB4fLhW5t2+KRc87BWd27AwAe/fprzPjmmwb3k52UhIJ//cv7/s/bt+PO+fOx5fBhZMbH458TJjTY7OnVJUvw7A8/4EhVFXpnZuLlyy7DGdzsiULIoXwtV6chAMDv8TqU8STnVqsur4b7mHMMCncX4sVbXsRdb9yFDqd1QHW57zTLXxb8gh8++AHPfP8MjGYjrHVWPDjxQfQc1hNnTj4TbpcbX7/5NXZt2IWnFj4FjVYDm8WGT1/8FO06t8Pan9ZCp9c1KPG71u/Cc9c/h0vvuhQ9h/ZExdEKzP3XXKRmp+KmZ28KynNxIqNzRyM/MV9ohlCjnpF4J3/hqJHy5punPKZDmzb47MYbT3pM35wcLJo27YTXPzpxIh6dOPGU9zWiUyese/jhkx5z68iRuHXkyFPeFpEoLrhER6AQYVRkcM+n1otJ8F2V7Ps53yMlMwUd+3SEJEmIS/Y9L2r9kvXoO6YvjGYjAOBIwRHUVtbi3BvORWJaIgDgnOvPwWOXPYbSw6VIzUqFwWTAFQ9cAQDYvWE36qob7p2zZ9MeJLVNwqjLRgEAkjOSMfTCoVj0/iK/P+bmqrZXn/oglVHXnHgiImoVtwwoUMcLuHRqWjZ4v3M6nPjt298w6NxBkKSGz+++rftwYMcBDD5vsPeytOw0RMVFYcWXK+B0OGG32rH8y+Vom9sWSW2TmnzfeT3yUF5Ujk3LN0FRFFSVVmHtT2vRfXB3vzy21rA6raIjhBz1jMS7OHJERNRaLr0G4Eg8/Y/MEu93639eD0uNBYMmNn4u1IovV6Btblvk9/praokxyoi737wbr9/zOha+sxAAkJqVimmvToNG2/QlYdv3bo9rn7gWsx6cBYfNAbfLjZ5De+Jv//hb6x6UH1gcFtERQg5H4omIqMnceq4RT39Rz0hg8Kz4cgW6DeqG+JT4BtfZrXas/n61zyh8/eXvP/4+8nvl4/7Z9+O+d+5DRn4GXp32KuzWpq/MV7inEJ889wkmXDcBD/3nIdz+yu0oPVyKuf+a29qH1WociW+IJZ6IiJrMpQvNXxuvffQ9csbcgBmvfQIAOHCkBDljbmj0beHSPxp8fHllDQZc9g/kjLkBlTV/zRUuLq3E7U++jZGT/4ncsTd6b/94C5f+gVFTH0HHs27B+OtmYMlvmwLzQEOMzIVp/Kr0cCm2rt6KIecNafT6tf9dC7vVjgETBvhcvvr71Sg9XIrJ0ycjp1sO8nrk4donr0VJYQk2LN3Q5Pv/fvb3yO+Vj/FXj0dmh0x0G9gNf7v/b1jx1QpUljTc3DCYLE6OxB9PPX9EczoNEVGruUNwIH7DtgJ8uHAZOudlei9LT0nE6nnP+Bz30cJf8Na8HzCif7cGt3Hfv99H57xMHCmp8Lnc5nAgMT4Gt15xNt757L+N3v8fm3fj9iffxn3Xno/RA3riy59W4/rpr+Ob1x9Cp9yM1j/AEKbhdBq/WvnVSsQkxKDHkB6NXr/iyxXoNaxXgxNh7VY7JEnymUNf/35zFiG0W+2Qtb5/qEuy5zZFL2bIkfiGQnNIJRA4Ek9E1GoubWj92qi1WHHHzHfw1J1XIS7a7L1co5GRmhjn87Zo+XpMGN4XUSajz2188NVSVNVYcP0lYxvcflZaMh69ZRIuGjcQMVGmRjO8+/l/MbxfN9wwaTzaZ7fF3VPPQ7f27TDny5/9+lhDUWh9NYQ3t9uNlV+vxMBzBjY6j734QDF2rtuJwecPbnBd1wFdUVddh4+e/giH9x5G4e5CzJkxB7JGRqe+nbzHFe4pxIHtB1BbWQtLjQUHth/Age0HvNf3HNYT635ah6WfLsXRg0exa/0ufPLcJ8jpltPo9J5g4pz4htQzEs8ST0TUaqE2Ev/Plz/CyDN6YEifLnhl7rcnPG7Tjn3YsvsAHr/9cp/Ld+4rxMv/+QZfvPIA9h8+2qIM67bswbUXj/G5bFi/rvhhRdOnMYSrEPtyCGvbVm9D2ZEyDD63YUkHgBVfrUB8ajy6Duja4Lq0nDTc8vwt+GbWN3h66tOQZAlZnbJw+yu3+yxP+eq0V302lXriiicAAG+u8SzHPGjiIFhrrVgybwnmvzAf5hgzOvXrhAtvu9CfD7VFXIoLDpcDOo1OdJSQwRJPRERN5pZDZ3nJr5b8js079+PL1x485bGffLcC7du1RZ9uf63oYbM7cNuT7+DB6y9CRpvEFpf4o+VVSE6I9bksJT4WJWVi5xAHQwh9OYS9rgO6est0Yy645QJccMsFJ/34xgr+sf719b9Oej0AjLpslHed+FDjcLPEH0s9r4SxxBMRtZoSIlOgC4vL8Nj/fYIXH7wWRv3Jf6lbbXZ8+dNqTDrLd4TzmXcWoH27NFwwZsAJPpJORT0lgkKBy83zG4+lnpF4nthKRNRqoTLwumnnfpRUVOOcG5/0XuZyu7F60068/8XP2PHd/0Gj8VTMb5ethdVmx4Vjfcv6yvXbsX3vIeSPWwvgr02sTr/wbtxyxVm4a/K5TcqSkhCLkvIqn8uOVlQhOTHuBB8ROTSCT3YkdXEp7HLHUk+J50g8EVHrSaFR2gaf1hmLZj3ic9m9z85Bfrs03DhpvLfAA56pNGMG9kJSvO+KHm9MvxFW219raG/YXoD7nnsf8168B9ltU5qc5bSueVi5bhuuveivefHL/9iK07vmNfdhhR1Op6Fg4ki8L5Z4IiJqslDpbNFmY4PlG01GA+Jjo3wuLzhUjNWbdmL2k7c2uI3sdN+iXlZZAwBo366tz0o3m3d5Vu+os1pRVlGDzbsOQK/ToEN2OgDgmgtHY9Jdz2HW/MUYeUYPfL3kd2zasQ8z77zSPw82hMkciacg4ki8L/WUeE6nISJqNSVERuKbat73K9A2OR7D+p78hL+TmXDjE95/b9qxH1/+tBoZbZKwYq7nJME+3fLx0oPX4d+zv8Sz736BnIxUvDXjpohfIx7gnHgKLqebA7LHkhTRq/cHyxdfAMXFolMQEYW1I3kG2CSb6BgUIuqMBvxi5NcDBcfZHc5GZmzmqQ9UCfX8Ec2ReCKiVlPgFh2BQkiYvTBDYY5z4n2pp8TL6nmoREQBI4XIGpMUEkJlyVFSB4k/f3yop9lquK8cEVFrceSVjuUGSxUFj0ZilzuWekq8Vj3n8BIRBQpLPB3LzQ5PQSRL6qmtTaGeZ4Mj8UREfsDWRn9ROL2Bgkgjs8sdiyWeiIiaTGaJp2NwJJ6CiSPxvtTzbHA6DRFRq0k8k5GOwbWKKJhY4n2p59ngSDwRUetxTjwdw83pNBREPLHVF0s8ERE1GU9spWNxJJ6CSStzVsWx1FPiOZ2GiKjVZE6noWNwTjwFk1FrFB0hpKinxHMknoio1WQOvdIx+OVAwaKVtVyd5jgs8URE1GQaJ+fT0F84Ek/BwlH4htRT4jmdhoio1WSWeDqGi2c6U5CwxDeknhLPkXgiolbTODiBgv7CrwYKFpb4htRT4jkST0TUaizxdCyOxFOwsMQ3pJ4Sz5F4IqJWk20u0REohHBOPAULS3xD6inxHIknImo12a1AVtGvDjo5KzcOoCCJ1keLjhBy1POT2GAQnYCIKCKwxFO9OvCVGQqOGH2M6AghRz0/iaOiRCcgIooIWoXTE8mjTnGKjkAqEWNgiT+eekq82Sw6ARFRRNA51fOrg07MLUlwck48BUmsIVZ0hJCjnp/EsgwYeVIEEVFraR1sbgS4tHxFhoJDr9FDr9GLjhFy1FPiAU6pISLyA52Ny0wS4JRZ4ik4OArfOHWVeE6pISJqNa2F86AJsMt8RYaCgye1Nk5dJZ4j8UREraa1OMH6Rg6WeAqSOGOc6AghSV0lniPxREStJgHQQic6BgnGkXgKlgRjgugIIUldJZ4j8UREfqF1cz602nGjJwqWRFOi6AghSV0lniPxRER+wWUmySrxBGcKPFmSkWDiSHxj1PVTmCPxRER+obdwFFbtrODXAAVenCEOsqSuutpU6npWOBJPROQX+lqH6AgkWB1coiOQCiSbk0VHCFnqKvEmk2fTJyIiahWdxQlZZb9CyJdFYomnwGOJPzF1/QSWJE+RJyKiVtMr3EFRrVwaDTgjnoKBJf7E1FXiAU6pISLyE72dSwyqlU2rFR2BVECWZJb4k1BfiefJrUREfmHgya2qZdGqrz5Q8CWZkqDTcE+KE1Hfd2EMt+4lIvIHQ5VddAQSpJYbPVEQtI1pKzpCSFNfiU/gWqNERP6gcbihBadVqFG1zBnxFHhto1niT0Z9JT6Ru34REfmL0cmXutWoAlxilAIvLTpNdISQxhJPREQtZqzlvHi1UWQJNVxekgIs0ZQIg9YgOkZIU1+J12o5L56IyE+MlZwXrzZ2LV99ocDjVJpTU1+JBzgaT0TkJxqHGwauF68qXJmGgoEntZ6aOr8TWeKJiPzGaOfJrWpSp1FndaDgkSUZmbGZomOEPHV+J3KFGiIivzFWO0VHoCCqlnkeBAVWWnQa9Bq+wncq6izxHIknIvIbQ5Udskp/nahRlcQ/2iiwsuOyRUcIC+r8qRsfD8jqfOhERP4mKYDBzVEztahUWOIpsLLjWeKbQp1NVpY9RZ6IiPzCXCs6AQWDQ6eFS+J0GgqceGM8Yg2xomOEBXWWeIDz4omI/MhcZockOgQFnE3Lk5gpsNrFtRMdIWyot8RzXjwRkd/ITjeMbqPoGBRgNVyZhgKM8+GbTr3fjSzxRER+Za7lWHykK9O4RUegCGbWmZEWnSY6RthQb4nndBoiIr8yl9k4pSbCHZW4Qy8FTvvE9pAk/hRpKvWW+NhYQMeto4mI/IVTaiKbQ6eDFRyJp8Bpn9hedISwot4SD3BKDRGRn3FKTeSq0fOkVgqceGM8ks3JomOEFXWX+DZtRCcgIooonik1LPKRqEIjOgFFsg6JHURHCDvqLvFpPHmCiMifZKcbZhen1ESiEpmbPFHgcCpN87HEExGRX0VXcN50pFFkGeWKQ3QMilBp0WmIMcSIjhF21F3ijUbu3EpE5GfGCht04MIBkaROr4fCWVIUIJ2SOomOEJbUXeIBjsYTEQVAdB1PgowkVTrWBQoMg8aA/MR80THCEr8rWeKJiPwuqoQnuEaSMplTpCgwOiV3glbmH/0twRLPEk9E5HcaB09wjSRHwU2eyP8kSOia0lV0jLDFEh8bC5jNolMQEUUcnuAaGew6HWwSP5fkf1lxWYg1xIqOEbZY4gEgPV10AiKiiMMTXCNDjY5THSgwOArfOizxAJCRIToBEVFEiq1mAQx3FfwUUgDEGmLRLq6d6BhhjSUeYIknIgqQqKMWaMEWGM4Oy1wfnvyve2p30RHCHks8AERHAzHcZICIyN8kBYip04uOQS1k0+tRA+7USv5l0prQObmz6BhhjyW+HkfjiYgCIrrIAg00omNQC1To+SoK+V/PNj25rKQfsMTX48mtREQBIbsVxFgNomNQCxzRukRHoAhj0Bh4QqufsMTX40g8EVHARBdbIfNXTlhxyzKKFJvoGBRhuqd2h07DVav8gT9R65lMQGKi6BRERBFJ43Aj2s7Nn8JJtdEAhZvukh/pZB1PaPUjlvhj5eaKTkBEFLFii2wcjQ8jR7WK6AgUYbqldoNBy6l1/sKfpsdiiSciChiN3YUYG0fjw8Uh2S46AkUQvUaPnm16io4RUVjij5WYCMRy+18iokCJPcyVasKB1aCHFW7RMSiC9E7rDaOWf8T7E0v88TgaT0QUMLJLQVwt140PdWV6/qFF/hOtj0aP1B6iY0QclvjjscQTEQVUdJEFOnB1ilB2RObSkuQ//dL7QSPzD0N/Y4k/XmoqEBUlOgURUcSSFCCukhu9hCqXRoOjEufDk38km5PRIamD6BgRiSW+MRyNJyIKqKgSCwwKp9WEoiojPy/kP2dknCE6QsRiiW8MSzwRUcDFl3IR8lBUzBdJyE+yYrOQEcvNNAOFJb4xaWmezZ+IiChgjJU2RDv5szaUKLKEg5JVdAyKABpJg0FZg0THiGgs8Y2RJCA7W3QKIqKIF19o45KTIaTCYIAT3OSJWu+0tqchzhgnOkZEY4k/EU6pISIKOI3DjfhqzsEOFYf0LPDUevHGePRO6y06RsRjiT+RjAxAz18sRESBFl1sgVHhVuyiuTQaFMImOgZFgCHthkCWWDEDjc/wicgy0K6d6BRERKqQeMQNnuYqVpnJAIWfBGqljkkdkR6TLjqGKrDEn0xenugERESqoKtzINZmFh1D1fZrnaIjUJgzao0YkDlAdAzVYIk/mcxMQMu1toiIgiGukDu5imLX6VACbvBErTMgcwCMWqPoGKrBEn8yWi1PcCUiChLJrSDpqMRpNQIUGzlgRa2TE5+DjkkdRcdQFZb4U+nSRXQCIiLVMFTZEWfltJpg26dxiI5AYcyoNWJou6GiY6gOS/yppKUBCQmiUxARqUbsoToYwmC1GgUaIAJeN6gz6FEDzoenlhuWPQwmHTduCza+ftYUXboAK1eKTkFEpAoSgOTDLhxOl+GGOyj36ZZ0cCEKDsUEl6KDW5GhKDLcbhluRfK8uevfANdxsWTZs0+gLAGyrECWFWhkt+ffkgtayQmtbIVWqYOMupCq/kcM3GyLWq5zcmfkxOeIjqFKLPFN0aEDsHo14ORIBRFRMGgtTiRUm1AaY/Hr7bpghEsyw6GY4HTpYXfpYLfLcLpad7tud/3tA54/QyT89WJ3/cm60QA8RV+nU6DXuqDTOqCTrdDAAq1SCwmtDNJMiiRhn8y14all4o3xGJQ1SHQM1WKJbwqDwbPc5I4dopMQEalGdLEFVrMJtZqWFXkFgFOKh80dizq7EXa73GAEXQS3AtjsEmx2LTy/hk0APNM29TrAZLDDqK2FXimHHOAVY6qNBthhDeh9UGSSJRmjckdBK7NKisJnvqk6d2aJJyIKssSDNtiytXA2cc62S4qCTYmDxWGGxaoNidLeHHYHYHfoUQk9gAQY9G6YDXYYNdXQKRV+H6kv5Mbk1EKDsgYh2ZwsOoaqscQ3Vf0JruXlopMQEamG7HQjpViLI6kSFCgNrndLOtiVBFhd0bDY9LBH2CIrNrsMm90IwAgJKTAZXTDprDDIVdChslW37dJocEDiKDw1X8ekjuia0lV0DNVjiW8OnuBKRBR0+mo7Es0mlEZ7ptUokGFDMmodcait0zRS7SOTAqDOqkGdNQpAFPS6NMSY6mCWiyErzZ/XXmw2wI06v+ekyJZsTuZykiGCJb45OnbkCa5ERAJEF1lQY2yDIikKNXX6sJsmEwh2h4RSRxRKkYtoswtR+koYlaNAU/6skYBdGp7QSs1j0BgwNm8sNDJXNAoFLPHNodfzBFcioiByy3rUGnJR7WoLx34D7CnFcLn9u2JNJKip06CmLhEaTSJizFZEaUqhVapPeHylyYQ68HmkppMgYVTuKMQYYkRHof9hiW+uLl1Y4omIAsyuS0C1tj1qrQlQLH+tqp5cnozDCYfhdPMV0ca4XEBFtREVyIDRoCDGWAUTiiAdt95+gZ4vZVDz9Envg6y4LNEx6Bgs8c3Vpg2QmAiUlYlOQkQUcRy6eFRqOqHWGg80cpKq7JCRWpOKI1FH4FYCW0Tnfj4Xb819CxdPuBi3XXObz3WKouC+J+/D6nWr8cR9T2DoGb5zhL/76TvM+3oeDh4+CLPJjBGDRuDOv98JAFj35zrM/2Y+tu7cijpLHTLbZuKy8y7D2GFj/ZrfapNgtcVBq41DvLkaZukIJLhg0+txBJxKQ03XIbEDTm97uugYdByW+Jbo3JknuBIR+ZFDF/e/8p7QaHk/lq5OhxR9Coq0RQHLs3XXVny1+CvkZ+c3ev38b+ZDOsG+q5989QnmfT0PN159I7p26Aqr1YojR494r/9z+5/Iz87H387/GxLiE/Drml/xr1f+hShzFAb19f/GOU4nUFIVA60mBnFRNThiqAACvP48RY70mHQMzxkuOgY1giW+JXiCKxGRXzi0sajUdUat5dTl/VjGCiOSE5NRIpf4PVOdpQ5PvPgE7r3xXnzw2QcNrt+5dyfmfTUPbz7zJi687kKf66prqvHOR+9g5gMz0adnH+/l+Tl//TFw1UVX+XzMxedcjN83/I5lvy0LSImv53QBpbVx2K/tDLP5ECzyDihScHeIpfCSYEzAuPxxkCX51AdT0PGz0hJ6PdChg+gURERhy6mNQampHw47B3oKfAtElUUhAS372JN58e0XMbDPQPTt1bfBdVabFY+/+Dju+PsdSEpIanD97xt+h6IoOFp2FFfdfhUu/vvFmP7cdBSXFJ/0PmvrahEbHeu3x3Ailqg4OFwa1FW3g6Z2BEzuDoDS+CsKpG5mnRlndTgLeg13BAtVLPEt1bs3IPPpIyJqDrekRbm5Nwqdg1BjSWz1Gu+xJbGIk+P8kg0A/rv8v9ixZwf+fsXfG73+1dmvonun7hjSf0ij1x8uOgy34sbcz+bitqm3Yca9M1BdU427Z9wNh6Pxlxp+WvETtu3ahrNGnuW3x9EoScZhKcr7rtOphaUqD3rLcOiVlMDeN4UVrazFme3PRLQ+WnQUOgm20JaKiQHyG58rSUREDVkM6TisGYaqujZ+3aAprjgO0XLry0ZxSTFeefcV/HPaP2HQGxpcv+L3FVi7aS1unXrrCW/DrbjhdDpx+7W3o/9p/dGtYzc8cucjOHjkINb9ua7B8Ws3rcXT//c07rnpHuS2y231YzgZR1Q07I382rfbDbBXng6Tow9kcNRV7WRJxpi8MUg2J4uOQqfAOfGtcdppwK5dgKKW/QKJiJrPJRtQru+JWmtiQG5fgoTEo4lwpbpgcbV87fPtu7ejvLIcf7/3r1F4l9uFDVs2YMF3C3Du+HNRWFSIc64+x+fjHnnuEfTs0hMvPfaSd4pNdla29/r4uHjExcShqMT3RNz1m9fjwacexC1TbsGZI85sce6mKtbGnHQfKEttMjSaYTBF74JFKgh4Hgo99WvBt4trJzoKNQFLfGvExwO5ucCePaKTEBGFpFpTLsrt+XBZA7vDo6RISClJQVFSEWzuli2f2KdnH8x+YbbPZU+9+hTaZbTD3y74G+Ji4nDuuHN9rp9651TcMuUWDO47GADQo3MPAMCBQweQmpQKAKiqrkJldSXSUtK8H7fuz3V4YOYDuOHKGxrcZiC4zFGoVk79K9/l0sBS2QlGUwac+o1wSifeMIoiiwQJI3NHIi8hT3QUaiKW+NY67TSWeCKi4zi10SjT9oLFErw5tZJLQmp5KooTiltU5M0mM/La+RYYk9GEuJg47+WNnczaJrkN2rZpCwDISs/CkH5D8Mq7r+CeG++B2WzGW/95C+3S2+G07qcB8EyheWDmA7howkUYNmAYSstLAQA6rQ6xMYE5ubVY17zzBqyWaEi2gTBHHUCdZmtAMlFoGZY9DO0T24uOQc3AEt9aSUlAu3bA/v2ikxARhYRqU0dU2HLgtgZ/1RPZIbeqyPvDg7c/iFdnv4p//OsfkCUZvbr1wrP/fBZaredX7qKfF8Fqs2Lu53Mx9/O53o/r3a03XnrsJb/ncRnNqISu2R+nuCXUVbeD0ZQIu34N3BI3iIpUQ9oNQafkTqJjUDNJisIJ3a1WXAx88YXoFEREQrklLcqMp7d4yUh/UrQKihOLYXVbRUcR7kh8W1QorTthVat1QhP1J2xS4DbYIjEGZg5EjzY9RMegFuDqNP6QmgpkZIhOQUQkjFMbgyLdkJAo8AAgOSWklqbCJJtERxHKbTK3usADnuUobVW9YXZ180MqChVD2g1hgQ9jLPH+ctppohMQEQlhMWbgsHsA7PaGyzKKJLk8J7uaNOot8kf1/ltDHwpQV50Jo20wZBj9d7sUdLIkY1TuKHRN6So6CrUCS7y/pKcDaWmnPo6IKIJUmruh2Nodbndo/jqR3BJSjqbArDGLjhJ0bqMZ5QFY991qiYZcPRh6pPr9tinwtLIW4/LH8STWCBCaP3XDFUfjiUgl3JIOR40DUVGXKTrKKUluCcnFyX7ZECqcHDX4cRT+OE6XFo6q3jAq2ac+mEKGXqPH2R3O5jrwEYIl3p+ysoBk7nBGRJHNoYvHEe0Q1FkDsxxiIEiKhMTiRMRL8aKjBIXbaArIKPyxFLcEa2VnmNwdA3o/5B8mrQkTO05EWjRnDUQKlnh/O/100QmIiALGpk9BkbsvHI7AFsRAkCAh7mgckt2RP9hSGsBR+ONZqnJhdvUM2v1R88Ub43Fe5/OQZG64zwGFL5Z4f8vJARIDs7U4EZFIVkNbFDtPg8sV2N1XAy2qLApp9jTIUmT+CnQbTShFcE8yrqtuC5O9H1grQk9WbBbO73w+Yg3h88oZNQ2/2wKhf3/RCYiI/MpizEKxvQfc7uBv4BQIhioD2ta0hU5u/iZIoa7YGC/kfi11iTDaBkLiPpIho3tqd5zZ/kzoNeH3yhmdGkt8ILRrB2SG/sleRERNUWvKwVFrVyhKZBT4elqLFmnlaRG1lrzTHO2XdeFbymqJhs4yGHKA5+PTycmSjGHZwzAoaxAkKbK+b+kvLPGBMnAgwG8cIgpztaYclFo6IVK39pYdMlJKUhAjx4iO4heH9fGiI8BuM0JrGQhJibxXOcKBUWvE2R3ORufkzqKjUICxxAdKQgLQlZsoEFH4ivQCX09ye1auSVaSISF8B1/s0XGoVULjfAW7zQi9lVNrgi3FnIILOl+A9Jh00VEoCFjiA6lPH8AQWjsYEhE1RZ1RHQX+WFGlUWhraQutHIbFU5JxSBtaJy7abCZPkQ+RPywiXY/UHjiv83mIMUTGq0p0aizxgWQ0eoo8EVEYsRrSUGLrqKoCX09Xq0N6WTqi5CjRUZqlLiYBNiX0fqXbrGYY7P2BCDufIpQYNAaMzx+PgVkDI3bFJWocP9uB1rUrEB8vOgURUZM4tTEocXaPuJNYm0NyenZ4DZvpNVodDkmh+0eH1RILk7Ov6BgRqU1UG1zU9SJkx3PnXDViiQ80WQYGDBCdgojolNyyHsVS37BfB95fokqj0LauLfRyaK+0Uh6dCFeI/7FhqU2E2dlLdIyIIUFCrza9MLHTRETro0XHIUFY4oOhXTsgK0t0CiKiE1Ig4ai+f1juxBpIujod0krSECcHbwfU5nAbTChSjKJjNEldTRpM7lzRMcJenCEOEztNxBmZZ3D6jMqF4dk7YWrgQODQIcDtFp2EiKiBclMfWC2hOyVDJMktIb44HuZoM0rMJXC4HaIjeRUZE1p9G99/9BoWvPMMRl04FZNunu5znaIoeOXBKdj8+1LcNONN9B483nvdDWNyGtzWdQ+9jH4jz/W+v+TL9/Hzl3NQeuQgElMzcPaVN2PoxdlwoKzVudVGgoTuqd3RL6NfeJ58TX7Hr4JgiY8HunQBNm8WnYSIyEeVuTOq65JExwh5+ho92ta1RU1SDcoU8SXUHh2HSrRuLfaCbRuwbOGHyMxrfE3x/372zkk3C5p877Po1m+4931z9F8r5Cz96gN88c4zuPLOmcjp1AsF29fjg+cfQHTsv9FznAFu2FuVXU3iDHEYnjMcadFpoqNQCOHrMMHUty+XnCSikGIxZqG8jifFNZXklhBzNAbpdekwygKnsWi02K9p3RQfq6UW78y8A1fd+RTM0Q1v68CuzVj86du4+p5nTngb5uhYxCWmet90+r+ek1U/LsDQCX9Dv5ETkZLeDv1GnouhEy7Ht3Pfht7Wr1XZ1UKChB6pPXBR14tY4KkBlvhgMhi45CQRhQyHLg4l9i6iY4QlXZ0ObY62QZKSJGRecnlMEpytPJn1o5f/iR5njESXPkMaXGe3WvDOv6bh8tseQ1xi6klu4xHcdeFpmHnLeVjx3Twoyl8Lkzodduj0vgNXOr0RBds3oLbaALOrZ6vyR7oUcwrO73w+BmYN5PQZahS/KoKta1dgyxagokJ0EiJSMQUySqTecLtDe1WTkKYA0aXRMBlNKI8tR627Nih36zKZW30y6+9LvsL+nZvx4GtfNnr9vNcfQ163Pug9eNwJb+PcKXehU+9B0BuM2PLHL/jw5Ydhs9Zi1AVTAQBd+w7D8u8+Ru/B49CuQ3fs27EJK777GC6nAzWV5dBo28IYVwGrtL9VjyXSGDQG9Mvohy7JXU46lYmIJT7YZBkYOhT4+mvRSYhIxarM3WCvC49VTUKdxqpBsjUZsbGxKDOWwea2Be7OJBmFhkS0ZieusuJCfPJ/j+GOZz7wmf5Sb8PKxdi+/lc89MbCk97OhCtv9/67XYfusFst+GHeW94SP+HK21FVdhRP3XYBoCiITUjGgHEX4YdP3oQke8qpvboTtDHlcErVLX9AEUKChC4pXdA3vS+MWn5v0qlJyrGvfVHwrFjBk1yJSAi7PhlH7H1UuSNroClQYEmwoFxbDqfi9Pvt18UmYb/UunXB169YhNen3wBZ/ms/ALfbBUmSIEkyhk28Eku/eh/SMdOE3G4XJFlGh+79cPfznzR6u5tW/YRXH74Gr3673WcajcvpQFV5CeISU/HLwg/x+dtP44UvNkKWPbdvMNbBZvylVY8p3KXHpGNQ1iAkmhJFR6EwwpF4Uc44AzhwAKiqEp2EiFREkTQoUXqwwAeIBAnmcjNMsgk1iTWokCrgVvyztLCiM+BAKws8AHQ+bTAembXI57I5z96LtHb5GD/pRkTHJWDYOX/zuf6xv4/HpTf9Ez0HjDnh7R7YvQXmmLgG8+A1Wh0SUtoCAH7/+Wv0OGOUt8ADgM1qhknfCRZ5e2sfWthJNiejf0Z/ZMZmio5CYYglXhStFhg+nNNqiCioKkw94ajjhk6BJrklxJTEwKw3oyq+ClXu1g/YHI1KhD9eOzeao5GR28nnMoPRhKjYeO/ljZ3MmpiajuS2no0LN/z6I6rLS5Db5TTo9AZs/eMXfPfR/2HsJX/3Hl90cA/2btuA3M69UVdTiR8/fRuFe3dgyn3/bnDbtppsaGMPwYma1j/AMJBgTEDf9L7ITeDmV9RyLPEitW0LdOvGaTVEFBRWQ1tU1Z14pRHyP41dg4TiBMSYYlAdU41qdzWUFrwO4oiORZkSOn98aTRa/Pzl+5j3+uOAoiAlIxuX3Pgwhpx9ufcYt8uNH+fPwpGDe6DR6NCp9wDc9/JnSE5ruIO52y1Bb+0Np3F5MB9G0MXoY9AnvQ86JHbgSavUapwTL5rTCXz6KafVEFFAuSUdDmuGwenk2I1ILoMLNbE1qEJV06fZaLTYE50OeyuXlAwHptg9sMg7Rcfwu1hDLHq26YnOyZ2FLElKkYklPhQcPsxpNUQUUKWmfqix8KS5UOHWuVEbX4sKnHrOfGl8Go4q6tgoUJbdkGN/jZhpNalRqejVphdy4nM48k5+xxIfKlauBP78U3QKIopAdn0yDtu50VwocmvcqEuoQ4VUAZfianC9PSoWe7QJApKJYzTWwGpcITpGq2THZaNXWi/uskoBxddVQ0X//sD+/ZxWQ0R+Vy5xV9ZQJbtkRJdEI0qOgiXWgmp9Naxuq+dKrRb7tfFC84lgtUbDaMiAVTokOkqz6GQd2ie2R482PRBvjBcdh1SAI/GhhNNqiMjPLMYsFFu7io5BzeAwO1AbU4vd0VEogU50HCH0ehvspqWAFPoVJTUqFZ2TOyM/IR86jTo/XyQGR+JDSdu2QPfunFZDRH6hQEK5q73oGNRMujodnEoWykrjYUquhctcC7sUwF1gQ5DdboDRmAertFt0lEYZNAZ0SOqAzsmduUETCcMSH2o4rYaI/KTW1B4OS+gsS0hNY9fpsMEaD7ciw3IkBkAMdNF26BJqYdfXwQn/7wQbipx1OZCiCqBIDc8VEEEjaZAZm4n8xHzkxudCc8yOt0QicDpNKDpyBPjqK9EpiCiMuSUtCuURcLlYNMKLhDX6NJTaT/zHlz7GDk1cLZwGCxxwBDFb8JljD6BO3iLs/uuLe15CHrLjs6HX8I9iCh0s8aHq11+BTZtEpyCiMFVp6o4KS4boGNRMB8wJ2FIX2+TjddF26OLr4DDURWShl2U3ELMM7iBOJ9LKWmTEZLC4U8hjiQ9VbrdnNL64WHQSIgozLo0JhcpQuN1clzqc1BqNWG5t0+KP15kd0MZaoJhssMtWuNHEzaRCnCmqCBbd+oDeR6IpEZmxmciMzUTb6LacKkNhgSU+lNXUAJ9/DlitopMQURgpM5+O6roU0TGoGdyyjJVSW9S6/HWqmgJ9rB3aaCtcBivssg0KwvPXvSQpkOOWw4U6v92mWWdGeky6t7ibdWa/3TZRsLDEh7qDB4HvvgP4aSKiJnDJBhxShkNROAofTrYbU1BgDVyRlGQF+jgrNGY73Ho7nLI9rE6QNUcfQZ12Q4s+ViNpkGROQpuoNkiNSkVqVCpiDDF+TkgUfCzx4WDtWmDNGtEpiCgMVJq6ocKSKToGNUOpKRprLElBv19Z54I+xg7ZFPrFXpbdUGKXQDlFPr1GjwRjAuKN8UgyJyE1KhXJ5mTIkhykpETBwyUmw8Hpp3vmxu/fLzoJEYUwBTKq7W1Fx6BmsBgMWGsRs86426GBtcwEwOS9TNa5oDU5oTE6AJ0T0Dngkp1wSS64IG6pR7dbhsnVHhbNNsiSjChdFGIMMYg3xiPeGI8EYwISTAmcFkOqwpH4cGGzeebHV1eLTkJEIarGlI9Sy6k3d/ptx29464e3sGn/JhRXFuPNm97E+N7jvdcfrTqKpz5/Cr9s+QVVdVXo36E/Zlw2A7ltcgEAFbUVeOGrF/DL1l9wqOwQkqKTMK73ONx13l2INXlWVpm/cj7unXNvo/e/5tk1SI5N9r1s1xpM+vckdEzviO/++V1Ln4Kw4tRqsFJpC0uYLAMqadzQGp3Q6F2QtG5IWhegcUOR3YDshiK54JbdcMMNxfsfgGP+fzwZMiRIkBQZsiQB7v9dosiAIkFyaaA4NVAcGuhlCeeeo8CkNUGSOF2MiCPx4cJgAMaOBb78EnCFxsYXRBRaql1Nm0ZTZ69Dl8wuuGTwJbjxjRt9rlMUBde/dj10Gh1m3TwL0cZovP3j27jyxSux+NHFMBvMKKooQlFlER686EF0SO+AQ6WH8NDch1BUWYTXb3gdADCx70QM7zbc57bvee8e2Jy2BgW+sq4Sd82+C4M6D0JJVUkrnoHwoUgSNsipsNjDo8ADgOKS4ajVw1Hb6lsCJACK1Kz1c6wASo8AWVmtvX+iyMASH06Sk4HBg4Fly0QnIaIQY9cnw243NunYkd1HYmT3kY1et7d4L9btXYcfpv+AjukdAQBP/u1J9LuvH776/StcNuQydMrohDdufMP7Mdkp2bjn/Htw57t3wulyQqvRwqg3wqj/K09pdSl+3f4rnr766Qb3+dDch3Be//MgyzJ+WP9Dcx522NplTEKJanfTlRoblG+SzZtZ4onq8UyPcNO5M9Cpk+gURBRiqjW5frkdu9MOADDoDN7LZFmGXqvH77t+P/H9W6oRbYyGVtP42NDnqz6HUW/E2aef7XP5vBXzcKDkAKadM80P6cNDkTkWeyxRomOEpQMHOKuUqB5LfDgaPBhICv5KBkQUmtyyHrXWBL/cVn5aPjISM/DMgmdQWVsJu9OO179/HYfLD6O4svHN58pqyvDKwldw+dDLT3i7n6z4BOf1P89ndH5v0V48s+AZvHDNCycs/5GmxmjChrp40THClqIAW7aITkEUGljiw5FW65kfr1frS7FEdKxaQ67f1oXXaXR448Y3sKdoD3rd1QtdbuuCX7f/ihHdRzS6TF+1pRpTX5mK9m3b446JdzR6m3/s/gO7Du/CpMGTvJe53C5Me2ca7ph4B/La5Pkle6hz6HT43Z4MBTwpszV27xadgCg0qGPoIxLFxgIjRwKLFolOQkSC1blT/Xp7PbJ74Lt/focqSxUcTgeSYpJw3szz0DO7p89xNdYaTH55MqKN0Xjzpjeh0+gavb1PVnyCrlld0SO7h8/Hbty3EZsPbMb0j6cDANyKG4qiIP+mfHww7QMM6jzIr49LJLcsYy1SYHdz7Ky1amo8qy6n+vfLnijssMSHs+xs4LTTgHXrRCchIkFcshFWW2DWxq5fLnJv0V5s2rcJd593t/e6aks1rn7pauh1erx9y9sw6ho/qbbWWouFaxbivgvu87k8xhiDRY/4DkJ8sPQDrNy2Eq/f8DqykiPr7MVt+mRUWBv/I4eab+9elngilvhw16+f5yyfXbtEJyEiASyGTMDSvI+ptdai4GiB9/0DJQew+cBmxEfFIyMxAwv/WIjE6ERkJGZg26FtmDFvBsb1HodhXYcB8BT4q166Cla7FS9e+yKqLdWotnjONkyKSYJG/mvZxG/WfAOn24nzzzjfJ4Msy+iU4XuSflJMEgw6Q4PLw91BUzwOWEynPpCabO9e4IwzRKcgEoslPhKMGAFYLMChQ6KTEFGQWZSUZn/Mxn0bcfnzf52E+sT8JwAAFw28CP+e8m8UVxbjiflPoKSqBKlxqbhwwIW4bcJt3uP/3P8n1u9dDwAY/rDvWvC/PPmLzyj6Jys+wZmnnYk4c1yzc0aCSpMZmy3qfOyBVFUFlJZyjQdSN+7YGinsduDrrz0/1YhIFdySFgcxym8ntZJ/2fR6LHe0gVPhPPhAOP10oG9f0SmIxOFPlkih1wNnnQVER4tOQkRBYjVksMCHKJdGgzXuFBb4ANq7V3QCIrH40yWSmM3A2WcDBsOpjyWisFcHntkXmiRs1iajxskZq4FUXg5UVIhOQSQOS3ykiY8Hxo8HNJpTHkpE4UuBBKuDc61D0XZjMg7bGl+th/yLo/GkZizxkSgtDRg9GpD4MjtRpLIZ0uBy8Y/1ULPblIQCa2CW/KSG9u8XnYBIHJb4SJWTAwyKnI1SiMiXRdNGdAQ6ToEpEbssPC8pmEpKALdbdAoiMVjiI1m3bkDv3qJTEFEA2F0xoiPQMQ6YE7Ddws9JsLlcXJSN1IslPtL17w907Cg6BRH5md3BzYNCRaEpDlvqYkXHUK2iItEJiMRgiVeDYcOAzEzRKYjITxy6eLjdPOclFBSbY7HJEi86hqoVF4tOQCQGS7wayDIwdiyQnCw6CRH5gU3LbSpDQakpGuvqEkTHUD2WeFIrlni10Ok8a8hzj2qisGeXuLSkaBWmKPxhSRQdgwBUVQFWq+gURMHHEq8mRiMwYQKLPFGYszujREdQtSqjGastSVDAKU2hgqPxpEYs8WrDIk8U1hRIPKlVoBqjCb9Zk1ngQwxPbiU1YolXIxZ5orDl0CVAUVggRagzGPGbLRluFviQw5F4UiOWeLVikScKS3ae1CqEVW/AKnsKnAp/bYaiykrRCYiCjz+N1IxFnijsOCRuKBRsNr0Oq5wpcLDAh6zaWkBRRKcgCi7+RFI7oxE45xwgNVV0EiJqAqdbLzqCqlj1eqxytoHNrREdhU5CUTxFnkhNWOIJMBg8I/Jt24pOQkSn4FJY4oOl1mjESkcbWFngw0JNjegERMHFEk8eOh1w1llAVpboJER0Ei6XVnQEVagwRWGlNZVTaMIISzypDX860V+0WmD8eCA3V3QSIjoBlvjAKzLH4jcLV6EJNyzxpDYs8eRLloExY4AOHUQnIaLjuGQDl5cMsH3mBKyvSxAdg1qAJZ7UhiWeGpIkYMQIoHt30UmI6BgujVl0hIilSBK2m5KxrS5WdBRqIZZ4UhuWeGqcJAGDBgGDB3v+TUTCscQHhluW8ac+FQWWKNFRqBVY4kltWOLp5Lp1A84803PiKxEJ5ZJMoiNEHJdGgz80bVBoM4qOQq3EJSZJbVji6dSysoDzzgOio0UnIVI1FwyiI0QUu06HVVIayhxctjMSOByiExAFF0s8NU1iInDBBdwUikggt8Sy6S8WgwG/utqgxsnVfiKF2+15I1ILlnhqOpMJmDgRyM8XnYRIlRQueegX1UYTVtpTuYlTBHK5RCcgCh6WeGoejQYYPRo4/XTRSYjUhxsPtVqZKRq/WlPg5HMZkVjiSU34U4xapm9fYORIT6knoqDgSHzrFJrj8bslic9jBHM6RScgCh5OBqSW69ABiIkBfvgBsFpFpyGKeCyfLeOWZWzXJ2F/HZfojHSKIjoBUfBwJJ5aJy0NOP98ID5edBIiogZseh1+k9Ow38oCT0SRhSWeWi821lPkMzJEJyGKaBI4zNgclaYoLHekocrJfS6IKPKwxJN/6PXA2WcDp53GHV6JSDAJ+80JWGVJ5gmsRBSx+NON/EeSgH79PGXezJeuifyNI/Gn5tJosNGQiq11saKjkAAcQyI1YYkn/8vIAC66CMjMFJ2EKMJwJ5uTqTMYsRJtcdhmFB2FBDFwU2NSEZZ4CgyTyTMif8YZgMwvMyJ/kCSW+BM5bI7Dclsq6lxc9latNBpAx9MfSEW4xCQFVq9eQNu2wH//C1RXi05DFNY0sImOEHJcGg22aJNQWGcSHYUEM/IFGFIZDpFS4KWmeqbX5OWJTkIU1jQK92M4Vq3RM32m0MYCTyzxpD4s8RQcej0wZgwwdCig5QtARC2hcVlERwgZheZ4rLBy+gz9xcS/5Uhl2KYouLp0Adq08UyvKS8XnYYorGjcdaIjCOfUarBFk4zDdRx2JV8ciSe14Ug8BV9iInDBBUDnzqKTEIUVjUvdJb7UFI1f3OlcfYYaxRJPasOReBJDqwWGDfMsR7l8OWDjCXtEpyIrTsiSG26VbWDk0GqxTZOEQgtbGp0Yp9OQ2rDEk1j5+UB6OrByJbB7t+g0RCFPo3XC7dCLjhE0RaZY/GmNg9Oprj9cqPk4Ek9qwxJP4plMwOjRQIcOnlH5mhrRiYhClkZ2woHIL/E2vQ6bkYSjFu7eQ03DjcJJbTi0QaGjXTvg0kuBHj24dzbRCWhku+gIAaVIEg6Z47HM3hZH7Szw1HQJCaITEAUXR+IptGi1wMCBQPv2wLJlQGmp6EREIUUrRe5a8RaDARvdSaio47ab1Dw6HRAbKzoFUXBxJJ5CU0qKZwWbM87guvJEx9C7K0VH8DtFlrHPlIhltjRUOFjgqfkSE0UnIAo+lngKXbIM9OoFXHwxkJkpOg1RSNA7S0RH8Ksaowkr5bbYZokRHYXCWFKS6AREwccST6EvNhY4+2xg5EguP0Cqp3XWQKNxiY7Rai6NBrtMSVhhTUWNk6+2UetwJJ7UiD85KXx06ABkZQGrVgE7dohOQySMTmeFyxUlOkaLVZqisN6WAKtFIzoKRQiOxJMascRTeDEagREjgI4dPWvLl5WJTkQUdAa5GlaEX4m3GAzYgXgc4aZN5GcciSc1Yomn8JSeDlx0EbBrF/D771xbnlRF764AkCY6RpPZdTrs0cRjn5ULeZP/xcZ6VqchUhuWeApfkuSZYpOXB2zeDKxfD1gjd/k9onp6Z3gsverSaLBPH49dligoDu79QIHBUXhSK5Z4Cn8aDdCzJ9C5s6fI//kn4HSKTkUUMPUnt7pcoTmn3C3LKDTGYrslBk4L10+gwGrTRnQCIjFY4ily6PVA//5At27AH38A27cDiiI6FVFA6HUWWFzRomP4UCQJR40x2GqLhbUuNP/AoMiTlSU6AZEYLPEUeaKigGHDPKPzq1cDBQWiExH5nUGugAWhU+IrTFHY7IhHjYW/Vih4oqI4nYbUiz9tKXLFxwPjxgFHjgC//QYUFYlOROQ3ZschVED8Jmg1BiO2KQkotehFRyEV4ig8qZmkKJxvQCpRUOAZma+oEJ2EyC8KdaPgcIhZlsOq12OnlIBCG5eLJHHGjgVyc0WnIBKDI/GkHjk5QHY2sHs3sGEDUBoeK3wQnYhJVw6HIzWo92nX6bBXE4cCa/itU0+RRZaBjAzRKYjEYYkndZEkoH17z9uhQ54yf/Cg6FRELWJyHUYVglPia41GFCAWB60mwBGUuyQ6qTZtPOsZEKkVSzypV0aG562sDNi40bNxlNstOhVRkxlsRQFdalKRJJQborDbFYMyK9sShRbOhye145x4onq1tZ415rduBex20WmImqTE1B+1lgS/3qZLo0GxIRo7bTGwhOha9EQXX8yVaUjdWOKJjudweIr8n38CNTWi0xCdVJ0xG0etnf1yWza9Doc0sdhjjYJL4Q6rFLqiooArrhCdgkgslniiE3G7gT17PFNtSkpEpyFqlFvS4iBGQWlF6a4xmlCAGByymvyYjChwevUCzjhDdAoisTgnnuhEZNn3JNiNG4EDB0SnIvIhK04YjTWwWGOa9XGKJKHMGIVdzlhUWMUsU0nUUp06iU5AJB5LPFFT1J8EW10N7NjheauuFp2KCAAQjUOwoGlTalwaDYoMMdhpjYbVwvnuFH5SUz17+RGpHafTELXU4cOeMr9nj2cePZEgCmQc0ow6ySo1EmqMRhRKUdhnMcMNznen8DVkCNC1q+gUROKxxBO1ltMJ7N3rKfSFhQC/pUiACnNPVNa19bnMptejSBuFAlsUV5mhiKDVAldeyfXhiQCWeCL/qqkBdu70FPrKStFpSEWc2mgccg6GS6NBiSEK+x1RKHOw6VBk6dwZGDZMdAqi0MASTxQoRUWeMr97N9ed///27j6qqjrf4/jnHJ7lUZ41VBAfwcTKzEoXahla3pJMs5yb5LVVmlpONlm35cPM6jLdslKnrMa5hqPdTMMatcmJWzp1xYfSysZKQcHUEZUHURAQzrl/7Ct4xAcwYJ8N79dae3nOPvv8zneftdQPP777t9G8vL2luDjtKL9B3/zsLyftMmil7r1XCg83uwrAPRDigeZWUyPl5Rkz9EeOGO03wC/l7S116SLFx0sxMZLdrsOHpQ0bzC4MaB6RkdLo0WZXAbgPVqcBmpuHhxG04uONAH/kiHTwoLFxMyk0hpeXEdy7djXuOe/h2ud+zTXGHSyLikyqD2hGiYlmVwC4F2biATMVFtYF+mPHuCgW9YWGGjPtMTFShw71gvuFfvpJ2ry5hWoDWkhgoHT//cbtOwAYCPGAu6ioMG4mlZ8vHTpEH31b5etbF9pjYqR27Rr19poa6d13pTNnmqk+wARDhkg9ephdBeBeCPGAO3I4pKNH62bpS0rMrgjNxW6XoqPrQnsTXLW3e7eUnd0EtQFuICREGjtWsnG9NuCCEA9YQWmpMTt/9Kix0UtvbcHBRmDv1MlokfHyatLhHQ5p1SpuKozW4bbbjEuKALgixANWVFZWF+gLCozeev4quye7XQoLM2bYIyKMq08DA5v9Y3NypM8+a/aPAZpVaKh0331mVwG4J0I80BqcPWtcGHv8eN2fZWVmV9X22O1G6jgX2CMijOcmXY2XmSmdOGHKRwNN4o47pNhYs6sA3BMhHmitystdQ31hIVc7NiW7XWrf3gjq50J7aOgVV49pSawbDysLDzdu7gTg4gjxQFtSVWVcJHvypLGd/5ibUF2czSYFBBgtMEFBRrIIDzdaZNwosF/Kxx8bl1MAVjNypHHZCICL42ZPQFvi7W3c9jAysv5rZWV1gf78gH/qlHGlZGvm62sE9MDAurB+7nFAgKUXp77pJmNGnukaWEl0NAEeuBJCPACDv7+xdezout/hMIJ8aanRjlNRcemtstK90qKXl/GDy7nN1/fiQb2JV4dxJ2FhUrdu0r59ZlcCNIzdLg0aZHYVgPsjxAO4PLvdWBIxOPjKxzqdRpC/VMCvqTGOOX+T6mb6L3ztws3DwzWU+/i4Pr9wPwtLS5JuvFE6cICOKVhDv37G5SUALo+eeABoA77/XtqyxewqgMtr314aM8bSHWxAi+GvCQC0AX361O+UAtyJzSYlJxPggYbirwoAtBFDhrTq9n9YXGLixa+5B3BxhHgAaCMCAqSbbza7CqC+wEBpwACzqwCshRAPAG1Ir14s3Qf3M3iw5MlSG0CjEOIBoI1JTjYW8AHcQY8eUkyM2VUA1sPqNADQBu3bJ33+udlVtB2bNy/R5s1LVFiYJ0nq0CFRo0bNUZ8+I2uPyc3N1kcf/bsOHNgmu91DMTH99MQTG+Xt7SdJOnhwpzIzn1Fe3g7Z7R667roxGjv2Ffn6Brh81pYt7ygr6xUVFOyVn1+Qrr9+rB588HVJ0tmzFVq58jHl53+to0d/0LXXjtLUqR+2yHdwMSEh0ujRxoqwABqHX14BQBvUvbuUl2esH4/mFxISo9TU3ysysrskp7KzM/TGG/fo+ed3qWPHROXmZmvRohEaOfJZjR+/WHa7pw4d+lY2m/EL85KSI3r11dvVv//9Gj/+D6qoKNX77z+pjIw0PfromtrP+fTTV5SVtUBjxrykuLibVFlZVvuDgyQ5HDXy8vLTsGEztHPnBy38Lbjy8pLuuIMAD1wtQjwAtFHJyVJJiVRcbHYlrV9S0r+4PB89+gVt3rxE+/dvVceOiVq9eqaGDZuhESNm1x4THd2z9vF3362Xh4eXHnjgddn/fw3GCRPe1G9/21fHjuUoMrKbysqK9dFHz+vxx9epd+/bat8bE9O39rGPj78mTFgiScrN/V+Vl5c0x+k2yNChxkw8gKtDTzwAtFHe3lJKiuTra3YlbYvDUaMdO95TVVWZuna9WaWlx3TgwDYFBkbqxRdv0axZUXr55WTl5HxZ+57q6kp5enrXBnhJ8vIy2mzOHffDD5/K6XSopOSw5s7trWeeidHbb49TUdHPLXuCDXD99VJsrNlVANZGiAeANiwoSBo+nBvstITDh3drxowAPf64j1aufEyPPbZWHTsm6MSJ/ZKk9evnadCgRzRjxifq3Pl6vfrqbSoo2CdJ6tVrmE6ePKqNG19SdXWVysqKtXatMWt/8uQ/JUknTuyX0+nQX//6Hxo37jU9+ugalZUV6bXXhqu6usqck76Izp2lG24wuwrA+vhnGwDauA4dpEGDzK6i9YuK6qnnn/9Gs2dvU3LyFL3zzkQdObJHTqdDkjR48KO69daH1bnzdRo37lVFRfXUli3/JUnq2DFRDz+coaysBZo+vZ1+85tohYXFKSgoqrZv3uFwqKbmrMaPX6TExBR17TpQkyf/t44d26effnKPq5iDgqRhw4y7swL4ZeiJBwCoVy+jN373brMrab08Pb0VGdlNktSlyw3Ky9uhzz5bWNsH36FDgsvx0dG9VVR0sPb5gAEPasCAB1VaWiBvb3/ZbDZlZb2iiIiukqTg4A71xgkMjFBAQLjLOGbx8jLat7iQFWgazMQDACRJAwdyI6iW5HQ6VF1dqbCwWIWEdFRBwU8urx87tlehoV3qvS8oKEq+vgH66qtV8vLyVe/ewyVJ3brdKkk6erRunLKyIp0+fUJhYfXHaWnJyVL79mZXAbQezMQDACQZLQ633SZ9+KGxag2aztq1zyoxcaRCQzursvKUtm9/V3v3btKMGRtls9k0fPjTWrdurmJiktSpUz9lZ2fo6NEfXZaP/PzzPyg+/hb5+ARoz55P9cEHT+vee3+vdu1CJElRUT2UlHSP3n//Cf3qV2/L1zdIa9c+q+joXurZc2jtOEeO7FFNTZXKyopUUXFKP//8jSSpU6d+zXb+t94qde3abMMDbRI3ewIAuCgtlf7yF6m83OxKWo/ly/9NP/74Pzp58p/y8wvWNdf0VUrKM0pIGF57zCef/F6bNr2usrIixcQkacyY/1S3bnUXKyxb9pB2796gysrTio7upeHDZ2ngwH91+ZwzZ0q1evVM7dqVKZvNru7dk3X//QsVGlr3K5bnnotVYWF+vRrfeqt54sCNN0rXXdcsQwNtGiEeAFBPSYm0bp105ozZlcDKkpKkm24yuwqgdaInHgBQT0iINGoUa8jj6iUkEOCB5kSIBwBcVPv2BHlcnYQEli0FmhvtNACAyyoqkj7+mB55NExionEhK4DmRYgHAFzRyZPShg3S6dNmVwJ31qePdMstZlcBtA2EeABAg5w+La1fb6xeA5zPZpMGDDAuZAXQMgjxAIAGKy+X/vY36dgxsyuBu/D0lIYNk2Jjza4EaFsI8QCARqmpkb74Qtq71+xKYDZ/fyklRQoPN7sSoO0hxAMArsr330tbt0oOh9mVwAzh4dKIEVK7dmZXArRNhHgAwFU7ckTKypIqKsyuBC0pLk4aOtRopQFgDkI8AOAXOXXK6JMvLDS7ErSEfv2Mi1gBmIsQDwD4xaqrpc2bpdxcsytBc/HxMW7gFB9vdiUAJEI8AKAJffedtH07ffKtTUyMNGQI/e+AOyHEAwCaVHGxMSvPMpTW5+kpDRwoJSSYXQmACxHiAQBNzumUdu+WvvrKaLWB9URFGRevBgWZXQmAiyHEAwCaTWmpMSv/z3+aXQkaym6X+vc37r5qs5ldDYBLIcQDAJrdP/5h9MqfPWt2Jbic0FBj9j0szOxKAFwJIR4A0CJOn5b+/nfp0CGzK8GF2rUzZt979mT2HbAKQjwAoEXl50s7dkhFRWZXAk9Po20mKYkbNwFWQ4gHAJgiJ0f6+mvp5EmzK2l7bDZj1r1/f5aNBKyKEA8AMI3DIe3da4T5sjKzq2kbOneWbrpJat/e7EoA/BKEeACA6WpqpD17pF27pIoKs6tpnaKipBtvlDp2NLsSAE2BEA8AcBtnz0rff2+sZlNebnY11mezSXFxUt++UmSk2dUAaEqEeACA23E4pAMHjEBfUGB2Ndbj7S316CFde60UGGh2NQCaAyEeAODWTpwwWm1yc1ln/krCw6WEBKlbN1abAVo7QjwAwBKqq6X9+6WffuIOsOdr107q0kXq1UuKiDC7GgAthRAPALCc0lKj3ebgQaPdxuEwu6KWFRQkxcYa/e6RkdygCWiLCPEAAEurqjLuAnvwoLG11tVtwsLqgntoqNnVADAbIR4A0Go4ndLx43WB/sQJsyu6ev7+RntMhw5Gu0xQkNkVAXAnhHgAQKtVUSEVFhrbiRPGnyUlRth3J97eRmCPiDDaYyIjuZMqgMsjxAMA2pSaGqmoyDXYl5Yagb85/0e02SQ/PykgwJhlDwgwWmQiI6WQkOb7XACtEyEeAAAZAb6iQjpz5tJbdXXdsef+97TZJA8P183Xty6o+/sbW7t2kt1u3vkBaF0I8QAAAIDFMCcAAAAAWAwhHgAAALAYQjwAAABgMYR4AAAAwGII8QAAAIDFEOIBAAAAiyHEAwAAABZDiAcAAAAshhAPAAAAWAwhHgAAN2Cz2TRv3ryrfu+0adOatiAAbo0QDwBotcrLyzVv3jxt2rTJ7FIAoEkR4gEArVZ5ebnmz59PiAfQ6hDiAQD4f2VlZWaXAAANQogHALSYefPmyWazKScnR2lpaQoJCVFwcLAefvhhlZeX1x5XXV2t3/3ud4qPj5ePj49iY2P13HPPqbKy0mW8r776SikpKQoPD5efn5/i4uI0adIkSVJeXp4iIiIkSfPnz5fNZnPpO09LS1NAQIByc3N15513KjAwUBMmTJAkffHFFxo7dqw6d+4sHx8fderUSTNnztSZM2cadb5VVVWaM2eObrjhBgUHB8vf31+DBw/W559/3uDv6scff9S4ceMUFBSksLAwPfHEE6qoqLjoez788EP16dNHPj4+SkxM1CeffOLyen5+vqZOnaqePXvKz89PYWFhGjt2rPLy8hp1XgDM52l2AQCAtmfcuHGKi4tTenq6du7cqaVLlyoyMlIvvviiJGny5MnKyMjQfffdp6eeekrbtm1Tenq6fvjhB61du1aSdOzYMd1xxx2KiIjQ7NmzFRISory8PGVmZkqSIiIitGTJEk2ZMkWpqam69957JUl9+/atraO6ulopKSkaNGiQXn75ZbVr106StHr1apWXl2vKlCkKCwvT9u3btXjxYh06dEirV69u8HmWlpZq6dKleuCBB/TII4/o1KlT+tOf/qSUlBRt375d/fr1a9B3FRsbq/T0dG3dulWLFi1ScXGxli9f7nLcl19+qczMTE2dOlWBgYFatGiRxowZo4MHDyosLEyStGPHDm3ZskXjx49XTEyM8vLytGTJEg0ZMkR79uypPX8AFuAEAKCFzJ071ynJOWnSJJf9qampzrCwMKfT6XR+8803TknOyZMnuxwza9YspyTnZ5995nQ6nc61a9c6JTl37Nhxyc87fvy4U5Jz7ty59V6bOHGiU5Jz9uzZ9V4rLy+vty89Pd1ps9mc+fn5VzzPc6qrq52VlZUu+4qLi51RUVH1voML6zz3Xd19990ux02dOtUpyfntt9+6vNfb29uZk5NTu+/bb791SnIuXrz4sueVnZ3tlORcvnx5g88LgPlopwEAtLjHHnvM5fngwYNVWFio0tJSffzxx5KkX//61y7HPPXUU5KkDRs2SJJCQkIkSevXr9fZs2evupYpU6bU2+fn51f7uKysTCdOnNAtt9wip9OpXbt2NXhsDw8PeXt7S5IcDoeKiopUXV2t/v37a+fOnQ0a4/HHH3d5Pn36dEmq/Z7Ouf322xUfH1/7vG/fvgoKCtL+/fsvel5nz55VYWGhunXrppCQkAbXA8A9EOIBAC2uc+fOLs/bt28vSSouLlZ+fr7sdru6devmckx0dLRCQkKUn58vSUpOTtaYMWM0f/58hYeH65577tGyZcvq9c1fjqenp2JiYurtP3jwoNLS0hQaGqqAgABFREQoOTlZknTy5MlGnWtGRob69u0rX19fhYWFKSIiQhs2bGjwON27d3d5Hh8fL7vdXq+P/cLvVDK+1+Li4trnZ86c0Zw5c9SpUyf5+PgoPDxcERERKikpafR5ATAXPfEAgBbn4eFx0f1Op7P2sc1mu+wYNptNa9as0datW7Vu3Tpt3LhRkyZN0oIFC7R161YFBARcsQ4fHx/Z7a7zWTU1NRo+fLiKior0zDPPqFevXvL399fhw4eVlpYmh8PRgDM0rFixQmlpaRo9erSefvppRUZGysPDQ+np6crNzW3wOOe71PfSkO90+vTpWrZsmZ588kndfPPNCg4Ols1m0/jx4xt1XgDMR4gHALiVLl26yOFwaN++ferdu3ft/oKCApWUlKhLly4uxw8cOFADBw7UCy+8oHfffVcTJkzQe++9p8mTJ1/xB4GL2b17t/bu3auMjAw99NBDtfs//fTTRo+1Zs0ade3aVZmZmS61zJ07t8Fj7Nu3T3FxcbXPc3Jy5HA4FBsbe1X1TJw4UQsWLKjdV1FRoZKSkkaPBcBctNMAANzKnXfeKUl67bXXXPa/8sorkqS77rpLktF6c/4ss6Ta1V7OtdScW22lMSH13Iz2+WM7nU4tXLiwwWNcbqxt27YpOzu7wWO8/vrrLs8XL14sSRo5cuRV1XPhd7Z48WLV1NQ0eiwA5mImHgDgVpKSkjRx4kS9/fbbKikpUXJysrZv366MjAyNHj1aQ4cOlWT0mr/xxhtKTU1VfHy8Tp06pT/+8Y8KCgqq/UHAz89PCQkJWrVqlXr06KHQ0FD16dNHffr0ueTn9+rVS/Hx8Zo1a5YOHz6soKAgffDBBy695Q01atQoZWZmKjU1VXfddZcOHDigN998UwkJCTp9+nSDxjhw4IDuvvtujRgxQtnZ2VqxYoUefPBBJSUlXVU9f/7znxUcHKyEhARlZ2crKyurdglKANZBiAcAuJ2lS5eqa9eueuedd7R27VpFR0fr2WefdWlDORfu33vvPRUUFCg4OFgDBgzQypUrXdpPli5dqunTp2vmzJmqqqrS3LlzLxvivby8tG7dOs2YMUPp6eny9fVVamqqpk2b1ujgnJaWpqNHj+qtt97Sxo0blZCQoBUrVmj16tXatGlTg8ZYtWqV5syZo9mzZ8vT01PTpk3TSy+91Kg6zlm4cKE8PDy0cuVKVVRU6NZbb1VWVpZSUlKuajwA5rE5L/y9GgAAMN28efM0f/58HT9+XOHh4WaXA8DN0BMPAAAAWAztNAAANFJVVZWKiooue0xwcLDLzZUAoCkR4gEAaKQtW7bUXmB7KcuWLVNaWlrLFASgzaEnHgCARiouLtbXX3992WMSExPVoUOHFqoIQFtDiAcAAAAshgtbAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFgMIR4AAACwGEI8AAAAYDGEeAAAAMBiCPEAAACAxRDiAQAAAIshxAMAAAAWQ4gHAAAALIYQDwAAAFjM/wHnj0Fi+Bwu3gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -556,7 +607,7 @@ "source": [ "# Get unique users providing liquidity\n", "liquidity_df = df_loans[df_loans['Collateral (USD)'] > 0]\n", - "liquidity_protocol_users = get_unique_users(liquidity_df, 'Collateral (USD)')\n", + "liquidity_protocol_users = get_unique_users_by_protocol(liquidity_df)\n", "\n", "\n", "# Prepare sets for Venn diagrams (top 3 protocols by user count)\n", @@ -579,7 +630,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "ccdd4123-9a4e-4def-93a9-d8d21b637962", "metadata": { "scrolled": true @@ -650,7 +701,7 @@ "3 4 3" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -693,7 +744,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "a5fca63b-a6db-4d1a-b426-ff2a98690b45", "metadata": {}, "outputs": [ @@ -720,13 +771,13 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "0895eb29-a63d-4fcd-998d-0f77ae444fce", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw8AAAKSCAYAAACUU+f/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRI0lEQVR4nOzdd3hUZcIF8HOnT3pvkAKhE4qigHQQAQGxYcGKZRV7QT/rKrq6tl3U1dXVtaFiQ+yiCCvSq0iHUFNoIb1Npt/vj2sCQ9okmZl3yvk9zzyayc3MmSFlzty3SLIsyyAiIiIiImqFSnQAIiIiIiIKDCwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIiIiK3sDwQEREREZFbWB6IiIiIiMgtLA9ERE3IysrCzJkzRccg8mv8OSEKPSwPRF40Z84cSJKEkpKSJj+fk5ODMWPG+DZUB/z222+QJMnlEhcXh6FDh2L+/Pmi4wWdiooKGAwGSJKE3bt3i47jcad/LzV3+e2337yao66uDjfddBNycnIQHR2NiIgIDBgwAK+++ipsNlurX3/6z4VWq0XXrl1x3XXX4eDBgx7N+sYbb+CDDz7w6G0SEbWFRnQAIgo8d999N84++2wAQGlpKT7//HNcc801qKiowB133CE4nWfk5uZCpRL7/sqCBQsgSRJSUlIwf/58PPPMM0LzeNpHH33k8vGHH36IJUuWNLq+d+/eXs1RV1eHnTt3YvLkycjKyoJKpcKaNWtw3333Yf369fjkk0/cup36nwubzYbNmzfj7bffxo8//ojt27cjLS3NI1nfeOMNJCQk8N1+IhKG5YEohJjNZuh0ug6/KB45ciSmT5/e8PFtt92Grl274pNPPvFIeZBlGWazGUajsdHnPPUYWqPX6716++74+OOPMXnyZGRmZuKTTz7xWHlo6fn1pWuuucbl43Xr1mHJkiWNrve2uLg4rFu3zuW6WbNmITo6Gq+//jrmzp2LlJSUVm/n1J+LG264AT169MDdd9+NefPm4ZFHHmnya2praxEeHt7xB0FE5CMctkTkZ1577TX07dsXYWFhiI2NxVlnndXonc8jR47gxhtvRHJyMvR6Pfr27Yv33nvP5Zj6oRSfffYZHn/8cXTq1AlhYWGoqqqCzWbDU089he7du8NgMCA+Ph4jRozAkiVL2pVZp9MhNjYWGo3r+xF2ux1/+9vfkJ2dDb1ej6ysLDz66KOwWCwux2VlZWHq1KlYvHgxzjrrLBiNRrz11lstPgZAeWd+0KBBMBqNSEhIwDXXXIMjR4403O53330HSZKwbdu2husWLlwISZJwySWXuGTo3bs3rrjiCpdMp767+8EHH0CSJKxevRr3338/EhMTER4ejosvvhjFxcUut+V0OjFnzhykpaUhLCwMY8eOxa5du9o0PrygoAArV67ElVdeiSuvvBKHDh3CmjVrmjz2448/xuDBgxu+Z0aNGoVffvml1ecXAA4ePIjLLrsMcXFxCAsLw9ChQ/Hjjz82uo/Wvi+rq6tx7733IisrC3q9HklJSTjvvPOwefNmtx5vc2prazF79mykp6dDr9ejZ8+e+Mc//gFZll2OkyQJd955J+bPn4+ePXvCYDBg0KBBWLFiRbvvOysrC4AyfKw9xo0bBwA4dOgQgJPDGHft2oWrrroKsbGxGDFiBAD3flaysrKwc+dOLF++vGGI1KnDHt39tzSbzZgzZw569OgBg8GA1NRUXHLJJThw4EDDMe4+76fz9O8WIvI/PPNA5Ef++9//4u6778b06dNxzz33wGw2Y9u2bVi/fj2uuuoqAEBRURGGDh3a8GIpMTERP/30E2666SZUVVXh3nvvdbnNv/3tb9DpdHjggQdgsVig0+kwZ84cPPfcc7j55psxePBgVFVVYdOmTdi8eTPOO++8VnNWV1c3zOMoKyvDJ598gh07duDdd991Oe7mm2/GvHnzMH36dMyePRvr16/Hc889h927d+Prr792OTY3NxczZszArbfeir/85S/o2bNni4/hgw8+wA033ICzzz4bzz33HIqKivDqq69i9erV+OOPPxATE4MRI0ZAkiSsWLEC/fv3BwCsXLkSKpUKq1atarj94uJi7NmzB3feeWerj/2uu+5CbGwsnnzySeTl5eGVV17BnXfeic8//7zhmEceeQQvvvgiLrjgAkycOBFbt27FxIkTYTabW739ep9++inCw8MxdepUGI1GZGdnY/78+Rg2bJjLcU899RTmzJmDYcOG4emnn4ZOp8P69evx66+/YsKECS0+v0VFRRg2bBhMJhPuvvtuxMfHY968eZg2bRq+/PJLXHzxxQDc+76cNWsWvvzyS9x5553o06cPSktLsWrVKuzevRtnnnmm24/7VLIsY9q0aVi2bBluuukmDBw4EIsXL8aDDz6II0eO4OWXX3Y5fvny5fj8889x9913Q6/X44033sCkSZOwYcMG5OTktHp/VqsVVVVVqKurw6ZNm/CPf/wDmZmZ6NatW7vy178Yj4+Pd7n+sssuQ/fu3fH3v/+94cW4Oz8rr7zyCu666y5ERETgscceAwAkJycDgNv/lg6HA1OnTsX//vc/XHnllbjnnntQXV2NJUuWYMeOHcjOzm7z836qjv5uIaIAIBOR1zz55JMyALm4uLjJz/ft21cePXp0w8cXXnih3Ldv3xZv86abbpJTU1PlkpISl+uvvPJKOTo6WjaZTLIsy/KyZctkAHLXrl0brqs3YMAAecqUKW1+PPW3efpFpVLJzz77rMuxW7ZskQHIN998s8v1DzzwgAxA/vXXXxuuy8zMlAHIP//8c5P3d/pjsFqtclJSkpyTkyPX1dU1XP/DDz/IAOQnnnii4bq+ffvKl19+ecPHZ555pnzZZZfJAOTdu3fLsizLX331lQxA3rp1q0um66+/vuHj999/XwYgjx8/XnY6nQ3X33fffbJarZYrKipkWZbl48ePyxqNRr7oootcHsucOXNkAC632ZJ+/frJV199dcPHjz76qJyQkCDbbLaG6/bt2yerVCr54osvlh0Oh8vXn5qxuef33nvvlQHIK1eubLiuurpa7tKli5yVldVwm+58X0ZHR8t33HGHW4+tOXfccYd86p+lb775RgYgP/PMMy7HTZ8+XZYkSd6/f3/DdfXfi5s2bWq4Lj8/XzYYDPLFF1/s1v1/+umnLt/XZ511lrxt27ZWv67++/S9996Ti4uL5aNHj8o//vijnJWVJUuSJG/cuFGW5ZO/D2bMmOHy9W35WTn9d0Y9d/8t33vvPRmAPHfu3Ea3Uf8905bn/fSfk/b+biGiwMFhS0R+JCYmBocPH8bGjRub/Lwsy1i4cCEuuOACyLKMkpKShsvEiRNRWVnZaJjI9ddf32hse0xMDHbu3Il9+/a1K+cTTzyBJUuWYMmSJfj8888xY8YMPPbYY3j11Vcbjlm0aBEA4P7773f52tmzZwNAo+EUXbp0wcSJE5u8v9Mfw6ZNm3DixAncfvvtMBgMDddPmTIFvXr1crntkSNHYuXKlQCUMyZbt27FLbfcgoSEhIbrV65ciZiYGLfenb7lllsgSZLL7TscDuTn5wMA/ve//8Fut+P22293+bq77rqr1duut23bNmzfvh0zZsxouG7GjBkoKSnB4sWLG6775ptv4HQ68cQTTzSaA3JqRqDp53fRokUYPHhww9AZAIiIiMAtt9yCvLw87Nq1C0Dr35f1x6xfvx5Hjx51+3G2ZtGiRVCr1bj77rtdrp89ezZkWcZPP/3kcv0555yDQYMGNXyckZGBCy+8EIsXL4bD4Wj1/saOHYslS5ZgwYIFmDVrFrRaLWpra93Oe+ONNyIxMRFpaWmYMmUKamtrMW/ePJx11lkux82aNavR4wTc/1lpirv/lgsXLkRCQkKT34/13zNtfd5P1dHfLUTk/1geiAQ79UXeQw89hIiICAwePBjdu3fHHXfcgdWrVzd8vri4GBUVFXj77beRmJjocrnhhhsAACdOnHC5/S5dujS6z6effhoVFRXo0aMH+vXrhwcffNBlXkBr+vXrh/Hjx2P8+PG4/PLL8fHHH2Pq1Kl4+OGHG8b/5+fnQ6VSNRrykZKSgpiYmIYX2y3lbO5z9V976tCmer169XK57ZEjR+LYsWPYv38/1qxZA0mScM4557iUipUrV2L48OFuTcLOyMhw+Tg2NhYAUF5e7pLt9McdFxfXcGxrPv74Y4SHh6Nr167Yv38/9u/fD4PBgKysLJclcQ8cOACVSoU+ffq0eptNPb/5+flNPof1qxvVP5bWvi8B4MUXX8SOHTuQnp6OwYMHY86cOR1epjQ/Px9paWmIjIxsMV+97t27N7qNHj16wGQyNZqX0pTk5GSMHz8e06dPx5tvvompU6fivPPOw/Hjx93KW1+qf/31V2zbtg1Hjx7Ftdde2+i4pr6f2/Kz0hR3/y0PHDiAnj17NpqfdPptteV5P1VHf7cQkf9jeSDyovp3xevq6pr8vMlkcnnnvHfv3sjNzcVnn32GESNGYOHChRgxYgSefPJJAMpEXEBZpab+nf/TL8OHD3e5j6ZW1Bk1ahQOHDiA9957Dzk5OXjnnXdw5pln4p133mn3Yz333HNhNpuxYcMGl+tPfwe8OS2t/NORVYHq34ldsWIFVq5ciTPPPBPh4eEN5aGmpgZ//PEHRo4c6dbtqdXqJq+XW5lI6i5ZlvHpp5+itrYWffr0Qffu3RsueXl5+Pbbb1FTU9Pm2+3Ic9ja9yUAXH755Th48CBee+01pKWl4aWXXkLfvn1bfJfa302fPh01NTX49ttv3Tq+vlSPHTsW/fr1a/YFenP/Fu7+rPgzb/xuISL/wvJA5EWZmZkAlMmqpzOZTCgsLGw4pl54eDiuuOIKvP/++ygoKMCUKVPw7LPPwmw2IzExEZGRkXA4HA3v/J9+SUpKcitbXFwcbrjhBnz66acoLCxE//79MWfOnHY/VrvdDgANL2wzMzPhdDobDV8oKipCRUVFo8fdFi09r7m5uS63nZGRgYyMDKxcuRIrV65sKAmjRo1CXl4eFixYAIfDgVGjRrU7T1PZ9u/f73J9aWlpw9mJlixfvhyHDx/G008/jQULFrhc3n77bZhMJnzzzTcAgOzsbDidzoYhKe3J2tRzuGfPHpfHArT8fVkvNTUVt99+O7755hscOnQI8fHxePbZZ9uVrf7+jx49iurq6lbzAWhyqMzevXsRFhaGxMTENt9/femvrKxs89e2RVt+VporGO7+W2ZnZyM3N7fFze/a+ryfztO/W4jIv7A8EHnRueeeC51OhzfffLPhrEG9t99+G3a7Heeff37DdaWlpS7H6HQ69OnTB7Isw2azQa1W49JLL8XChQuxY8eORvfnztCMpu4nIiIC3bp1a7SEalv88MMPAIABAwYAACZPngxAWSHmVHPnzgWgzE9or7POOgtJSUn4z3/+45L5p59+wu7duxvd9siRI/Hrr79iw4YNDeVh4MCBiIyMxPPPPw+j0egyVr4jzj33XGg0Grz55psu17/++utufX39kKUHH3wQ06dPd7n85S9/Qffu3RuGLl100UVQqVR4+umnG31/uXMmZPLkydiwYQPWrl3bcF1tbS3efvttZGVlNQyHau370uFwNHqBnZSUhLS0tA59T02ePBkOh6PRc/fyyy9DkiSXnx0AWLt2rcucn8LCQnz77beYMGFCs2eMAKCkpKTJ56v+3fLT5yx4Wlt+VsLDw5tcOtbdf8tLL70UJSUlTX4/1j8HbX3eT+WN3y1E5F+4VCuRFyUlJeGJJ57A448/jlGjRmHatGkICwvDmjVr8Omnn2LChAm44IILGo6fMGECUlJSMHz4cCQnJ2P37t14/fXXMWXKlIbxx88//zyWLVuGIUOG4C9/+Qv69OmDsrIybN68GUuXLkVZWVmrufr06YMxY8Zg0KBBiIuLw6ZNmxqW2XTHypUrG95xLisrw3fffYfly5fjyiuvRK9evQAoJeL666/H22+/jYqKCowePRobNmzAvHnzcNFFF2Hs2LFtfTobaLVavPDCC7jhhhswevRozJgxo2Gp1qysLNx3330ux48cORLz58+HJEkNw5jUajWGDRuGxYsXY8yYMdDpdO3Oc6rk5GTcc889+Oc//4lp06Zh0qRJ2Lp1K3766SckJCS0ODTFYrFg4cKFOO+881yGs51q2rRpePXVV3HixAl069YNjz32GP72t79h5MiRuOSSS6DX67Fx40akpaXhueeeazHrww8/jE8//RTnn38+7r77bsTFxWHevHk4dOgQFi5c2DAHpLXvy4qKCnTu3BnTp0/HgAEDEBERgaVLl2Ljxo345z//2e7n8oILLsDYsWPx2GOPIS8vDwMGDMAvv/yCb7/9Fvfeey+ys7Ndjs/JycHEiRNdlmoFlOVsW/Lxxx/jP//5Dy666CJ07doV1dXVWLx4MZYsWYILLrigYb8Gb2nLz8qgQYPw5ptv4plnnkG3bt2QlJSEcePGuf1ved111+HDDz/E/fff31Cma2trsXTpUtx+++248MIL2/y8n6qjv1uIKAAIWuWJKKR8/PHH8tChQ+Xw8HBZr9fLvXr1kp966inZbDa7HPfWW2/Jo0aNkuPj42W9Xi9nZ2fLDz74oFxZWelyXFFRkXzHHXfI6enpslarlVNSUuRzzz1XfvvttxuOqV8+csGCBY3yPPPMM/LgwYPlmJgY2Wg0yr169ZKfffZZ2Wq1tvg4mlqqVafTNfv1NptNfuqpp+QuXbrIWq1WTk9Plx955JFGjzszM7PJ5R1begyyLMuff/65fMYZZ8h6vV6Oi4uTr776avnw4cONjtu5c6cMQO7du3ej5wGA/Ne//rXR1zS3VGv9spunZ1y2bFnDdXa7Xf7rX/8qp6SkyEajUR43bpy8e/duOT4+Xp41a1aTj0WWZXnhwoUyAPndd99t9pjffvtNBiC/+uqrDde99957Dc9DbGysPHr0aHnJkiUuj6W55TMPHDggT58+XY6JiZENBoM8ePBg+YcffnA5prXvS4vFIj/44IPygAED5MjISDk8PFweMGCA/MYbbzT7OJpy+lKtsqwsN3rffffJaWlpslarlbt37y6/9NJLLkvRyrKyVOsdd9whf/zxx3L37t1lvV4vn3HGGS7/Ls3ZuHGjfNlll8kZGRmyXq+Xw8PD5TPPPFOeO3euy9K4zWnt+7ReS0s3u/uzcvz4cXnKlClyZGSkDMBl2VZ3/i1lWZZNJpP82GOPNdxXSkqKPH36dPnAgQMNx7j7vJ/+c9Le3y1EFDgkWfbQLD8iImpWRUUFYmNj8cwzzzRs8EWeI0kS7rjjDreHhxERUftwzgMRkYc1tbpW/Xj2MWPG+DYMERGRB3HOAxGRh33++ef44IMPMHnyZERERGDVqlUNc1xOX0qXiIgokLA8EBF5WP/+/aHRaPDiiy+iqqqqYRL1M888IzoaERFRh3DOAxERERERuYVzHoiIiIiIyC0sD0RERERE5BaWByIiIiIicgvLAxERERERuYXlgYiIiIiI3MLyQEREREREbmF5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIiIiK3sDwQEREREZFbWB6IiIiIiMgtLA9EREREROQWlgciIiIiInILywMREREREbmF5YGIiIiIiNzC8kBERERERG5heSAiIiIiIrewPBARERERkVtYHoiIiIiIyC0sD0RERERE5BaWByIiIiIicgvLAxERERERuYXlgYiIiIiI3MLyQEREREREbmF5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXmgZo0ZMwY5OTmtHpeVlYWZM2d6P1ATZs6ciaysLCH3TURERBRqWB6IiIiIiMgtLA9EREREROQWlgciIiIiInILy0OIysvLgyRJzV6a88svvyAsLAwzZsyA3W5v9riKigrce++9SE9Ph16vR7du3fDCCy/A6XQ2yvCPf/wDb7/9NrKzs6HX63H22Wdj48aNjW7zm2++QU5ODgwGA3JycvD111937EkgIiIiojbRiA5AYiQmJuKjjz5yuc5ms+G+++6DTqdr8mt++OEHTJ8+HVdccQXee+89qNXqJo8zmUwYPXo0jhw5gltvvRUZGRlYs2YNHnnkERw7dgyvvPKKy/GffPIJqqurceutt0KSJLz44ou45JJLcPDgQWi1WgBKabn00kvRp08fPPfccygtLcUNN9yAzp07d/zJICIiIiK3sDyEqPDwcFxzzTUu191xxx2oqanBkiVLGh3/1Vdf4corr8TMmTPxn//8BypV8yet5s6diwMHDuCPP/5A9+7dAQC33nor0tLS8NJLL2H27NlIT09vOL6goAD79u1DbGwsAKBnz5648MILsXjxYkydOhUA8NBDDyE5ORmrVq1CdHQ0AGD06NGYMGECMjMzO/ZkEBEREZFbOGyJAAAffvgh3njjDbz44osYO3asy+c+/fRTXHHFFbj11lvx1ltvtVgcAGDBggUYOXIkYmNjUVJS0nAZP348HA4HVqxY4XL8FVdc0VAcAGDkyJEAgIMHDwIAjh07hi1btuD6669vKA4AcN5556FPnz4detxERERE5D6eeSBs2bIFs2bNwowZM3D//fe7fO7QoUO45pprcNlll+G1115z6/b27duHbdu2ITExscnPnzhxwuXjjIwMl4/ri0R5eTkAID8/HwAazmKcqmfPnti8ebNbuYiIiIioY1geQlx5eTkuvfRS9OjRA++8806jz6empiI1NRWLFi3Cpk2bcNZZZ7V6m06nE+eddx7+7//+r8nP9+jRw+Xj5uZOyLLsxiMgIiIiIl9heQhhTqcTV199NSoqKrB06VKEhYU1OsZgMOCHH37AuHHjMGnSJCxfvhx9+/Zt8Xazs7NRU1OD8ePHeyRn/ZyGffv2Nfpcbm6uR+6DiIiIiFrHOQ8h7KmnnsLixYvx6aefokuXLs0eFx0djcWLFyMpKQnnnXceDhw40OLtXn755Vi7di0WL17c6HMVFRUtLvHalNTUVAwcOBDz5s1DZWVlw/VLlizBrl272nRbRERERNR+PPMQorZv346//e1vGDVqFE6cOIGPP/7Y5fOnr8SUkJCAJUuWYMSIERg/fjxWrVqFTp06NXnbDz74IL777jtMnToVM2fOxKBBg1BbW4vt27fjyy+/RF5eHhISEtqU97nnnsOUKVMwYsQI3HjjjSgrK8Nrr72Gvn37oqampm0PnoiIiIjaheUhRJWWlkKWZSxfvhzLly9v9PnTywMAdOrUCUuXLsXIkSNx3nnnYcWKFU2WgLCwMCxfvhx///vfsWDBAnz44YeIiopCjx498NRTT7msmOSuSZMmYcGCBXj88cfxyCOPIDs7G++//z6+/fZb/Pbbb22+PfITTidgNisXu135+PSLLLv+vyQpFwCoX/mr/jpJUq7T610vLWx8SERERO6TZM5KJSJPsduBujqlDNT/99TL6Z+zWr2fSZIAnU4pEQbDyULhzv8TERGRC5YHInJfXR1QXg5UVCiXykrXktDG+Sx+TZKAiAggOvrkJSZG+W9EBM9mEBFRSGJ5ICJXsgxUV7uWhPqLxSI2m79Qq4GoqKaLhdEoOh0REZHXsDwQhSq7vXE5qD+b4HAIjRbQdDrXUhEdDSQkKOWCiIgowLE8EIUCWQbKyoDjx5XLiRPK2QXyHb0eSE4+eUlKAjRcs4KIiAILywNRMHI4gOLik2Xh+HHfTE4m96lUQFwckJKilImUFCA8XHQqIiKiFrE8EAUDqxUoKgKOHVOKQnExhx4FovDwk0UiORmIjz+5HC0REZEfYHkgCkQmk1IS6stCWZkyNImCi0YDJCaeLBQpKcqcCiIiIkFYHogCgc0GFBYCBQVKWaiqEp2IRFCplAKRkQFkZiqTsYmIiHyI5YHIX9XUAPn5yuXoUWWHZaJTRUcrRSIjA0hN5RAnIiLyOpYHIn9SUgLk5SmFobRUdBoKJFot0LkzkJWlnJXg8CYiIvIClgci0YqKgIMHgUOHlLMNRB2lUgGdOgFduihlwmAQnYiIiIIEywORCPWF4eBBoLZWdBoKZpKkDGnKylLKBJeDJSKiDmB5IPIVnmEgf5CcDPTsCWRnK0OdiIiI2oDlgcib6uqA3Fxgzx6ukET+RatVCkSvXspu10RERG5geSDyhqNHgV27lMnPXCWJ/F1cHNC7N9C9OydaExFRi1geiDzFYjl5lqGiQnQaorbTaJR5Eb17K/tJEBERnYblgaijioqUswwHDwIOh+g0RJ4RE6MMaerRg6s1ERFRA5YHovawWoF9+4Ddu4GyMtFpiLxHpVJWaurdW1n+lYiIQhrLA1FblJQoZxn27wfsdtFpiHwrKkpZqalnTyAsTHQaIiISgOWBqDV2u1IWdu1SygNRqFOpgG7dgIEDleFNREQUMlgeiJpjswE7dgDbtimToYnIlSQpE6zPPFNZsYmIiIIeywPR6axWpTRs387SQOSurCzgjDOAxETRSYiIyItYHojqsTQQdVznzsqZCC71SkQUlFgeiKxWpTBs3678PxF1XFqaciaCKzQREQUVlgcKXVarMp9hxw6WBiJvSU5WSkRGhugkRETkASwPFHosFuUsA0sDke8kJCgloksX0UmIiKgDWB4odFgsypmGnTtZGohEiY1VSkR2trJaExERBRSWBwp+ZvPJ0mCziU5DRICyP8SwYcoEayIiChgsDxS8nE6lNPzxB0sDkb/KzATOOUfZvZqIiPweywMFp8OHgdWrgcpK0UmIqDVqNdCvnzKcSasVnYaIiFrA8kDBpboaWLsWyMsTnYSI2iosDBgyBOjeXXQSIiJqBssDBQeHA9iyBdi6FbDbRachoo5ITlbmQ3C3aiIiv8PyQIEvP18521BVJToJEXmKJAE9ewJnnw0YjaLTEBHRn1geKHBVVQFr1gAFBaKTEJG36HTAmWcCOTmASiU6DRFRyGN5oMBjtysrKG3bpgxXIqLgx6VdiYj8AssDBZZDh5QhSjU1opMQkQhc2pWISCiWBwoMFRXKEKXDh0UnISLR1GpgwABlOBOHMhER+RTLA/k3hwP4/XdliJLTKToNEfmTuDhgzBggIUF0EiKikMHyQP6ruBhYtkw560BE1BSVChg4kGchiIh8hOWB/I/TCWzerOzbwLMNROSO+Hhg7FjlbAQREXkNywP5l/Jy5WxDSYnoJEQUaFQq5QzEwIE8C0FE5CUsD+QfZBnYvh3YuJHLrxJRxyQkKGchYmNFJyEiCjosDyRedbVytuH4cdFJiChYaDTAkCFA376ikxARBRWWBxJr/35g1SrAahWdhIiCUUYGMHo0YDSKTkJEFBRYHkgMm00pDfv2iU5CRMHOYFCWdM3IEJ2EiCjgsTyQ7xUXA//7H1BVJToJEYWSPn2AoUOVIU1ERNQuLA/kW1u2AJs2cQlWIhIjJgYYN44byxERtRPLA/mGyaRMij5yRHQSIgp1ajUwciTQo4foJEREAYflgbzv6FFg6VLAbBadhIjopJwcZRgT94QgInIbywN5165dwJo1HKZERP4pLQ0YP16ZVE1ERK1ieSDvcDqV0rBrl+gkREQti4wEJk4E4uJEJyEi8nssD+R5FguwZIkyXImIKBBoNMpyrl27ik5CROTXWB7Is8rLgcWLuQwrEQWmM84AzjoLkCTRSYiI/BLLA3lOQQHw66/cLZqIAltGhrKcq04nOgkRkd9heSDP2LoV2LAB4LcTEQWDmBhlHkR0tOgkRER+heWBOsbhAFasAPbtE52EiMizdDrlDERGhugkRER+g+WB2s9kAn75BThxQnQSIiLvkCTg7LOBgQNFJyEi8gssD9Q+JSXKxOjaWtFJiIi8r2tXZTUmjUZ0EiIioVgeqO0OHACWLwfsdtFJiIh8Jz4eOP98ICxMdBIiImFYHqhtNm0CNm8WnYKISIzISGDKFCAqSnQSIiIhWB7IPbKsnG3Yu1d0EiIiscLClAIRGys6CRGRz7E8UOucTmX/hoMHRSchIvIPBgMweTKQkCA6CRGRT7E8UMscDmDpUiA/X3QSIiL/otMBkyYBKSmikxAR+QzLAzXPbleWYj18WHQSIiL/pNEAEyYAnTuLTkJE5BMsD9Q0mw34+Wfg2DHRSYiI/JtKBZx7LtCli+gkRERex/JAjVmtwKJF3PyNiMhdkgSMHg306CE6CRGRV7E8kCuzWSkOJSWikxARBZ5hw4CcHNEpiIi8huWBTjKZgB9/BMrLRSchIgpcZ58NnHGG6BRERF7B8kCKmhqlOFRWik5CRBT4BgwAhgwRnYKIyONYHgioqlKKQ3W16CRERMGjTx9g+HBlPgQRUZBgeQh1FRVKcaitFZ2EiCj4dOsGjBmjrMhERBQEWB5CWVmZUhzq6kQnISIKXl27Kku58gwEEQUBvhUSqkpKgO+/Z3EgIvK2gweBNWtEpyAi8giWh1BUWaksx2qxiE5CRBQadu4ENm8WnYKIqMNYHkJNXZ1SHMxm0UmIiELLpk3A7t2iUxARdQjLQyix2YCffuKqSkREoqxaBRw6JDoFEVG7sTyECqcTWLKEO0cTEYkky8CvvwJHj4pOQkTULiwPoWL5cuDwYdEpiIjI4QB++QUoLRWdhIiozVgeQsH69cC+faJTEBFRPatVmX9WVSU6CRFRm7A8BLsdO4CtW0WnICKi09UvYMEls4kogLA8BLODB4G1a0WnICKi5lRVKQXCahWdhIjILSwPwerYMWDZMmVyHhER+a/SUmUOhMMhOgkRUatYHoJRWRmweDH/EBERBYqjR5VVmPiGDxH5OZaHYFNbq+zlwFPgRESB5dAhZR8IIiI/xvIQTCwWZexsba3oJERE1B67dys7URMR+SmWh2DhcChDlcrLRSchIqKO2LwZOHBAdAoioiaxPASLZcuA48dFpyAiIk9YvpybyBGRX2J5CAZbtijLshIRUXCw25UVmCwW0UmIiFywPAS6w4eBjRtFpyAiIk+rrgaWLuUKTETkV1geAllNDZf2IyIKZkeOAOvXi05BRNSA5SFQORzKKW2zWXQSIiLypm3bgP37RacgIgLA8hC4Vq0CSkpEpyAiIl9YsYITqInIL7A8BKLdu4HcXNEpiIjIV+onUHMDUCISjOUh0Jw4AaxeLToFERH5WnU18NtvolMQUYhjeQgkFouy8obTKToJERGJkJenzIEgIhKE5SGQLF+urLBERESha8MGoKhIdAoiClEsD4Fixw7lHSciIgptTqdyFpqr7RGRACwPgaC4GFi3TnQKIiLyF7W13OeHiIRgefB3Vivwv/9xngMREbk6fBj44w/RKYgoxLA8+LsVK4CqKtEpiIjIH/3+O3DsmOgURBRCWB782a5dwMGDolMQEZG/kmVlMQ27XXQSIgoRLA/+qqICWLtWdAoiIvJ3VVXKCkxERD7A8uCPZFnZCMjhEJ2EiIgCwY4dwPHjolMQUQhgefBHO3YoO0kTERG567ffOHyJiLyO5cHfVFcDGzeKTkFERIGmqop/P4jI61ge/M2KFXzniIiI2ofDl4jIy1ge/MmePcCRI6JTEBFRoOLqS0TkZSwP/sJk4i7SRETUcZWVwKZNolMQUZBiefAXK1cqu0kTERF11PbtQFGR6BREFIRYHvzBgQNAfr7oFEREFCzqhy9xyW8i8jCWB9HMZmD1atEpiIgo2FRUcPUlIvI4lgfR1qxRCgQREZGnbd/OfYOIyKNYHkQqKAD27xedgoiIgpUsK5vHcfgSEXkIy4MoVqsySZqIiMibKiq4+hIReQzLgyjr1wO1taJTEBFRKNi2DSguFp2CiIIAy4MIR48Cu3eLTkFERKFClrk4BxF5BMuDrzkcwIoVolMQEVGoOXFCWRqciKgDWB58bft2oKpKdAoiIgpFGzZw8jQRdQjLgy+ZzcCWLaJTEBFRqKquVt7EIiJqJ5YHX9q8WVlliYiISJQtW7i/EBG1G8uDr1RVAbt2iU5BREShzmrl0q1E1G4sD76ycSPgdIpOQUREpKz4V1EhOgURBSCWB18oLuYKF0RE5D9kGVi3TnQKopAxZswYjBkzRnQMj2B58AX+giYiIn9TUAAcOSI6BYUwk8mEOXPm4LfffhMdJeT8/e9/xzfffNOur2V58Lb8fODYMdEpiIiIGlu7VjkLQSSAyWTCU089FRLl4ZdffsEvv/wiOkYDlgd/JcvKmtpERET+qKwMyM0VnYLILbW1taIjtJtOp4NOpxMdwyNYHrwpNxcoLxedgoiIqHmbNgF2u+gU5AfmzJkDSZKwf/9+zJw5EzExMYiOjsYNN9wAk8nUcJzdbsff/vY3ZGdnQ6/XIysrC48++igsFovL7W3atAkTJ05EQkICjEYjunTpghtvvBEAkJeXh8TERADAU089BUmSIEkS5syZAwCYOXMmIiIicODAAUyePBmRkZG4+uqrAQArV67EZZddhoyMDOj1eqSnp+O+++5DXV1dmx7vb7/9BkmS8MUXX+Cpp55Cp06dEBkZienTp6OyshIWiwX33nsvkpKSEBERgRtuuKHRY3z//fcxbtw4JCUlQa/Xo0+fPnjzzTcb3dfpcx5Ove9nn30WnTt3hsFgwLnnnov9+/c3+tqcnBzs2rULY8eORVhYGDp16oQXX3yx0f1YLBY8+eST6NatW8Nz83//938uuSVJQm1tLebNm9fwvM+cOdPt503j9pHUNnY7l8IjIiL/ZzIpez+cdZboJOQnLr/8cnTp0gXPPfccNm/ejHfeeQdJSUl44YUXAAA333wz5s2bh+nTp2P27NlYv349nnvuOezevRtff/01AODEiROYMGECEhMT8fDDDyMmJgZ5eXn46quvAACJiYl48803cdttt+Hiiy/GJZdcAgDo379/Qw673Y6JEydixIgR+Mc//oGwsDAAwIIFC2AymXDbbbchPj4eGzZswGuvvYbDhw9jwYIFbX68zz33HIxGIx5++GHs378fr732GrRaLVQqFcrLyzFnzhysW7cOH3zwAbp06YInnnii4WvffPNN9O3bF9OmTYNGo8H333+P22+/HU6nE3fccUer9/38889DpVLhgQceQGVlJV588UVcffXVWL9+vctx5eXlmDRpEi655BJcfvnl+PLLL/HQQw+hX79+OP/88wEATqcT06ZNw6pVq3DLLbegd+/e2L59O15++WXs3bu3YZjSRx99hJtvvhmDBw/GLbfcAgDIzs52+/liefCWbduUX8hERET+bts2oHdvIDxcdBLyA2eccQbefffdho9LS0vx7rvv4oUXXsDWrVsxb9483Hzzzfjvf/8LALj99tuRlJSEf/zjH1i2bBnGjh2LNWvWoLy8HL/88gvOOqWYPvPMMwCA8PBwTJ8+Hbfddhv69++Pa665plEOi8WCyy67DM8995zL9S+88AKMRmPDx7fccgu6deuGRx99FAUFBcjIyGjT47Xb7Vi+fDm0Wi0AoLi4GJ999hkmTZqERYsWNTzG/fv347333nMpD8uXL3fJcuedd2LSpEmYO3euW+XBbDZjy5YtDUOaYmNjcc8992DHjh3IyclpOO7o0aP48MMPce211wIAbrrpJmRmZuLdd99tKA+ffPIJli5diuXLl2PEiBENX5uTk4NZs2ZhzZo1GDZsGK655hrMmjULXbt2bfJ5bw2HLXlDXR2wdavoFERERO6x25X9iIgAzJo1y+XjkSNHorS0FFVVVQ0vpu+//36XY2bPng0A+PHHHwEAMTExAIAffvgBNput3Vluu+22Rted+mK9trYWJSUlGDZsGGRZxh9//NHm+7juuusaigMADBkyBLIsNwyxOvX6wsJC2E8Z5ndqlsrKSpSUlGD06NE4ePAgKisrW73vG264wWUuxMiRIwEABw8edDkuIiLC5YW+TqfD4MGDXY5bsGABevfujV69eqGkpKThMm7cOADAsmXLWs3jDpYHb/j9d6ADPyhEREQ+t3cvUFIiOgX5gdPfuY+NjQWgDJ3Jz8+HSqVCt27dXI5JSUlBTEwM8vPzAQCjR4/GpZdeiqeeegoJCQm48MIL8f777zeaM9ASjUaDzp07N7q+oKAAM2fORFxcHCIiIpCYmIjRo0cDgFsv2E93+uONjo4GAKSnpze63ul0utzH6tWrMX78eISHhyMmJgaJiYl49NFH3c7S0nN9qs6dO0OSpEbHnnrcvn37sHPnTiQmJrpcevToAUAZSuYJHLbkaZWVwJ49olMQERG13ebNwIQJolOQYGq1usnr5VOW9T39hezpJEnCl19+iXXr1uH777/H4sWLceONN+Kf//wn1q1bh4iIiFZz6PV6qFSu73M7HA6cd955KCsrw0MPPYRevXohPDwcR44cwcyZM+F0Ot14hK6ae7ytPQ8HDhzAueeei169emHu3LlIT0+HTqfDokWL8PLLL7uVxZ3n2t3jnE4n+vXrh7lz5zZ57OllqL1YHjxtwwagHd+4REREwuXnAxUVwJ9DTohOl5mZCafTiX379qF3794N1xcVFaGiogKZmZkuxw8dOhRDhw7Fs88+i08++QRXX301PvvsM9x8882tFpCmbN++HXv37sW8efNw3XXXNVy/ZMmS9j+odvr+++9hsVjw3XffuZxB8NTwoLbKzs7G1q1bce6557pV7tqLw5Y8qbwcOHRIdAoiIqL2kWVl8jRRMyZPngwAeOWVV1yur3+3e8qUKQCUYTenv3s+cOBAAGgYulS/elJFRYXb91//Dvypty3LMl599VW3b8NTmspSWVmJ999/3+dZAGWVrCNHjjRMZD9VXV2dyz4Z4eHhbXreT8UzD57ESdJERBTo9u5Vlm3984Ud0akGDBiA66+/Hm+//TYqKiowevRobNiwAfPmzcNFF12EsWPHAgDmzZuHN954AxdffDGys7NRXV2N//73v4iKimooIEajEX369MHnn3+OHj16IC4uDjk5OS6rDJ2uV69eyM7OxgMPPIAjR44gKioKCxcubDRHwBcmTJgAnU6HCy64ALfeeitqamrw3//+F0lJSTh27JjP81x77bX44osvMGvWLCxbtgzDhw+Hw+HAnj178MUXX2Dx4sUNK18NGjQIS5cuxdy5c5GWloYuXbpgyJAhbt0Py4OnmEzAaZt6EBERBRynE9i+HXDzhUQwszvtDRebw6b812lruE6j0sCgMTRcdOrg2EG4Ne+88w66du2KDz74AF9//TVSUlLwyCOP4Mknn2w4pr5UfPbZZygqKkJ0dDQGDx6M+fPno0uXLi63ddddd+G+++6D1WrFk08+2WJ50Gq1+P7773H33Xfjueeeg8FgwMUXX4w777wTAwYM8OrjPl3Pnj3x5Zdf4vHHH8cDDzyAlJQU3HbbbUhMTGy0UpMvqFQqfPPNN3j55Zfx4Ycf4uuvv0ZYWBi6du2Ke+65p2HiNKCcKbrlllvw+OOPo66uDtdff73b5UGSTz+nRO2zYYOyyQ4REVGg0+mAq65S/htkZFlGtbUaVZYqVJorUWmpRJWlCjXWGpeSYHfaIaNtL5FUkgo6tc6lUBg0BujVehg0BkTqIxFvjEe0IdpLj47I+3jmwRPsdmD3btEpiIiIPMNqBXbtAv4cox6oTDYTSk2lKK0rRVldGUpNpai0VMIpe2dhE6fshNluhtlubvE4nVqHeGM8EsISGi4xhpgOTWIl8hWeefCEHTuANWtEpyAiIvKcsDBgxgygmSUi/VGNtQaFlYUorCrE8Zrjrb6I9ycalQZxxjgkhiU2FIpYYyxUEte2aSur1YqysrIWj4mOjnbZ4I3cxzMPHSXLythQIiKiYGIyAfv2Ab16iU7SLKfsxPGa4yioLEBhZSHKzb6fNOspdqcdJ2pP4ETtyY28tCotOkd1RmZMJjKiM2DQGAQmDBxr1qxpmLjdnPfffx8zZ870TaAgwzMPHXXwILB0qegUREREnhcdDVx+OeBHw2lqrbUorCpEQWUBjlQdgc1pEx3JJyRISAxPRGZ0JrJishBrjBUdyW+Vl5fj999/b/GYvn37IjU11UeJggvLQ0d98w3goe2+iYiI/M555wGnrI4jQqmpFAfKD6CgsgBldS0PRwkVsYZYdIvrhuy4bETpo0THoRDC8tARx48D330nOgUREZH3JCUBF13k87t1yk4cLD+IXcW7cLzmuM/vP5AkhiUiOy4b3eK6IUzL/TnIu1geOmLxYiA/X3QKIiIi77rgAsBHQzxMNhN2Fe/CnpI9MNlMPrnPYKGSVOgW1w0DkgdwWBN5DctDe1VWAp9/LjoFERGR96WnA+ef79W7OFp9FLuKdyGvIs9rS6mGkozoDAxIHoDUSI7rJ8/iakvttW2b6ARERES+UVgIlJUBcXEevVmbw4Z9Zfuwq3gX5zJ4WEFlAQoqC5AUnoT+yf3RJaYL95Egj+CZh/Ywm4H58wGHQ3QSIiIi3+jWDRg3ziM3ZbabseX4Fuwp2QOrw+qR26SWRemj0D+5P3rE94BGxfeOqf1YHtpj0yZg82bRKYiIiHxHpQKuvBKIiGj3TThlJ3ae2Infj/3O0iCIQWNA38S+6JvUl/tGULuwPLSV3Q588oly9oGIiCiUDBqkXNohryIP6w+vR6Wl0sOhqD20Ki0GpQ1CTlIOd7GmNmF5aKvdu4GVK0WnICIi8r2ICGDGjDZtGldqKsXaw2txtPqoF4NRe8UZ4zAyYySSI5JFR6EAwfLQVl99BZSUiE5BREQkxuTJQOfOrR5mspmw6egm5JbkQgZfavi7nvE9MaTzEA5lolZxxkxblJWxOBARUWjbs6fF8uBwOrCtaBu2HN8Cm9Pmw2DUEbmlucivzMfgToPRK6GX6Djkx1ge2iI3V3QCIiIisfLylHl/hsbvUOdV5GFN4RrUWGt8n4s6zGw3Y0X+CuSW5GJExgjEh8WLjkR+iMOW3OV0Ah9/zInSREREQ4cC/fs3fGhz2LC6cDX2lu4VGIo8SYKEvkl9cXba2dCqtaLjkB/h9Hp3FRSwOBAREQEuZ+KLaorw5a4vWRyCjAwZO07swOc7P0dBZYHoOORHeObBXYsXA/n5olMQERH5Bee0C7DZeQR/HPuDE6JDwJmpZ2JQ6iDuUk0sD26pq1N2lHY6RSchIiISzm7QYE+3MKzRV4mOQj6UHpWOcV3GQa/Ri45CAnHYkjv27WNxICIiAlAXZ8DxTjLCLTVQy3wXOpQUVhXiq91fodRUKjoKCcTy4I69HMdJREShTQZQ0TkMJ2LNcMABldOJdHBPgFBTba3Gt7nfco5LCGN5aE1ZmXIhIiIKUQ6tCie66lGpN7lc38nKkc+hyO6047e837CqYBWcMkdmhBqWh9YcOCA6ARERkTB2gwZFGWqYJUujz0WYzTDKagGpyB/sKt6F73O/h8lmav1gChosD61heSAiohBlC9PieCcZNjSzU7QMZMg634Yiv1JUW4SFuxbiWPUx0VHIR1geWnLiBFDFlSSIiCj0WKJ0OJ7qgAOOFo9LsnLYSqirs9fhx30/ch5EiGB5aMn+/aITEBER+VxdnAFFiTY40XoxCDNbYODLiZDnlJ34Le837C7eLToKeRl/2psjy8DBg6JTEBER+VRtohHFseY2bfyW7uS6/6RYWbAS24u2i45BXsTy0JyjRwETJwAREVHoqEoNQ0lUXZv3i07mqkt0irWH1+KPY3+IjkFewvLQHA5ZIiKiEFKeHobysPa9aRZuMUMv8yUFnbTx6EZsOrpJdAzyAv6kN0WWgfx80SmIiIh8ojw9DFW6Dpxtl4F0rrpEp9l8bDM2H9ssOgZ5GMtDU4qLAbNZdAoiIiKvq0rtYHH4U3Izq7lSaNt0dBO2FW0THYM8iOWhKYcPi05ARETkdbUJxnYPVTpdhNkMHV9WUBPWHV6HXcW7RMcgD+FPeVMKC0UnICIi8ipztB6l0R48yy5z1SVq3qqCVcgtyRUdgzyA5eF0VquyORwREVGQsoVpUZxga9NyrO5IsHv05ijIrMhfgcNVHN0R6FgeTnf4sDJhmoiIKAg59GqcSJXd2gCurSItVkj8E0rNkCHj10O/otpSLToKdQDLw+k434GIiIKUUy3hRGc17PDOKQK1w4EEaL1y2xQczHYzlhxcAruTp6kCFcvD6TjfgYiIgpAsAcUZelhh9er9pDhZHqhlJaYSrCpYJToGtRPLw6nKy4HaWtEpiIiIPK4swwizyvvLkMdaHV6/Dwp8e0v3YueJnaJjUDuwPJyKZx2IiCgI1SYaUaOp88l9GS0W7jZNbll7eC2KaopEx6A24k/3qVgeiIgoyNgNGpRFWXx6n6ngkq3UOqfsxJKDS2CyeWavEfINlod6djtw/LjoFERERB4jAyhJU3tlZaWWJHK3aXKTyWbC0oNL4ZR9+z1K7cfyUO/oUcDBcZpERBQ8qjqFwSL59qwDAERbvDspm4LL8ZrjWFu4VnQMchPLQz0u0UpEREHEEqVDpUHMcBC1w4E4LtlKbbCzeCf2le4THYPcwPJQj/MdiIgoSDjVEkoSnR7eP7ptEp0agfdOgWh14WrOfwgALA8AUF0NVFaKTkFEROQRZZ0NXtsIzl0x3AOM2sjqsGLd4XWiY1ArWB4AnnUgIqKgUZtgRK2PlmVtSYSVs6ap7faX7ceRqiOiY1ALWB4AzncgIqKgYNerURbt+wnSTdHY7YgAhy5R260qWAWHk4vY+CuWBwAo4gYlREQU+CpStD5flrUlSZz3QO1QaanE1qKtomNQM1geamuBOvGnd4mIiDrCHK1HrcYsOoaLOIckOgIFqD+O/YEqS5XoGNQElofiYtEJiIiIOkQGUJ4gcm2lpkVaOWua2schO7C6YLXoGNQEloeSEtEJiIiIOqQmxQgr/G9jNp3NBgNfalA7FVYV4mD5QdEx6DT8iWZ5ICKiAObUqFAZ7n/FoV6SrBMdgQLY2sK1sDm4cpc/YXngsCUiIgpglSl6OOC/K9PEOfhSg9qv1laLTUc3iY5Bpwjtn2hOliYiogBm16tRrfevSdKni7D7z+pPFJh2nNiBCnOF6Bj0p9AuDzzrQEREAawyWQsZ/jdR+lQGG4ecUMfIkLHl+BbRMehPoV0eON+BiIgClDVcixqtf591AAC1w4FwWS06BgW4/WX7UWutFR2DwPIgOgEREVG7VCYFzgvyeGhFR6AA55Sd2H5iu+gYhFAvDxy2REREAchu1MCk8v+zDvVinKH9coM8Y3fxblgd/ruyWKgI3Z9mTpYmIqIAVZ0QWMufctI0eYLNacOu4l2iY4S80C0PHLJEREQByKmSUKMLnLMOAGDkTtPkITtO7IDD6b9LE4eC0C0PHLJEREQBqDbJACcC6518jcPOnabJI0w2E/aV7RMdI6SF7k8yzzwQEVEAqg4PzHfx47nTNHnItqJtoiOENJYHIiKiAFEXq4cNgblvQrQcui85yLMqzBXIq8gTHSNkheZPssmkXIiIiAJIdbToBO0X7vDvzewosGw9vlV0hJAVmuWB8x2IiCjA2Iwa1KktomO0m4ErLpEHFdUW4XjNcdExQlJoloeKCtEJiIiI2qQmwJZnPZ3OHpjDrch/7S3dKzpCSArN8lBTIzoBERGR2wJxedbTaRxO6EL0ZQd5x8Hyg3DKPKPla6H5U1xdLToBERGR28xx+oBbnrUp0bJGdAQKIlaHFYWVhaJjhJzQLA8880BERAHEFCGJjuARkVCLjkBB5kD5AdERQg7LAxERkR+TJQT0ROlTRTiDowSR/8iryIPdGZh7nwSq0CsPVqtyISIiCgCW6OAYsgQAYVyulTzM7rQjvyJfdIyQEnrlgfMdiIgogJiigmeoj8HuEB2BghA3jPOt0CsPHLJEREQBpE4bPGfLtXYOLyHPK6wq5KpLPhR65YFnHoiIKEBYw7WwI3hecKucTmhlznsgz7I6rNwwzodCrzzwzAMREQWIuhit6AgeFy5xuVbyPA5d8p3Q+wlmeSAfcjidmPP99/h4/Xocr6pCWnQ0Zg4bhscnT4YkKe++1ZjNePjrr/HNli0ora1Fl4QE3D12LGaNHt3o9mRZxuTXXsPPO3fi69tuw0UDBwIAPlizBjfMm9dkhqKXXkJSVBQAYP769Xjxl1+wr6gI0UYjzs/JwUuXXor4iAjvPAFE1CEmQ/CcdagXJqtQwZMP5GEFlQUYlj5MdIyQEHrlgcOWyIde+PlnvLl8OebdcAP6pqZiU34+bpg3D9FGI+4eNw4AcP+CBfg1Nxcf33gjsuLj8cuuXbj900+RFhODaQMGuNzeK//7X0PpONUVZ52FSX37ulw384MPYLbbG4rD6v37cd377+Plyy/HBf3740hFBWbNn4+/fPQRvrrtNi89A0TUXnaDBlYEz3yHemEhOOiBvK/KUoUKcwViDDGiowS90PsJ5pkH8qE1Bw/iwoEDMaVfP2QlJGD6oEGY0KcPNhw65HLM9eecgzE9eyIrIQG3jBqFAZ07uxwDAFsKC/HPJUvw3nXXNbofo06HlOjohotapcKvubm4afjwhmPWHjyIrPh43D1uHLokJGBEt264deRIbMjL89rjJ6L2C8YhSwBg4IJL5CVFNUWiI4SE0CoPdjtQVyc6BYWQYV274n979mBvkfILbWthIVbt34/zc3Jcjvlu61YcKS+HLMtYlpuLvUVFmNCnT8MxJqsVV737Lv49YwZSoqNbvd8P161DmE6H6Wee2XDdOV27orC8HIu2b4csyyiqqsKXmzdj8ilZiMh/WPWiE3iHgVs9kJcUm4pFRwgJoTVsiWcdyMcenjQJVWYzej35JNSSBIcs49kLL8TVQ4Y0HPPalVfilo8/RueHH4ZGpYJKpcJ/r7kGo3r0aDjmvi++wLCuXXHhn3McWvPu6tW4avBgGHW6huuGd+uG+TfdhCv++1+YbTbYnU5c0L8//n3VVR57vETkOVZNcL5Fr3M4geA8qUKClZhKREcICSwPRF70xe+/Y/6GDfjkppvQNy0NWwoLce8XXyAtJgbXn3MOAOC1Zcuw7tAhfHf77ciMj8eKfftwx59zHsb37o3vtm7Fr7m5+OOxx9y6z7UHDmD3sWP46IYbXK7fdfQo7vn8czwxZQom9u2LY5WVeHDhQsyaPx/vNjEUiojEkSXAFoTzHQBA6+R6/OQdZXVlkGW5ybmB5DksD0Re9ODChXh44kRcefbZAIB+nTohv7QUz/30E64/5xzUWa149Jtv8PVtt2FKv34AgP6dO2NLYSH+8csvGN+7N37dswcHiosRc999Lrd96X/+g5Hdu+O32bNdrn9n9WoMTE/HoMxMl+uf+/lnDM/OxoMTJzbcT7hej5EvvYRnLrwQqW4MhyIi37BF6CAHa3lwsDyQd9iddpSbyxFnjBMdJaiFVnngSkvkYyarFSqV69QitUoFp6wM+rU5HLA5HFCd9i7Jqcc8PGkSbh4xwuXz/Z5+umHVpFPVmM34YtMmPHfxxU1m0Zye5c/7lWUOQibyJ9YwtegIXqN2OKACwApB3lBiKmF58LLQKg8mk+gEFGIu6N8fzy5ahIy4OPRNTcUfhYWYu3QpbhymrEUdZTRidI8eeHDhQhi1WmTGx2P53r34cN06zL3sMgBoWEHpdBlxceiSkOBy3eebNsHudOKaU+ZUnJrlLx99hDeXL8fEPn1wrLIS937xBQZnZSEtJsbzD56I2s0SpJOl6+mggpn1gbygxFSCHvE9Wj+Q2i20yoM1OE8Bk/967cor8ddvv8Xtn3yCE9XVSIuOxq0jR+KJqVMbjvns5pvxyNdf4+r33kNZbS0y4+Lw7IUXYtaoUW2+v3dXr8YlZ5yBmLCwRp+bOWwYqs1mvL5sGWYvWICYsDCM69kTL1xySYceIxF5XrBOlq6nl9UwSywPvrJ381788tEvKNhdgMqSStz2j9swcMzAJo+d//f5WPHVClx2/2UYf9V4AEDJ0RIsemcR9mzag6rSKkQnRGPI5CGYfONkaLQnX0puWrIJP73/E4ryixAZG4kxl4/BxOsmNnk/+7fsxz9v/SfSstPw10/+6rHHWlzLFZe8jeWByIsiDQa8csUVeOWKK5o9JiU6Gu/PnNmm25XfeqvJ69c89FCLX3fXuHG468/N6YjIP8kSYJNsomN4lZ4TWn3KWmdF5+6dMXzacPznwf80e9wfy/7AwR0HEZMY43L98bzjcMpOXPPoNUjsnIijB47io2c/grXOiun3TgcA7Fi9A+8+/i6ufPBK9BnaB8fzjuOjZz6CTq/D2CvGutyeqdqE9598H73O7oWqsiqPPtbSulJOmvYylgciIiI/YgvTQkZwlwetrAL42s5ncobnIGd4y3v6lJ8ox2cvfYZ7XrsHr9/7uuvXD8tBzrCTX5/YORHH849jxcIVDeVh3aJ1GDhmIEZPH91wzKSZk7D4w8UYc/kYlxfz8/8+H4MnDYZKpcKW5Vs89CgVdqcdFeYKxBpjPXq7dFJobRLH8kBERH7OGhH87+vpZDYHf+J0OvH+E+9jwrUTkJad5tbX1NXUISzq5BBZu9UOrc51Aw+dQYfyonKUHittuG71d6tRcqQEU/8yFd7C/R68i+WBiIjIj9h0wf/CWtf6IeRDi+cthkqtwrgr3RvWeqLwBJZ9vgyjLjk5N6/POX3wx7I/sHvDbjidThTlF2HJx0sAAJUllQCAooIifP3617jxbzdCrfHeimLcadq7gv/tjVOxPBARkZ+za4J/IrGGZx78Rv7ufPz62a947OPH3JonUH6iHP+6618YNH4QRl48suH6kRePRPHhYvz7vn/DYXfAEG7AuCvH4Ye3f4BKpYLT4cS7j7+LC265AMmZyd58SKixcl8vbwqd8uB0Ao7gXr2CiIgCnyMEViHScmsZv7Hvj32oLqvGI1MfabjO6XDiy1e+xK+f/oq/f//3husriiswd9ZcZPfPxjWPXeNyO5Ik4dK7L8XFd1yMytJKRMZGYs+GPQCAhE4JMJvMyN+Vj8LcQnz20mcAANkpQ5Zl3DbkNtzz+j3odXYvjzwms93skduhpoVOeeBZByIiCgB2Kfjf6NJyY0q/MXTyUPQe3Nvlun/d9S8MmTwEwy4Y1nBd+YlyzJ01F5m9MnH9k9c32gC1nkqtQmySMll54+KN6Nq/KyJjI+F0OvHEZ0+4HLv8y+XYs3EPbn3hViR0Smjq5tqF5cG7Qqc82IJ75QoiIgp8MgAngr88qNkdfMpsMqO48OQ8gJIjJSjMLUR4dDjiUuIQERPhcrxao0ZUfBRSslIA/Fkcbp2LuNQ4XHrvpagur244NjpB2cS0pqIGvy/9HT3P6gmbxYY136/B7//7HbPfmg0AUKlU6NStk8v9RMZGQqvXNrq+w4+X5cGrQqc82O2iExAREbXIqVdDDoHyoHIG/9Asf5K/Kx9zZ81t+HjBywsAAOdMPQcz58xs9et3r9+NE4UncKLwBB6e/LDL597adHLfobU/rsXCVxdClmV07d8Vs9+ajS45XTzzINrAYrdwrwcvkmQ5RM4dlpQAX30lOgUREVGzrBE6HEsO/mG2NQY9VhssomNQELtuwHUwaAyiYwQlnnkgIiLyE06N8k7pR98tx/zvl+NwkbI+fvfMVNx97VSMHey60Zcsy5j56GtYvnEn3nrqNkwcPhAAUF5Zg3ueexd7Dh1BRVUt4mMicd6wAXjwxosQGW4EAKzdkosZD8zF6TZ88SKS4qK9+Cg5bIm8z2w3szx4SeiUB660REREfs7xZ3lITYzBQzdfjKxOSZABLPxlLW554g38+J/H0SPr5CZe7y78X5NDM1QqCecNG4gHbrgQcTGRyD9yAn997VNUVNXiX4/d7HLsrx88jYiwky+yEmIivfPgTiGFyKAHEofzHryH5YGIiMhPOP/cN2v8OQNcrn/wxovw8ffL8cfugw3lYef+Qrzz5RJ898ajGHz5/7kcHx0ZjmunjW74uHNyPK6dNgZvf/FLo/uMj4lEdERYo+u9iSPRydtYHryH5YGIiMhPONWNl790OJz4ccXvqDNbcWafrgCAOrMV9/z9XTx91wy3hhgVlVTg55V/YEj/7o0+N/nWZ2C12dAzqxPuvW4qzsrp1vEH0gqeeSBvY3nwHpYHIiIiP1F/5gEA9hw8gkvufgEWqw1hRj3emjML3TOVsw5Pv/kFBvXtigl/znFozl3PvoMla7bAbLFh/Dn98fzs6xo+lxQfjWfvvRr9e2TCarPjs0WrcOXsf+Kb1x9BTvcMbzy8k1geyMssdk7I95bQKQ+cME1ERAGka3oyFr31OKpr67BoxWbMfvEDfD53NvKOFGPtllz8+J/HWr2Nv952Ge65dioOHS7Ci+9+jWfeXIBn7rkKAJCdnoLs9JSGYwf1zUb+sWK8u3ApXn74Rq89LgBoensxIs/hmQfvCZ3ywDWliYjIz0mnvCGv02qQ1SkJANCvRya25ebhva9+hUGvRf7RYvS/8D6Xr73tqf/g7Jzu+Hzu7IbrkuKikRQXjW4ZKYiJDMdl972Eu6+ZgqT4poc6DeyZhY079nv+gZ2OJx7Iy2xObg7sLaFTHrhRCBER+TmphRfVTlmG1WbHfddfgCvPH+HyuYl/eRp/ve1yjB/av4WvV95Es9iaf1G168DhZouFJ0lsD+Rlaknd+kHULqFTHtT8JiIiIj/352vqF975GmMG90VaUhxqTRZ8++sGrNu6Fx8+f3fD2YTTpSXFIT01AQCwbP12FJdXYUDPLIQZ9diXdwx/f3shzuqbjfQU5Zh3Fy5FekoCemSlwWK14bOfVmHNlj346Pl7fPAw+YYeeZdGFTovcX0tdJ5ZlgciIvJz9S+pSyuqcf8LH6C4rBKR4Ub06tIJHz5/N0YO6uPW7ej1Ony2aBX+9uYCWG12pCXGYuKIM3DbjEkNx9jsDjz71pc4XlIBo16HXl074eMX78OwgT298MhOw+5AXqZVa0VHCFqSLIfIkgd5ecAvjde3JiIi8hdVqWEoDzOJjuF1Vo0GyyK4kAl5z7D0YchJymn9QGqz0FnwQBM6J1mIiCgwhcz+B5yHSF7GYUveEzrlgcOWiIjI34VIeZBZHsjLWB68h+WBiIjIT0icDEDkESwP3hM65YHDloiIyN+FxokHyOxI5GUsD94TOuWBZx6IiMjPSSGynymXaiVvY3nwHpYHIiIiP6G2OURH8AmeeSBvY3nwHpYHIiIiP6GxhEh54JkH8jKtivs8eAvLAxERkZ9Qm+0IhYkPDnYH8jKeefCe0CkPnDBNRER+ToIEDYL/75WdS7WSF6kkFcK0YaJjBK3QKQ8qFTelISIiv6dxBv+ZcoeKf4/JeyJ0EZD4ms9rQqc8ABy6REREfk8dAuXBztd15EXR+mjREYIaywMREZEf0YTAhABrCMzrIHGi9FGiIwQ1lgciIiI/orEG/wtre2i9+iAfizbwzIM3hdaPLydNExGRnwuF5VptPPNAXsQzD94VWuVBpxOdgIiIqEUsD0QdE2OIER0hqIVWeQjjsl1EROTf1GZ70G+hZpVYHsg7tCotzzx4WWiVh4gI0QmIiIhaJEGCVg7u3XGtcIqOQEEqzhgnOkLQC63yEB4uOgEREVGr9LbgnqNXJwf/0CwSIz4sXnSEoMfyQERE5Gf0dcE7rMepkmDjsCXyEp558D6WByIiIj+jr7aJjuA1dnVwn1UhseKNPPPgbSwPREREfkZjcUCD4HyRbVeH1ksP8h21pOawJR8IrZ9glgciIgoQekdwTpq2SMG+lhSJkhqZCo0qOEu3Pwmt8qDVcq8HIiIKCHqz6ATeYeWZB/KS9Kh00RFCQuj9BPPsAxERBQB9tV10BK8wc7I0eUl6NMuDL7A8EBER+SFdrQ2qIPwzbQ6+h0R+IFIXyZ2lfST0foRZHoiIKEAE47wHs8QN4sjzeNbBd1geiIiI/JTBqhYdweNM4AZx5Hmc7+A7LA9ERER+ylgRfPs91CA453KQOGpJjU5RnUTHCBksD0RERH5Ka7JBi+AZumTTasBBS+RpKREpXKLVh1geiIiI/FiYJXjKg4W7S5MXcL6Db7E8EBER+bGw8uAZulSnCb2XHeR9GdEZoiOElND7KTYYAHXwTUAjIqLgpKsNnqFLptB71UFeFqGL4BKtPhaaP8YREaITEBERuS3cHBzloYbLtJKHdY3tKjpCyAnN8hAXJzoBERGR28LLrKIjeESVxJWWyHMkSOiT2Ed0jJATmuUhPl50AiIiIrdp6uwwyHrRMTpGAqpllgfynPTodETpo0THCDksD0RERAEgvDaw/2TbNFrIkugUFEx41kGMwP5N1F4sD0REFGDCSsyQELivvi0aLlZCnhOlj+Ku0oKEZnmIiAD0AX76l4iIQorKISPMbhAdo91q1aH5koO8o3dCb0hS4JbpQBa6P8k8+0BERAEmqiRw5wxUqWXREShIqCU1eib0FB0jZLE8EBERBQhdrQ1hzsA8+1CG4NnsjsTKjsuGQROYPwfBgOWBiIgogESVBt5eCbJKQiUC96wJ+Ze+iX1FRwhpLA9EREQBRF9lhUEOrHddzVxpiTwkKTwJieGJomOEtNAtD7GxgCp0Hz4REQWuqPLAmj9g4kpL5CFcnlW80H31rFIBMTGiUxAREbWZsdwCvawTHcNt1RrRCSgYGDVGZMdmi44R8kK3PABAQoLoBERERO0SVRk4f8IrpMCbp0H+Z1DaIKhVPIslWuD85vGGuDjRCYiIiNolrNQMLbSiY7ilDFbRESjAxRpi0Tuht+gYhFAvDzzzQEREASyqyv/fhbVptbBJgTVHg/zPOenncFM4PxHa5YErLhERUQALLzFDA/+eUFDDydLUQelR6egc1Vl0DPpTaJcHvR4IDxedgoiIqF0kGYgr9+/yUKnlu8XUfhIkDO08VHQMOkVolweAZx+IiCigGcvMCHMYRcdoVrGKm8NR+/VO7I1YY6zoGHQKlgfOeyAiogAXe8wKlR/+SXeqVCiXbaJjUIDSqXU4K+0s0THoNP73m8bXUlJEJyAiIuoQjcWB6Dr/23XapNNxZ2lqtzNSzoBB43/f16GO5SElhTtNExFRwIs8ZoIW/rVxXKWGzYHaJ1IXiZykHNExqAl81azRAElJolMQERF1iCQDcSX+9WK9TM3N4ah9hnQewg3h/BTLAwCkpopOQERE1GGGSgsi7H4yeVoCTkjcHI7aLi0yDV1ju4qOQc1geQCAtDTRCYiIiDwi5qgFaoh/x9as1cEObg5HbaNT6zAma4zoGNQClgcASE7mvAciIgoKapsTMTXi5z5U6/x7/wnyT8PThyNCFyE6BrWAr5gBznsgIqKgElFUB6NT7Co1xZzvQG3UNbYrusd3Fx2DWsHyUI9Dl4iIKIjEH7ZCA0Hv/kvAMcki5r4pIIVrwzEyY6ToGOQGlod6LA9ERBRE1DYnEk+oIMH3KzCZ9HrOdyC3SZAwJmsM9Bq96CjkBpaHeikpgFYrOgUREZHH6KqtiK31/fClMq34CdsUOM5MPROdojqJjkFuYnmop1Lx7AMREQWdyON1CHf4dvnWIrXdp/dHgatzVGecmXqm6BjUBiwPp+rcWXQCIiIij4srMPts92mHWo0ScH8Hal24NhzjuoyDJPnX5obUMpaHU6Wni05ARETkcSqnjMRjMlQ++LNfrRe/TCz5P5Wkwrldz4VBI3ZVMGo7lodTRUUpFyIioiCjNdkQV+n9CamlnD5IbhjaeShSIlJEx6B2YHk4Hc8+EBFRkAovqUOkLcyr93FU4pAlatnAlIHIScoRHYPaieXhdJz3QEREQSy2wOS1DeQsOh1McHjltik49E7ojcGdBouOQR3A8nC6Tp2UlZeIiIiCkAQgMd8Cg+z5IUxlekGb0lFAyI7NxoiMEaJjUAfxVfLpNBogNVV0CiIiIq+RnDJ2L9mJmx9/A4Ov+D9kjb8Vi1dvafb4R1+Zj6zxt+LdhUtdrj94uAg3//UNnHHJ/ciZdg9uuOVp5G7K9XJ6CkTpUekY22UsV1YKAiwPTcnOFp2AiIjIq+rqzDg7oTOeveuaFo/7edUf+GP3QSTHxzT63E2PvQ6Hw4FP/nE/vnn7CST3SMPr976OypJKL6WmQJQSkYLzss+DSuLLzmDA84tN6dIFWLUKcDpFJyEiImozuzocdk0k7KoI2GGEHWFwOHVwyhJkqABZhf4Dz0W/ARLsGhnAv1Fa1wmHq3sBACQVoFbJKCk7gSde+xJvPPs87n7yMVgRgzokQy3ZUFlRjENHTuCFB65D766dURwRhkvuvATLFyzH0QNHEZ0QLfZJIL8Qb4zHpG6ToFHxJWew4L9kU/R6ZdWl/HzRSYiIiBqRIcGmjYVdHQm7Khx22Qi7bIDdoYPdroXskODuvGXpz+MkqOGof8/MCVidMv760nO4YtoMJCZ2h9Mpodasx4nKWCWDnIiMtAx8/NNupGWNQbEuCmsWrkBUXDQyemV6/kFTwInWR2Ny98nQqbn3RzBheWhOt24sD0RE5DesuniY1Ukwy3GwWMPgtKkAm+duP8YUA41KA7vTDgD45JtPoFarcemUS5s8XpIk/HPOP/H4C49j5CUXQJJUiIyNx13PzkcE+kJrskCjq4JTXQILjkOWPBiW/F6ELgJTekyBUWsUHYU8jOWhOZmZyuRpu110EiIiCkE2bQzMmmSlLNjC4bCqvXp/KpsKKVUpKIoqwo59O7Dwx4X470v/bXaCqyzLeOW/ryAmKgZz//keSoyJWLXoM/z7rzfj0X9/h+j4JFitBgBJAPpApzdDo62EU10Mi1QEGfz7GqyMGiMmd5+MCF2E6CjkBSwPzdFogKwsYP9+0UmIiCgE2DURMGtTYUYczNZIOGxqj55ZcIfarEayMxlf7PkC5ZXluPzWyxs+53A68Ma8N/DlD1/i8/98js3bN2Pt72vxw7wfYErNRhj0uOqeZ7B78yqs/eVLTJpxu8ttWy0GWC0GAMmAlAO9rg4q3QlY1QVwwOTbB0peE2eMw6Ruk1gcghjLQ0u6dWN5ICIir3FKGpj0mahxpsFiDYM/vBmvtqpx7YBrMeTlITDL5obrH/zbg5gwagLOH3c+AMBsUT4naTQoxckx7ZKkglOWW74TGbBYjIAlE0Am9HoTVPoTsKjy4YS55a8lv5URnYFzu5wLrVorOgp5EctDSzp3ViZPWyyikxARURCx6hJQo85CrSUWTrOY5StrzbXIK85r+LiwpBA7C3ciJjwGneI6YahqKMoSylDjrAEAaNQaxMXGIaNTBgCgb8++iAyPxLOvv4Ax182GTm/Ayh8/Q8nxQvQbMrZNWSyWMMCSBSALBkMtJF3Rn0XC6qFHS96Wk5SDczqfw30cQoAky629PRDiVq4Edu8WnYKIiAKcU6VDrb4LahypsFo9v7tzW63NXYsZc2c0uv7Scy7FP2f+EwAgQ0ZVYhUq5ApcMesKTJ86HZdNvazh2D379+DfCz7CgdwdcDjsSM3sjqnX3o2cwW0rD02RVDIMxnLYNfthk8o7fHvkHRIkDM8Yjj6JfURHIR9heWjN0aPADz+ITkFERAHKrEtFjSodJksMZDkw35U1xZlQrCpu/AmNFnvC07x+/wZDLWRdHiyqw16/L3KfTq3D+K7j0Tmqs+go5EMsD62RZeCTT4DaWtFJiIgoQMhQocbYHdX2TrDZgmP8tyXSgmJDMRzyyQ0k6iJjka+K8lkGrdYKjfEozKoDXK1JsEhdJCZ1m4RYY6zoKORjLA/uWLcO2LZNdAoiIvJzMlSoNWaj0pYBuz34phU6dU6UxJSgzlkHADgc0wk1su8fp0rlhCG8CGb1Hs6LECA5PBkTsidwD4cQxfLgjpIS4KuvRKcgIiI/JUNCraErKu2ZsNuD40xDsySgMqES5Tozcg3JQqOoVE7ow4/CrM7lmQgf6R7XHaMyR0Gt8u6+I+S/gu9tEW9ISACio4HKStFJiIjIz9QZ0lHu6AabWdf6wcFABqKLo1GSlAyVwQonnMKiOJ0q1FV3hlqdCl14AeqkfYDE90S9waAxYETGCHSN7So6CgnGMw/u+v135UJERATAqo1DuboPzOZw0VF8TpYkLJc6wa6VoelUCovkH3sz6HQWSMZ9sEhHREcJKtmx2RieMRwGjUF0FPIDPPPgruxslgciIoJDbUSFLgc1dXE+3wHaX1TpjbCY1YAFcBxMQlhaFUzGSgDtfz9y+XcfYfn381FapKyo1Nyyr7Is47VHZ2LnxuW47am3MHD4xIbP7d22B1+9+wIK920HJAey+mbhkrsvQXqP9HbnCmVGjREjM0ciKyZLdBTyI2J2pglEMTHK8CUiIgpZNYZuOCqPVIpDCCtExCkfSTAdjYb2WCr0cvvfmY5JTMXFNz+ER9/4Ho++8R16nTEMbzxxC47m7XU57n8L321yIzJzXS3+9cj1iEtKw0OvfYP/e+VrhIcl4l93/QsOu6PR8dSybnHdcHnfy1kcqBGWh7bo1Ut0AiIiEsChMqDYcA5KzdlwOgNzrwZPsWs0OGpuXBJsJi0sB5NhrI6HGm2fTDvgnPHoN2Qskjt3QXLnrrjoxgehN4bh4O4/Go4p3L8TS758B9c98GKjrz9ecAC11RWYdv39SEnPRmpmT5x/5SOoKq1C5VGuyOSuMG0YJmZPxLgu46DXiN/MkPwPy0Nb9OgB6PmDREQUSuoMnXBMGgGT2Xf7GfizYl04ZDRfoOpOREAuSIXRHtHsMa1xOhzYuOw7WM116NrnTACA1VyHd/9+D2bc9TSi45IafU1KeleER8Vi9U+fw26zwmoxY9XPnyM1oxtiIqYgzNEXCNBN+nylR3wPXNbnMmTGZIqOQn6Mcx7aQqMBevcGtmwRnYSIiLxMltQoNw5AtSlRdBQ/ImG/JbLVo5w2Nery46GPDoczoQw2NyeHHDm4By/cfQlsVgv0xjDMmvMW0jK7AwC+ePNpdO07CAOHT2jyaw1hEZj9z8/w5pO34Mf5rwEAkjpl4Z7nP4RKpYWpujN0ukTAuB1WqdTNxxsaovRRGJY+DBnRGaKjUABgeWirvn2VDeOc4pamIyIi77Lq4lEi94fNFCLLr7qp0hgGU537Q5IslQagKhXG5BrYwithR8tzD5LTu+LxtxahrrYam1cswgcvzsbsuZ+j+EgecresxWP/+bHZr7VazPjwn/+H7L6DcPOj/4LT6cCSBf/F64/diEf+/R10egOsVj0k2yAYI/NQp9rb7G2FijBtGM5MPRO9EnpBJXEwCrmHS7W2x//+Bxw4IDoFERF5mAwJ1cbeqKhL78C6QcFriz4FRZb2Dd+VVDIMSdWwhlfB0UqJqPfyg1cjMS0DWr0By77+ANIpL3CdTgcklQrdc87G7LmfY9VPn+Obd1/Ci19sgEqlHGe3WXHfxQNw3ewXcPbYaS63bQwvh1m7OSQ3l9Or9RiQMgA5STnQqPg+MrUNv2Pao18/lgcioiBj10SgVH0GzHVhoqP4JYtO1+7iAACyU0Ld8ShIqgiEpVTDbKxqdYM5WXbCbrPiguvvw4jzr3T53NN/mYjLb/sr+g8dD0CZEyGpJJeVmCSVChIkyM7GVbCuNhY63Qg4wzbDjqp2P65AolPr0DexLwakDIBOzbNq1D4sD+2RlKRcTpwQnYSIiDzArE9FsS0HTjuHbjTnsLr1uQ7ukJ0qmI5GQ6WJhDG5ChZDNZxw4ut3XkDfwWMQl5QGi6kWG379Fnu3rsPdz3+I6LikJidJxyWlISFV2cOhz6ARWPj23/Hpv/6KsRfNhCw78fNnb0KlVqPnwHOazGK16qGyD4Ehcg/MUqFHHp8/MmgMyEnKQU5SDksDdRjLQ3vl5AC//io6BRERdZDJkIUSSw/IXImnWQ61Goc8vJO2065C3ZEYSOooGBNrUVNRjg9euB+VZcUwhkeiU5deuPv5D9Fn0Ei3bi8loxvueOZd/PDhq3jh7oshqVRI79YXdz83D9HxjYtHQw6nCubKPjBGxKJOvR2QgmfAWpg2DP2T+6NPYh8OTyKP4ZyH9nI6gU8/BWprRSchIqJ2qjb2RFldlugYfq8oLApbTLFevx99TB2k2BqYVSav31dTDMYqWHQbIEuBu6mcBAmdojqhe1x3dI3tCrWq7XtuELWE5aEjtmwBNmwQnYKIiNqhwtgflXWpomMEhNWaTqix++6da43BDm1CNaz6WrcnV3uKXm+CzbgeTgTWxnJxxjj0iO+BbnHdEKblvB3yHpaHjrBYgPnzAXvordRARBSoZEgoM56Fmro40VECQpUhDGvNYva6kFQy9LF1kCJrYVbXQfbRGlg6nQUO43o4pDqf3F97hWnD0D2uO7rHd0eckd/P5BssDx21ciWwe7foFERE5AanpEGJfjDqzJ6Z/BsKOrI8qydJaicMcXWQI0ywqLxfJLRaG+SwjbBL1V69n7bSqrToEtsF3eO6Iy0yzWV1KSJfYHnoqIoK4IsvRKcgIqJWOFR6FGuHwGIxio4SMGp1BqyyJouO0YikckIfawYiTLBpzF4b2qRWO6CK3Awbyrxy++6K0EUgJSIFGdEZyIrJ4uRnEorlwRMWLQIOHxadgoiImmHXROCEdDZsNi5T2RY7DEk4Yvb/sqUx2qCNsgBGM2xqC+we3PhNpXJCG7kNFqnIY7fZEgkS4oxxSIlIabiE6zy70hVRR7A8eEJhIfDTT6JTEBFRE+yaSBzHYDh8OOE3GJh1Oiy3BuaEco3RDm2kGTCa4dDYYIOtQ8OcVConNFF/wIoSD6ZUaFQaJIYlNhSF5Ihk7sVAfo2/ST0hPR2IiVGGMBERkd9wqPQ4IZ0Fh41/7toqTxUtOkK72es0sNdFAIj48xoZGqMdmjAbVHobnFobHGob7JJ7pcLpVMFRPRDaiN9hk8rbnEej0iBCF4FwbbjyX53y3zhjHBLCEqCSuDkhBQ6eefCUXbuAVatEpyAioj/JUOGEfjjMFi5b2VZWrRbLbGmiY/iESuv48+KEWusANE5IGgdklROy2gFZcgJ/Vgy12gZtzFboDFaoJBUkSJAkCSpJBZWkQpg2DOHa8IZyUF8Y9BrxE86JPIVvxXhKz57Kvg81NaKTEBERgFLj2TDXsTi0R4EmCrCJTuEbTpsaTpv7G6lpo9Jx/oWA0f+nghB5Bc+TeYpaDQwaJDoFEREBqAgbgNq6GNExApJdo8HBOk7QbU5VFfDzz9ziiUIXy4Mn9eihzH0gIiJhaozdUWlKER0jYBVqoyCDewe0pLgYWLoU4MBvCkUsD54kScDZZ4tOQUQUsuoMnVBW11V0jIBl16hxwBzR+oGEggJln1iiUMPy4GldugBJSaJTEBGFHKsuHiXWvl7edzi4FWii4ZB51sFde/YAO3eKTkHkWywP3jB4sOgEREQhxa4OxwnnQDidfOHbXjatlmcd2mHdOqC0VHQKIt9hefCGtDSgc2fRKYiIQoJT0uCE+mxuAtdBBzXRcHKuQ5s5HMr8B1uIrE5FxPLgLZz7QETkE+WGM2Czch39jrDodMjjCkvtVlnJrZ4odLA8eEtiItCVk/aIiLzJZMhETV2c6BgBb68UIzpCwNu3D9i7V3QKIu9jefCms88GVHyKiYi8waEOQ5mtu+gYAa/WYMBRC3c884RVq5SzEETBjK9svSk6Wtn7gYiIPK5EeyYcDvd3Bqam5TpjREcIGna7Mv/B4RCdhMh7WB68bdAgZfdpIiLymKqwXjCbOUa/o6oMYSjmfBGPKi1VVmAiClYsD94WHg707Ss6BRFR0LBpolBRlyE6RlDY7YgRHSEo7dwJ5OWJTkHkHSwPvnDGGYBOJzoFEVFQKFMPgMyNzDqs2BiJCptWdIygtXIlYLWKTkHkeVwU2xf0emDAAGDjRtFJiIgCWo2xO8x1YS0e88bPb+DFr1/EDeNuwJNXPImK2gq8/N3LWLl7JY6UHUF8RDwmDJyA+y+8H1HGKADArsJdeHPxm9i0fxPKasrQOb4zrh51NW4898aG2539wWwsXLuw0f11T+2OJXOWePaBeplDrcZOS7ToGEGtrg7YvBkYOlR0EiLPYnnwlX79gB07lN8mRETUZg51GMotWS0eszVvKz5Z8Ql6de7VcF1RRRGKKovw6KWPontadxwpPYLH5j+GosoivHnrmwCAHQU7EB8Zj5dvfBlpsWn4/cDveOTjR6BWqXH92OsBAE9e8SQeuvihk3mcDpz/t/MxedBkzz9YL8vXxcBSx/l43rZjB9C7t7J+ClGwYHnwFY1GWbp1xQrRSYiIAlKZdgCc5uZH29aaa3Hvu/fi+Wufx2uLXmu4vmennvjPrP80fJyZmIkHLnoA9713H+wOOzRqDS4ffrnLbWUkZmDzwc34+Y+fG8pDlDGq4UwFACzeshiVpkpcNuwyTz1En7DodNjPDeF8wukE1q4FJk0SnYTIczjnwZd69QKSk0WnICIKOGZ9GkzmqBaP+eunf8XYfmMxoveIVm+vuq4aEYYIaNTNv4dWXVeNmPCYZj//xaovMKLXCHSO79zq/fmTXYiDDM4Z8ZWCAqCwUHQKIs9hefC1kSO5cRwRURtVoFuLn/9u43fYWbAT/3fx/7V6W2U1ZXjtx9cwY+SMZo/5/cDv+GHTD80eU1RRhN92/oYrRlzR6v35k3JjOE5waVafW7tWOQtBFAz4KtbX4uKAnBzRKYiIAkadoRMsLeyAfLTsKJ7+/Gm8ctMrMGgNLd5WdV01bnjtBnRL7YZ7L7i3yWNyj+TiL2/8BfdMvQej+oxq8pgv136JKGMUJgyc4PbjEM2pUmG7NVZ0jJBUUaEs30oUDDjnQYSzzgIOHgRqakQnISLyexXOls86bC/YjpLqEkx9dmrDdQ6nAxv2bcCHv32Ivf/eC7VKjRpzDa7/1/WIMETgrdveglbdeJnSfUf34eqXr8aMkTNw15S7mrw/WZaxYM0CXDz0Yug0gbMM9xFDNOpMnCQtyu+/A927A4aW+y2R32N5EEGjAYYNA375RXQSIiK/ZjJkwGpu+dXW8F7DsfiJxS7XPTjvQWSnZGPWxFlQq9SorqvGda9eB51Wh3fueKfJMxR7j+7FVXOvwqXnXIoHL3qw2ftbt3cd8k7k4YrhgTNkyarVYo8pUnSMkGa1Ahs2AKOaPplFFDBYHkTJygIyM4H8fNFJiIj8VqWza6vHRBgi0LNTT5frjHojYsJj0LNTT1TXVePaV6+F2WrGKze9guq6alTXVQMA4iPjoVapkXskF1e9fBVG9RmFm8bfhBOVJwAAapUa8ZHxLrf9xeovMLDLwEb36c/2qOLg5CRp4XJzlZHLcXGikxC1H8uDSMOHA0eOAHa76CRERH6n1pgFa13HJ/fuKNiBLYe2AABGPz7a5XMrn12J9IR0LNq8CKXVpfh6/df4ev3XDZ/vFN8Jq/++uuHjqroq/LT5Jzx5xZMdzuUrpcZIHKvjWBl/IMvAli3AuHGikxC1nyTLsiw6REjbtg1Yt050CiIivyJDwjHtGNhsgTOnwB/ZNRqscKTCJnN9FH+hUgFXXQWEtbxROpHf4m8T0fr1A5KSRKcgIvIrtcauLA4esFcTx+LgZ5xOrrxEgY2/UUSTJGD0aO79QET0JxkqVNoyRccIeOWGcBSam1/ilsTZvZsjlilw8RWrP4iNBc44Q3QKIiK/UGvMht3eeBlVcp9DrcY27ungt8xmYN8+0SmI2oflwV+ccQaXXyAiAlDtSBMdIeAd0MXC7OSeDv5s+3bRCYjah+XBX6hUyvAliUvpEVHosmpjYbVyZaCOqDYYcaguXHQMakVFBVBYKDoFUduxPPiTxERlAjURUYiq1XKuQ0c4VSpsscW3fiD5BZ59oEDE8uBvzjoLiI4WnYKIyOdkSKi1JIiOEdAO6ONgcnC4UqA4fBgoLxedgqhtWB78jUYDnHsuV18iopBjNqTBwRe+7VZhDMdBDlcKODz7QIGGr1D9UUICMHSo6BRERD5VK3UWHSFg2TUa/GHhohuB6MABwOEQnYLIfSwP/ionB8jKEp2CiMgnnCodTGYO2WyvHeoEWJ38kx6IbDZOnKbAwt80/mzMGCAyUnQKIiKvM+kyIMtcba49joVFo8iiFx2DOuDAAdEJiNzH8uDPdDrOfyCikFArp4qOEJDq9HpsN/GMTaArKOCO0xQ4+KrU3yUlAYMHi05BROQ1dk0kzJYw0TECjlOlwh+OBMjgGZtAx6FLFEhYHgJB//5AJtc+J6LgVKPrIjpCQDqgj0O1XSM6BnnIoUOiExC5h+UhUIwZA0REiE5BRORxJjtXCWorLssafAoLAVkWnYKodSwPgUKv5/wHIgo6DpUeNisn+7aFRafF72YWrmBjsQBFRaJTELWOr0QDSXKysgM1EVGQsOiSRUcIKE6VCpudibDL/PMdjAoKRCcgah1/+wSagQOB9HTRKYiIPMKiihcdIaDk6uJRZdeKjkFewvJAgYDlIRCNHQuEc6wrEQU+iz1KdISAccwYjQIzV6UKZmVlQG2t6BRELWN5CEQGAzBuHCBxeT4iClxOSQOr1SA6RkCoNRiwvY77OYSCEydEJyBqGctDoEpNBQYNEp2CiKjdrLokcHGZ1tk1Gmyycj+HUFFSIjoBUctYHgLZGWdw/gMRBSyzOkF0BL8nSxK2qRJgdqpFRyEfYXkgf8fyEMgkSVm+NY5L9hFR4LE4Od+hNYcMcSjmUrYhheWB/B3LQ6DT6YDzz+cEaiIKKDJUsFg4+bclxWGR2FfHzUFDTV0dJ02Tf2N5CAbh4cCkSYCWy/cRUWCw6hIgyxzD35wagxF/mGJFxyBBiotFJyBqHstDsIiPB847jztQE1FAsGg436E5Vq0WGzlBOqRx6BL5M77SDCadOwMjRohOQUTUKqscKTqCX3Ko1dgkJ8Hq5J/nUMbyQP6Mv52CTa9eyi7URER+zO7g/g6nkyUJ29SJqLZrREchwVgeyJ+xPASjwYOBbt1EpyAiapbdwTlap9urT8AJrqxEAEwm5ULkj1gegtXo0cpGckREfsap0sHh4L4FpyoMi0WematP0UmlpaITEDWN5SFYqdXAhAlATIzoJERELuxqznc4VYkxErtM3POCXPHMA/krlodgptcre0AYjaKTEBE1YHk4qdIYhs11XJKVGqurE52AqGksD8EuMlLZA0LDCXhE5B/sKg7PAYBagwEb6rgkKzWN5YH8FctDKEhMBM49F5D4B4qIxHPIOtERhKvT67HOkggniwM1g+WB/BXLQ6jIzATOOUd0CiIiOBDaKwpZdDqssyXBLvNPMDXPbBadgKhp/M0VSnJygAEDRKcgohDnkEN3mVabVov1Dm4CR63jmQfyV/ztFWqGDGGBICKhHM7QnINl16ixQU5CHZepJTewPJC/YnkIRUOGAGecIToFEYUoZwjuoOxQq/G7lIyaEHzs1D4ctkT+iuUhVJ19NnDmmaJTEFEIcjhD6513p0qFLeokVNhCd7gWtZ3TCVgsolMQNcbyEMrOOku5EBH5kiyLTuAzTpUKWzRJKLFyhSlqOw5dIn/E86eh7swzlSVcN24UnYSIQoQkSQiF+uBQq7FFzeJA7cehS+SPeOaBlPkPgweLTkFEoUIK/urgUKuxWcXiQB3D7ZnIH7E8kGLgQGDoUNEpiIgCXn1xKLOxOFDHqPgqjfwQvy3ppP79uZEcEflA8J55cKjV2KRKZnEgj1CH1toCFCBYHshVv37AsGGiUxBREAvWkRj1xYGrKpGn8MwD+SN+W1JjOTnAiBGiUxBRsArC9mDXqLFBYnEgz+KZB/JHXG2JmtanjzJTa+VK0UmIKNgE2aglq1aLjXISN4Ajj+OZB/JH/E1HzevdWykQK1aITkJEwUSSg6ZAmHV6rLcnwhxiG9+Rb/DMA/kjlgdqWa9eym+v5cuV7S6JiDooWJafrDEYsd6SALvMt4fJO3jmgfwRvy2pdd27A+efD+i4eggREQCUGSOw1pzI4kBexTMP5I/4W4/c06kTMG0aEBEhOgkRBboA3yTueFg0NtbFwxmMM7/Jr7A8kD9ieSD3xcUBF10EJCSITkJEAUyjsouO0G75xjhsNcWIjkEhgEOWyF/xW5PaJixMOQORkSE6CREFKI3aIjpCm8mShFxjAvbURYqOQiHCaBSdgKhpLA/UdhoNMHGispwrEVEbqSWz6Aht4lCrsU2XhLy6cNFRKIRwlDD5K5YHah9JUjaSGzo0eJZOISKf0Mgm0RHcZtHpsE5KwXGLQXQUCjHh7Krkp1geqGP691fOQnAlJiJyk0auFR3BLVWGMKyyJXPzNxKCZx7IX7E8UMdlZCgTqaOiRCchogCgsVeLjtCqY2HRXIqVhGJ5IH/F34rkGTExwMUXK0u6EhG1QGOvER2hWfUTo7dxRSUSLJJz88lPsTyQ5+j1ymZyffuKTkJEfkyCExqN/y3XatdosFmbwonR5BdiYkQnIGoaywN5lkoFDB8OjBzJRaqJqFkatVV0BBd1ej3WyCkosXL+FomnUvHMA/kvzgIj7+jdG4iNBf73P6A2MCZHEpHvqFUWAGGiYwAAisOisMUUwx2jyW9ERfH9N/Jf/NYk70lJAS69FMjKEp2EiPyMxg/2enCqVNhjSMRmUyyLA/kVDlkif8byQN5lMAATJih7QqjVotMQkZ8QvVyrWafDOlUq8s3+cfaD6FQsD+TPWB7IN/r0UVZjiosTnYSI/IDeXiLsvovDIrHSmoJq7t9AfioxUXQCouaxPJDvxMUpBaJPH9FJiEgwra0Sah+vuORUqZBrTMBmUxyHKZFfS00VnYCoeSwP5FtqtTKEacIEZUgTEYUsg9Z3+z1YdDqsV3EZVvJ/cXH880j+jedsSYysLOW87LJlwNGjotMQkQAGlKEWMV6/nxNhUdhWFwOHzLMN5P/S0kQnIGoZzzyQOOHhwJQpwODBXJOOKAQZbMe9evt2jQbb9Mn4wxTL4kABg0OWyN/xzAOJJUnAwIHKWy2//gpUVYlOREQ+orFXQ6Oxw+6FictlhghsscTCZucbExRYWB7I3/G3KvmHpCTgkkuAbt1EJyEiH9Jrqz16ew61GrsNidhojodN5p84Ciyc70CBgL9ZyX/odMC4ccCYMYBWKzoNEfmAAWUeu60qQxhWyako4N4NFKA434ECAYctkf/p0UPZnXrVKuDwYdFpiMiLlHkP2R26DadKhYO6WBwwR3gmFJEgHLJEgYBnHsg/RUUBkycD48cDYXwXkShYaew10Ghs7f76KkMY1kipLA4UFFgeKBDwzAP5t65dgfR0YNMmYMcOQJZFJyIiDzNoq1Fjb9vu83aNGvs1ccjnECUKEpzvQIGCZx7I/2m1wDnnKBOqk5JEpyEiDzOgpE3HnzBGYoUjjcWBgkp2x0bvEfmMJMt8K5cCzO7dwIYNgMUiOgkReYBT0uIwxkJuZS8Gi06HHYhHiVXno2REvnPVVUAER99RAOCwJQo8vXsDXboA69YBe/eKTkNEHaSSbQgzVKDWHNvk52WVCgX6aOTWRUIGN3uj4JOWxuJAgYPDligwGQzKkq7TpgGxTb/gIKLAEY4jTV5fZQjDaikVe+qiWBwoaPXoIToBkfs4bIkCn9MJbNsGbN4M2O2i0xBRO8iQcER9LhwONQDAqtUiVxWLoxaj4GRE3qXRANdey+2NKHBw2BIFPpUKGDhQ2Z169WogP190IiJqIwkywvWlqDCnoFAfg9y6CJ5poJDQtSuLAwUWDlui4BERAUycqFwiI0WnIaK2UKmgz9BiBdKwh3MbKIRwyBIFGp55oOCTmansDbFnjzKUyWQSnYiIWtK1KzB4MMKiohBTDhQViQ5E5BsREcpkaaJAwvJAwUmlAvr0AXr2BHbtArZsAerqRKciolOlpABDh7rs39KnD8sDhY7u3UUnIGo7Tpim0GC3KztUb9sGmM2i0xCFtpgYYPBgICur0accDmD+fP6YUmi44gogOlp0CqK2YXmg0GKzAdu3KyXCahWdhii0GI3AoEFAr17K2cFmrFun/IgSBbNOnYApU0SnIGo7lgcKTRaL8upkxw6lUBCR90RGAgMGKMMI1epWD6+qAj7/HOBfJwpm06YpI/eIAg3LA4U2s1mZD7FrF/eIIPK0uDhlGeWuXVs809CU337jBvIUvNLSgKlTRacgah+WByJAWZFpyxZg925l0DURtV9KilIaMjLafRPV1crZB6fTc7GI/AXPOlAgY3kgOlVtrbK8a24uX7UQtVVGhlIaPPSqaNUq5aQgUTDhWQcKdCwPRE2prlYmVufmck4EUUtUKmVY0sCByjAlD6qtBT77jCcDA9HevSvwyy8voaDgd1RWHsNtt32NgQMvAgA4HDZ8883j2LFjEUpKDsJojEbv3uNx8cXPIybm5KYHixY9i+3bf0Rh4RZoNDq88kpFo/vJy9uIr756GAUFv0OSJGRlDcYll7yI9PQBDcccPrwNn356B/LyNiIyMhFjx96FiRP/z9tPQbN41oECHXeYJmpKZCQwbBhw9dXKf6OiRCci8i8ajbIpwxVXAOPGebw4AEB4ONC3r8dvlnzAaq1F584DMGPGv5v4nAmFhZsxZcpf8dhjmzFr1lc4fjwX//73NJfj7HYrBg26DKNH39bkfZjNNfjXvyYhLi4DDz+8Hg8+uAoGQyT+9a+JcDiUN33q6qrw6qsTEBeXicce+x2XXvoSvv9+DlaseNvzD9oNnTqxOFDg4yZxRC3R6YCcHOUVTEGBcjbi6FHRqYjE0emUn4ecHGXpVS8bOFCZisQTgIElJ+d85OSc3+TnjMZo3HvvEpfrZsx4Hc89NxhlZQWIi1Pmykyb9hQAYM2aD5q8nePH96C2tgzTpj2NuLh0AMDUqU/i6af7o7Q0H0lJ3bBhw3zY7VZcf/170Gh0SEvri8LCLVi6dC5GjbrFQ4/WfYMG+fwuiTyOZx6I3CFJQGamMlB1+nRlnXo3lpwkChoREcCQIcrZuLPP9klxAACDAejXzyd3RQLV1VVCkiQYjTFuf01KSk+Eh8dj9ep3YbdbYbXWYdWqd5Ga2hvx8VkAgIMH16J791HQaHQNX9e370QUFeWitrbcw4+iZTzrQMGCZx6I2iouDhg1SnkhlZurvC1aWSk6FZHnaTTKLtA9eyqvfATp3x/YuVPZnoWCj81mxldfPYSzz54Bo9H9IaIGQyRmz/4Nb755EX788W8AgKSk7rjnnsVQq5WXN5WVx5GQ0MXl6yIjkwEAVVXHER4e65kH4QaedaBgwfJA1F56vfKqpn9/ZSjTrl1AXh5XaaLAl5SkFIbsbGWYkmA6nbLH3IYNopOQpzkcNrz99uWQZRlXXfVmm77Waq3Dhx/ehOzs4bj55k/hdDqwZMk/8PrrU/DIIxuh0/nm7Jg7MjN51oGCB8sDkSekpSmXurqTZyOqq0WnInKf0Qh0766UhljfvRvrrpwc5exDba3oJOQp9cWhrCwf9933a5vOOgDAhg2foLQ0Dw89tBaqPzchvOmmT3DffbHYuvVbnH32lYiOTkFVVZHL11VXKx9HRfnm1bxGAwwf7pO7IvIJlgciTzIalRmeAwYAhw8D+/cD+fmA1So6GVFjKpWyN0PPnkB6ept3gfYljUYZLfjTT6KTkCfUF4cTJ/bh/vuXISIivs23YbWaIEkqSJLUcF39x7KsnAHu2vUcfPPNY3A4bFCrtQCAXbuWIDm5p8+GLJ11ljJliChYsDwQeYMkKS/G0tOVReoPHwYOHmSRIP8QF6cUhu7dlRnJASI9XYmdmys6CbXGbK5BcfH+ho9LSg6hsHALwsPjEB2dirfemo6Cgs24444f4HQ6UFl5HAAQHh7XMLm5rKwAtbVlKCsrgNPpQGHhFgBAYmI3GAwR6NPnPCxc+CA+/fQOjB17F2TZiZ9/fh4qlQY9e44FAAwefBV++OEpfPjhTZg48SEcObIDv/76Ki677GWfPA/x8cpZM6Jgwk3iiHyJRYJE0euBbt2UV98JCaLTtJvVCixYwOFL/i439zfMnTu20fXnnHM9pk6dg8ce69LEVwH3378MPXuOAQB88MFMrF07r8Vjdu1agh9+eApHj+6AJKmQnn4GLrroWXTtOrTh+FM3iYuISMDYsXdh0qSHOv4gWyFJwIUXKlOIiIIJywORKCwS5G1hYcrb9ZmZyn+DZHnhwkIOXyL/168fcM45olMQeR7LA5E/YJEgT0lIUMpCRgaQmCg6jdesWAHs2SM6BVHToqOBSy9V5uoQBRuWByJ/wyJBbaHVKnswZGQol7Aw0Yl8wmoFvvwSqKkRnYTIFYcrUbBjeSDyZw6HsodE/aWkBOCPLEVFnSwLaWl+vUqSNx0+DCxaJDoFkasBA5Q9RImCFcsDUSCxWoHjx5UicewYy0SoUKmUHabqC0NMjOhEfoPDl8ifxMUBF18cNNOLiJrE8kAUyE4tE0ePAqWlLBPBQJKUjdqSk5UhSZ07+8VOz/6Iw5fIXxgMSnGIjBSdhMi7WB6IgonVqpyROHaMZSKQaLXKAOnkZOUMQ1ISy0IblJYC334L2O2ik1CoUqmAyZOVUYREwY7lgSiY1ZeJo0eBoiKgvByw2USnCm31ZxUSEk4Whrg45Xpqt7w8YMkSdmUSY9gwbgZHoYPlgSjUVFcrJaKsTLmUlwMVFcrkbPIsSVLmJyQmKmUhMVHZcpbrN3rF1q3A+vWiU1Co6dULGDVKdAoi32F5ICLl7drKypOlov6/VVWA0yk6nf/TapUVkE691J9dYFHwqd9+A/buFZ2CQkVKCjB1asgueEYhiuWBiJrncChnJU4tFeXlQG1t6J2pCA9XZkKeXhKiopSZkuQXnE7gxx+V0XpE3hQRoUyQNhpFJyHyLZYHImofsxkwmZQi0dTFbFYugXDmQqdTzh7o9corglOLQWSkcuEZhIBhNgPffKOcOCPyBo0GmDZNOblIFGpYHojIu6xWoK5OeUVX/9/6i92ulIv6iyw3/f+tHQMoBaA9F62Wk5WDUEWFUiC4QTt5w7hxQLduolMQicHyQEREQenwYeCnn7gCE3nW4MHAwIGiUxCJwyk+REQUlDp3BkaOFJ2CgsmQISwORBzES0REQatXL+W/K1aIzUGB75xzgH79RKcgEo/DloiIKOjl5ioFgn/xqD24CRzRSSwPREQUEvbuBZYvZ4GgthkxAujTR3QKIv/B8kBERCFj/35lI7lAWEGYxBs16uTQNyJSsDwQEVFIKSwElixRVgomaookKcWhZ0/RSYj8D8sDERGFnKIi4OefAYtFdBLyN5IEjB4N9OghOgmRf2J5ICKikFRWBixapGyUTgQo+0aOGwdkZIhOQuS/WB6IiChk1dYCS5cqZyIotMXFARMmAFFRopMQ+TeWByIiCmlOJ7B+PbB9u+gkJEq3bsocBw13vyJqFcsDERERgEOHlKVcrVbRSchXVCpg6FDu4UDUFiwPREREf6qqUlZiKi0VnYS8zWgExo8HUlNFJyEKLCwPREREp3A4gNWrgT17RCchb0lOBs47DwgLE52EKPCwPBARETVh715g1SruBxFs+vQBhg1ThiwRUduxPBARETWjrExZjamiQnQS6qjwcGDECCAzU3QSosDG8kBERNQChwPYuhXYsoVnIQJV797AkCHKPg5E1DEsD0RERG6orgbWrgXy8kQnIXdFRSlLsKaliU5CFDxYHoiIiNqgoABYs0ZZmYn8k1oNDByoXNRq0WmIggvLAxERURs5HMowpi1blP8n/5GZqUyIjowUnYQoOLE8EBERtVNVlXIWoqBAdBKKilJKQ0aG6CREwY3lgYiIqIPy84ENG4DyctFJQk9MDHDGGUB2NpdfJfIFlgciIiIPKShQVmY6dkx0kuCXkKCUhi5dRCchCi0sD0RERB524oRSIvLyAP6V9ayUFKU0pKeLTkIUmlgeiIiIvKSyEti2TdmtmhOrO6ZzZ+DMM5XyQETisDwQERF5WV0dsGMHsGsXYLGIThM4VCogKwsYMABITBSdhogAlgciIiKfsdmA/fuVC+dFNE2SgNRUoFs3oGtX7gpN5G9YHoiIiASoqTlZJMrKRKcRLzFRKQzZ2UBYmOg0RNQclgciIiLBysuBQ4eUCdYlJaLT+E5MjFIYunVT9mkgIv/H8kBERORHamqUEpGfDxQVAXa76ESeo9MBSUnKpOeMDGW5VSIKLCwPREREfsrpVIY0nThx8lJRITqV+yIilKKQkgIkJwNxccqcBiIKXCwPREREAcRqdS0TJ04AZrPoVMrKSHFxSkmoLwzh4aJTEZGnsTwQEREFuOpq5WIyAbW1ysVkOvmxydTxfSbUamUic3i48t+oKNdLeDjPKhCFApYHIiKiEGA2nywUDofyQr/+AjT9/5KkzFMICwP0enHZich/sDwQEREREZFbVKIDEBERERFRYGB5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIij5IkCXPmzGn31955552eDUREHsPyQEREFABMJhPmzJmD3/6/vfuPjfmO4zj+uracUr3jen4kfrQOo5qSbBHzI7XE1o0FNz9ik+it6ZK11Bii80erEbkIFjSb/ejS1UpIrZVgmRCTbNGqH5ssYZmilUnmV69jqqr63R/Si1Pqc8xs83z8dd/Pffq+9+fz173uvp/rgQNPuxUAzzDCAwAA/wENDQ3Kz88nPAB4qggPAAD8D12/fv1ptwDgf4jwAADAI1i+fLlsNpuqq6vl8/nkdDrlcDj09ttvq6GhITivublZK1askMfjkd1uV3x8vJYtW6abN2+G1Dty5IhSU1MVFxen6OhoJSQkKD09XZJUU1Mjt9stScrPz5fNZgs5V+Dz+RQTE6PTp09r4sSJ6tq1q2bPni1J+v777zVjxgz169dPdrtdffv21cKFC3Xjxo2w1tvU1KTc3Fw9//zzcjgc6tKli8aNG6fvvvvOeK9++eUXzZw5U7GxsXK5XHrvvffU2Nh437/ZsWOHkpKSZLfbNWzYMH377bchz9fW1iorK0vPPfecoqOj5XK5NGPGDNXU1IS1LgDhiXraDQAA8F82c+ZMJSQkyO/369ixYyosLFSPHj20atUqSVJGRoaKi4s1ffp0LVq0SIcOHZLf79fJkydVXl4uSbp48aJeeeUVud1u5eTkyOl0qqamRmVlZZIkt9utjRs3KjMzU16vV2+88YYkKTk5OdhHc3OzUlNTNXbsWK1Zs0adO3eWJJWWlqqhoUGZmZlyuVyqqqpSQUGBfvvtN5WWlhqv8+rVqyosLNSbb76pd955R9euXdMXX3yh1NRUVVVVacSIEUZ7FR8fL7/fr8rKSm3YsEGBQECbNm0KmffDDz+orKxMWVlZ6tq1qzZs2KBp06bp3LlzcrlckqTDhw/r4MGDmjVrlvr06aOamhpt3LhR48eP14kTJ4LrB/A3swAAQNjy8vIsSVZ6enrIuNfrtVwul2VZlvXTTz9ZkqyMjIyQOYsXL7YkWfv377csy7LKy8stSdbhw4cf+HqXLl2yJFl5eXltnktLS7MkWTk5OW2ea2hoaDPm9/stm81m1dbWPnSdrZqbm62bN2+GjAUCAatnz55t9uDePlv3avLkySHzsrKyLEnW8ePHQ/62Y8eOVnV1dXDs+PHjliSroKCg3XVVVFRYkqxNmzYZrwtAeLhtCQCAx/Duu++GXI8bN05XrlzR1atX9c0330iS3n///ZA5ixYtkiTt3r1bkuR0OiVJu3bt0q1btx65l8zMzDZj0dHRwcfXr1/X5cuXNXr0aFmWpR9//NG4dmRkpDp27ChJamlpUV1dnZqbm/XCCy/o2LFjRjXmzp0bcp2dnS1JwX1qNWHCBHk8nuB1cnKyYmNjdebMmfuu69atW7py5YoGDhwop9Np3A+A8BEeAAB4DP369Qu57tatmyQpEAiotrZWERERGjhwYMicXr16yel0qra2VpKUkpKiadOmKT8/X3FxcZoyZYqKioranItoT1RUlPr06dNm/Ny5c/L5fOrevbtiYmLkdruVkpIiSfrjjz/CWmtxcbGSk5PVqVMnuVwuud1u7d6927jOoEGDQq49Ho8iIiLanFO4d0+lO/saCASC1zdu3FBubq769u0ru92uuLg4ud1u1dfXh70uAOY48wAAwGOIjIy877hlWcHHNput3Ro2m03bt29XZWWldu7cqT179ig9PV1r165VZWWlYmJiHtqH3W5XREToZ4K3b9/Wyy+/rLq6Oi1dulRDhgxRly5ddP78efl8PrW0tBis8I6SkhL5fD5NnTpVS5YsUY8ePRQZGSm/36/Tp08b17nbg/bFZE+zs7NVVFSkBQsW6MUXX5TD4ZDNZtOsWbPCWheA8BAeAAB4Qvr376+WlhadOnVKQ4cODY5fuHBB9fX16t+/f8j8UaNGadSoUVq5cqW2bNmi2bNna+vWrcrIyHhoALmfn3/+Wb/++quKi4s1Z86c4PjevXvDrrV9+3YNGDBAZWVlIb3k5eUZ1zh16pQSEhKC19XV1WppaVF8fPwj9ZOWlqa1a9cGxxobG1VfXx92LQDmuG0JAIAnZOLEiZKkdevWhYx/+OGHkqRJkyZJunOL092fqksK/npR661Lrb8eFM6b49ZP8O+ubVmW1q9fb1yjvVqHDh1SRUWFcY2PPvoo5LqgoECS9Nprrz1SP/fuWUFBgW7fvh12LQDm+OYBAIAnZPjw4UpLS9Nnn32m+vp6paSkqKqqSsXFxZo6dapeeuklSXfOEnz88cfyer3yeDy6du2aPv/8c8XGxgYDSHR0tBITE7Vt2zYNHjxY3bt3V1JSkpKSkh74+kOGDJHH49HixYt1/vx5xcbG6uuvvw45O2Dq9ddfV1lZmbxeryZNmqSzZ8/qk08+UWJiov7880+jGmfPntXkyZP16quvqqKiQiUlJXrrrbc0fPjwR+rnq6++ksPhUGJioioqKrRv377gT7kCeDIIDwAAPEGFhYUaMGCAvvzyS5WXl6tXr1764IMPQm73aQ0VW7du1YULF+RwODRy5Eht3rw55DafwsJCZWdna+HChWpqalJeXl674aFDhw7auXOn5s+fL7/fr06dOsnr9WrevHlhv2H3+Xz6/fff9emnn2rPnj1KTExUSUmJSktLdeDAAaMa27ZtU25urnJychQVFaV58+Zp9erVYfXRav369YqMjNTmzZvV2NioMWPGaN++fUpNTX2kegDM2Kx7v/MDAAD4Gy1fvlz5+fm6dOmS4uLinnY7AB4DZx4AAAAAGOG2JQAAnmFNTU2qq6trd47D4Qj5p2wAnl2EBwAAnmEHDx4MHtx+kKKiIvl8vn+mIQD/apx5AADgGRYIBHT06NF25wwbNky9e/f+hzoC8G9GeAAAAABghAPTAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGDkL9WzTK6+nO8kAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw8AAAKSCAYAAACUU+f/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRI0lEQVR4nOzdd3hUZcIF8HOnT3pvkAKhE4qigHQQAQGxYcGKZRV7QT/rKrq6tl3U1dXVtaFiQ+yiCCvSq0iHUFNoIb1Npt/vj2sCQ9okmZl3yvk9zzyayc3MmSFlzty3SLIsyyAiIiIiImqFSnQAIiIiIiIKDCwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIiIiK3sDwQEREREZFbWB6IiIiIiMgtLA9ERE3IysrCzJkzRccg8mv8OSEKPSwPRF40Z84cSJKEkpKSJj+fk5ODMWPG+DZUB/z222+QJMnlEhcXh6FDh2L+/Pmi4wWdiooKGAwGSJKE3bt3i47jcad/LzV3+e2337yao66uDjfddBNycnIQHR2NiIgIDBgwAK+++ipsNlurX3/6z4VWq0XXrl1x3XXX4eDBgx7N+sYbb+CDDz7w6G0SEbWFRnQAIgo8d999N84++2wAQGlpKT7//HNcc801qKiowB133CE4nWfk5uZCpRL7/sqCBQsgSRJSUlIwf/58PPPMM0LzeNpHH33k8vGHH36IJUuWNLq+d+/eXs1RV1eHnTt3YvLkycjKyoJKpcKaNWtw3333Yf369fjkk0/cup36nwubzYbNmzfj7bffxo8//ojt27cjLS3NI1nfeOMNJCQk8N1+IhKG5YEohJjNZuh0ug6/KB45ciSmT5/e8PFtt92Grl274pNPPvFIeZBlGWazGUajsdHnPPUYWqPX6716++74+OOPMXnyZGRmZuKTTz7xWHlo6fn1pWuuucbl43Xr1mHJkiWNrve2uLg4rFu3zuW6WbNmITo6Gq+//jrmzp2LlJSUVm/n1J+LG264AT169MDdd9+NefPm4ZFHHmnya2praxEeHt7xB0FE5CMctkTkZ1577TX07dsXYWFhiI2NxVlnndXonc8jR47gxhtvRHJyMvR6Pfr27Yv33nvP5Zj6oRSfffYZHn/8cXTq1AlhYWGoqqqCzWbDU089he7du8NgMCA+Ph4jRozAkiVL2pVZp9MhNjYWGo3r+xF2ux1/+9vfkJ2dDb1ej6ysLDz66KOwWCwux2VlZWHq1KlYvHgxzjrrLBiNRrz11lstPgZAeWd+0KBBMBqNSEhIwDXXXIMjR4403O53330HSZKwbdu2husWLlwISZJwySWXuGTo3bs3rrjiCpdMp767+8EHH0CSJKxevRr3338/EhMTER4ejosvvhjFxcUut+V0OjFnzhykpaUhLCwMY8eOxa5du9o0PrygoAArV67ElVdeiSuvvBKHDh3CmjVrmjz2448/xuDBgxu+Z0aNGoVffvml1ecXAA4ePIjLLrsMcXFxCAsLw9ChQ/Hjjz82uo/Wvi+rq6tx7733IisrC3q9HklJSTjvvPOwefNmtx5vc2prazF79mykp6dDr9ejZ8+e+Mc//gFZll2OkyQJd955J+bPn4+ePXvCYDBg0KBBWLFiRbvvOysrC4AyfKw9xo0bBwA4dOgQgJPDGHft2oWrrroKsbGxGDFiBAD3flaysrKwc+dOLF++vGGI1KnDHt39tzSbzZgzZw569OgBg8GA1NRUXHLJJThw4EDDMe4+76fz9O8WIvI/PPNA5Ef++9//4u6778b06dNxzz33wGw2Y9u2bVi/fj2uuuoqAEBRURGGDh3a8GIpMTERP/30E2666SZUVVXh3nvvdbnNv/3tb9DpdHjggQdgsVig0+kwZ84cPPfcc7j55psxePBgVFVVYdOmTdi8eTPOO++8VnNWV1c3zOMoKyvDJ598gh07duDdd991Oe7mm2/GvHnzMH36dMyePRvr16/Hc889h927d+Prr792OTY3NxczZszArbfeir/85S/o2bNni4/hgw8+wA033ICzzz4bzz33HIqKivDqq69i9erV+OOPPxATE4MRI0ZAkiSsWLEC/fv3BwCsXLkSKpUKq1atarj94uJi7NmzB3feeWerj/2uu+5CbGwsnnzySeTl5eGVV17BnXfeic8//7zhmEceeQQvvvgiLrjgAkycOBFbt27FxIkTYTabW739ep9++inCw8MxdepUGI1GZGdnY/78+Rg2bJjLcU899RTmzJmDYcOG4emnn4ZOp8P69evx66+/YsKECS0+v0VFRRg2bBhMJhPuvvtuxMfHY968eZg2bRq+/PJLXHzxxQDc+76cNWsWvvzyS9x5553o06cPSktLsWrVKuzevRtnnnmm24/7VLIsY9q0aVi2bBluuukmDBw4EIsXL8aDDz6II0eO4OWXX3Y5fvny5fj8889x9913Q6/X44033sCkSZOwYcMG5OTktHp/VqsVVVVVqKurw6ZNm/CPf/wDmZmZ6NatW7vy178Yj4+Pd7n+sssuQ/fu3fH3v/+94cW4Oz8rr7zyCu666y5ERETgscceAwAkJycDgNv/lg6HA1OnTsX//vc/XHnllbjnnntQXV2NJUuWYMeOHcjOzm7z836qjv5uIaIAIBOR1zz55JMyALm4uLjJz/ft21cePXp0w8cXXnih3Ldv3xZv86abbpJTU1PlkpISl+uvvPJKOTo6WjaZTLIsy/KyZctkAHLXrl0brqs3YMAAecqUKW1+PPW3efpFpVLJzz77rMuxW7ZskQHIN998s8v1DzzwgAxA/vXXXxuuy8zMlAHIP//8c5P3d/pjsFqtclJSkpyTkyPX1dU1XP/DDz/IAOQnnnii4bq+ffvKl19+ecPHZ555pnzZZZfJAOTdu3fLsizLX331lQxA3rp1q0um66+/vuHj999/XwYgjx8/XnY6nQ3X33fffbJarZYrKipkWZbl48ePyxqNRr7oootcHsucOXNkAC632ZJ+/frJV199dcPHjz76qJyQkCDbbLaG6/bt2yerVCr54osvlh0Oh8vXn5qxuef33nvvlQHIK1eubLiuurpa7tKli5yVldVwm+58X0ZHR8t33HGHW4+tOXfccYd86p+lb775RgYgP/PMMy7HTZ8+XZYkSd6/f3/DdfXfi5s2bWq4Lj8/XzYYDPLFF1/s1v1/+umnLt/XZ511lrxt27ZWv67++/S9996Ti4uL5aNHj8o//vijnJWVJUuSJG/cuFGW5ZO/D2bMmOHy9W35WTn9d0Y9d/8t33vvPRmAPHfu3Ea3Uf8905bn/fSfk/b+biGiwMFhS0R+JCYmBocPH8bGjRub/Lwsy1i4cCEuuOACyLKMkpKShsvEiRNRWVnZaJjI9ddf32hse0xMDHbu3Il9+/a1K+cTTzyBJUuWYMmSJfj8888xY8YMPPbYY3j11Vcbjlm0aBEA4P7773f52tmzZwNAo+EUXbp0wcSJE5u8v9Mfw6ZNm3DixAncfvvtMBgMDddPmTIFvXr1crntkSNHYuXKlQCUMyZbt27FLbfcgoSEhIbrV65ciZiYGLfenb7lllsgSZLL7TscDuTn5wMA/ve//8Fut+P22293+bq77rqr1duut23bNmzfvh0zZsxouG7GjBkoKSnB4sWLG6775ptv4HQ68cQTTzSaA3JqRqDp53fRokUYPHhww9AZAIiIiMAtt9yCvLw87Nq1C0Dr35f1x6xfvx5Hjx51+3G2ZtGiRVCr1bj77rtdrp89ezZkWcZPP/3kcv0555yDQYMGNXyckZGBCy+8EIsXL4bD4Wj1/saOHYslS5ZgwYIFmDVrFrRaLWpra93Oe+ONNyIxMRFpaWmYMmUKamtrMW/ePJx11lkux82aNavR4wTc/1lpirv/lgsXLkRCQkKT34/13zNtfd5P1dHfLUTk/1geiAQ79UXeQw89hIiICAwePBjdu3fHHXfcgdWrVzd8vri4GBUVFXj77beRmJjocrnhhhsAACdOnHC5/S5dujS6z6effhoVFRXo0aMH+vXrhwcffNBlXkBr+vXrh/Hjx2P8+PG4/PLL8fHHH2Pq1Kl4+OGHG8b/5+fnQ6VSNRrykZKSgpiYmIYX2y3lbO5z9V976tCmer169XK57ZEjR+LYsWPYv38/1qxZA0mScM4557iUipUrV2L48OFuTcLOyMhw+Tg2NhYAUF5e7pLt9McdFxfXcGxrPv74Y4SHh6Nr167Yv38/9u/fD4PBgKysLJclcQ8cOACVSoU+ffq0eptNPb/5+flNPof1qxvVP5bWvi8B4MUXX8SOHTuQnp6OwYMHY86cOR1epjQ/Px9paWmIjIxsMV+97t27N7qNHj16wGQyNZqX0pTk5GSMHz8e06dPx5tvvompU6fivPPOw/Hjx93KW1+qf/31V2zbtg1Hjx7Ftdde2+i4pr6f2/Kz0hR3/y0PHDiAnj17NpqfdPptteV5P1VHf7cQkf9jeSDyovp3xevq6pr8vMlkcnnnvHfv3sjNzcVnn32GESNGYOHChRgxYgSefPJJAMpEXEBZpab+nf/TL8OHD3e5j6ZW1Bk1ahQOHDiA9957Dzk5OXjnnXdw5pln4p133mn3Yz333HNhNpuxYcMGl+tPfwe8OS2t/NORVYHq34ldsWIFVq5ciTPPPBPh4eEN5aGmpgZ//PEHRo4c6dbtqdXqJq+XW5lI6i5ZlvHpp5+itrYWffr0Qffu3RsueXl5+Pbbb1FTU9Pm2+3Ic9ja9yUAXH755Th48CBee+01pKWl4aWXXkLfvn1bfJfa302fPh01NTX49ttv3Tq+vlSPHTsW/fr1a/YFenP/Fu7+rPgzb/xuISL/wvJA5EWZmZkAlMmqpzOZTCgsLGw4pl54eDiuuOIKvP/++ygoKMCUKVPw7LPPwmw2IzExEZGRkXA4HA3v/J9+SUpKcitbXFwcbrjhBnz66acoLCxE//79MWfOnHY/VrvdDgANL2wzMzPhdDobDV8oKipCRUVFo8fdFi09r7m5uS63nZGRgYyMDKxcuRIrV65sKAmjRo1CXl4eFixYAIfDgVGjRrU7T1PZ9u/f73J9aWlpw9mJlixfvhyHDx/G008/jQULFrhc3n77bZhMJnzzzTcAgOzsbDidzoYhKe3J2tRzuGfPHpfHArT8fVkvNTUVt99+O7755hscOnQI8fHxePbZZ9uVrf7+jx49iurq6lbzAWhyqMzevXsRFhaGxMTENt9/femvrKxs89e2RVt+VporGO7+W2ZnZyM3N7fFze/a+ryfztO/W4jIv7A8EHnRueeeC51OhzfffLPhrEG9t99+G3a7Heeff37DdaWlpS7H6HQ69OnTB7Isw2azQa1W49JLL8XChQuxY8eORvfnztCMpu4nIiIC3bp1a7SEalv88MMPAIABAwYAACZPngxAWSHmVHPnzgWgzE9or7POOgtJSUn4z3/+45L5p59+wu7duxvd9siRI/Hrr79iw4YNDeVh4MCBiIyMxPPPPw+j0egyVr4jzj33XGg0Grz55psu17/++utufX39kKUHH3wQ06dPd7n85S9/Qffu3RuGLl100UVQqVR4+umnG31/uXMmZPLkydiwYQPWrl3bcF1tbS3efvttZGVlNQyHau370uFwNHqBnZSUhLS0tA59T02ePBkOh6PRc/fyyy9DkiSXnx0AWLt2rcucn8LCQnz77beYMGFCs2eMAKCkpKTJ56v+3fLT5yx4Wlt+VsLDw5tcOtbdf8tLL70UJSUlTX4/1j8HbX3eT+WN3y1E5F+4VCuRFyUlJeGJJ57A448/jlGjRmHatGkICwvDmjVr8Omnn2LChAm44IILGo6fMGECUlJSMHz4cCQnJ2P37t14/fXXMWXKlIbxx88//zyWLVuGIUOG4C9/+Qv69OmDsrIybN68GUuXLkVZWVmrufr06YMxY8Zg0KBBiIuLw6ZNmxqW2XTHypUrG95xLisrw3fffYfly5fjyiuvRK9evQAoJeL666/H22+/jYqKCowePRobNmzAvHnzcNFFF2Hs2LFtfTobaLVavPDCC7jhhhswevRozJgxo2Gp1qysLNx3330ux48cORLz58+HJEkNw5jUajWGDRuGxYsXY8yYMdDpdO3Oc6rk5GTcc889+Oc//4lp06Zh0qRJ2Lp1K3766SckJCS0ODTFYrFg4cKFOO+881yGs51q2rRpePXVV3HixAl069YNjz32GP72t79h5MiRuOSSS6DX67Fx40akpaXhueeeazHrww8/jE8//RTnn38+7r77bsTFxWHevHk4dOgQFi5c2DAHpLXvy4qKCnTu3BnTp0/HgAEDEBERgaVLl2Ljxo345z//2e7n8oILLsDYsWPx2GOPIS8vDwMGDMAvv/yCb7/9Fvfeey+ys7Ndjs/JycHEiRNdlmoFlOVsW/Lxxx/jP//5Dy666CJ07doV1dXVWLx4MZYsWYILLrigYb8Gb2nLz8qgQYPw5ptv4plnnkG3bt2QlJSEcePGuf1ved111+HDDz/E/fff31Cma2trsXTpUtx+++248MIL2/y8n6qjv1uIKAAIWuWJKKR8/PHH8tChQ+Xw8HBZr9fLvXr1kp966inZbDa7HPfWW2/Jo0aNkuPj42W9Xi9nZ2fLDz74oFxZWelyXFFRkXzHHXfI6enpslarlVNSUuRzzz1XfvvttxuOqV8+csGCBY3yPPPMM/LgwYPlmJgY2Wg0yr169ZKfffZZ2Wq1tvg4mlqqVafTNfv1NptNfuqpp+QuXbrIWq1WTk9Plx955JFGjzszM7PJ5R1begyyLMuff/65fMYZZ8h6vV6Oi4uTr776avnw4cONjtu5c6cMQO7du3ej5wGA/Ne//rXR1zS3VGv9spunZ1y2bFnDdXa7Xf7rX/8qp6SkyEajUR43bpy8e/duOT4+Xp41a1aTj0WWZXnhwoUyAPndd99t9pjffvtNBiC/+uqrDde99957Dc9DbGysPHr0aHnJkiUuj6W55TMPHDggT58+XY6JiZENBoM8ePBg+YcffnA5prXvS4vFIj/44IPygAED5MjISDk8PFweMGCA/MYbbzT7OJpy+lKtsqwsN3rffffJaWlpslarlbt37y6/9NJLLkvRyrKyVOsdd9whf/zxx3L37t1lvV4vn3HGGS7/Ls3ZuHGjfNlll8kZGRmyXq+Xw8PD5TPPPFOeO3euy9K4zWnt+7ReS0s3u/uzcvz4cXnKlClyZGSkDMBl2VZ3/i1lWZZNJpP82GOPNdxXSkqKPH36dPnAgQMNx7j7vJ/+c9Le3y1EFDgkWfbQLD8iImpWRUUFYmNj8cwzzzRs8EWeI0kS7rjjDreHhxERUftwzgMRkYc1tbpW/Xj2MWPG+DYMERGRB3HOAxGRh33++ef44IMPMHnyZERERGDVqlUNc1xOX0qXiIgokLA8EBF5WP/+/aHRaPDiiy+iqqqqYRL1M888IzoaERFRh3DOAxERERERuYVzHoiIiIiIyC0sD0RERERE5BaWByIiIiIicgvLAxERERERuYXlgYiIiIiI3MLyQEREREREbmF5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIiIiK3sDwQEREREZFbWB6IiIiIiMgtLA9EREREROQWlgciIiIiInILywMREREREbmF5YGIiIiIiNzC8kBERERERG5heSAiIiIiIrewPBARERERkVtYHoiIiIiIyC0sD0RERERE5BaWByIiIiIicgvLAxERERERuYXlgYiIiIiI3MLyQEREREREbmF5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXmgZo0ZMwY5OTmtHpeVlYWZM2d6P1ATZs6ciaysLCH3TURERBRqWB6IiIiIiMgtLA9EREREROQWlgciIiIiInILy0OIysvLgyRJzV6a88svvyAsLAwzZsyA3W5v9riKigrce++9SE9Ph16vR7du3fDCCy/A6XQ2yvCPf/wDb7/9NrKzs6HX63H22Wdj48aNjW7zm2++QU5ODgwGA3JycvD111937EkgIiIiojbRiA5AYiQmJuKjjz5yuc5ms+G+++6DTqdr8mt++OEHTJ8+HVdccQXee+89qNXqJo8zmUwYPXo0jhw5gltvvRUZGRlYs2YNHnnkERw7dgyvvPKKy/GffPIJqqurceutt0KSJLz44ou45JJLcPDgQWi1WgBKabn00kvRp08fPPfccygtLcUNN9yAzp07d/zJICIiIiK3sDyEqPDwcFxzzTUu191xxx2oqanBkiVLGh3/1Vdf4corr8TMmTPxn//8BypV8yet5s6diwMHDuCPP/5A9+7dAQC33nor0tLS8NJLL2H27NlIT09vOL6goAD79u1DbGwsAKBnz5648MILsXjxYkydOhUA8NBDDyE5ORmrVq1CdHQ0AGD06NGYMGECMjMzO/ZkEBEREZFbOGyJAAAffvgh3njjDbz44osYO3asy+c+/fRTXHHFFbj11lvx1ltvtVgcAGDBggUYOXIkYmNjUVJS0nAZP348HA4HVqxY4XL8FVdc0VAcAGDkyJEAgIMHDwIAjh07hi1btuD6669vKA4AcN5556FPnz4detxERERE5D6eeSBs2bIFs2bNwowZM3D//fe7fO7QoUO45pprcNlll+G1115z6/b27duHbdu2ITExscnPnzhxwuXjjIwMl4/ri0R5eTkAID8/HwAazmKcqmfPnti8ebNbuYiIiIioY1geQlx5eTkuvfRS9OjRA++8806jz6empiI1NRWLFi3Cpk2bcNZZZ7V6m06nE+eddx7+7//+r8nP9+jRw+Xj5uZOyLLsxiMgIiIiIl9heQhhTqcTV199NSoqKrB06VKEhYU1OsZgMOCHH37AuHHjMGnSJCxfvhx9+/Zt8Xazs7NRU1OD8ePHeyRn/ZyGffv2Nfpcbm6uR+6DiIiIiFrHOQ8h7KmnnsLixYvx6aefokuXLs0eFx0djcWLFyMpKQnnnXceDhw40OLtXn755Vi7di0WL17c6HMVFRUtLvHalNTUVAwcOBDz5s1DZWVlw/VLlizBrl272nRbRERERNR+PPMQorZv346//e1vGDVqFE6cOIGPP/7Y5fOnr8SUkJCAJUuWYMSIERg/fjxWrVqFTp06NXnbDz74IL777jtMnToVM2fOxKBBg1BbW4vt27fjyy+/RF5eHhISEtqU97nnnsOUKVMwYsQI3HjjjSgrK8Nrr72Gvn37oqampm0PnoiIiIjaheUhRJWWlkKWZSxfvhzLly9v9PnTywMAdOrUCUuXLsXIkSNx3nnnYcWKFU2WgLCwMCxfvhx///vfsWDBAnz44YeIiopCjx498NRTT7msmOSuSZMmYcGCBXj88cfxyCOPIDs7G++//z6+/fZb/Pbbb22+PfITTidgNisXu135+PSLLLv+vyQpFwCoX/mr/jpJUq7T610vLWx8SERERO6TZM5KJSJPsduBujqlDNT/99TL6Z+zWr2fSZIAnU4pEQbDyULhzv8TERGRC5YHInJfXR1QXg5UVCiXykrXktDG+Sx+TZKAiAggOvrkJSZG+W9EBM9mEBFRSGJ5ICJXsgxUV7uWhPqLxSI2m79Qq4GoqKaLhdEoOh0REZHXsDwQhSq7vXE5qD+b4HAIjRbQdDrXUhEdDSQkKOWCiIgowLE8EIUCWQbKyoDjx5XLiRPK2QXyHb0eSE4+eUlKAjRcs4KIiAILywNRMHI4gOLik2Xh+HHfTE4m96lUQFwckJKilImUFCA8XHQqIiKiFrE8EAUDqxUoKgKOHVOKQnExhx4FovDwk0UiORmIjz+5HC0REZEfYHkgCkQmk1IS6stCWZkyNImCi0YDJCaeLBQpKcqcCiIiIkFYHogCgc0GFBYCBQVKWaiqEp2IRFCplAKRkQFkZiqTsYmIiHyI5YHIX9XUAPn5yuXoUWWHZaJTRUcrRSIjA0hN5RAnIiLyOpYHIn9SUgLk5SmFobRUdBoKJFot0LkzkJWlnJXg8CYiIvIClgci0YqKgIMHgUOHlLMNRB2lUgGdOgFduihlwmAQnYiIiIIEywORCPWF4eBBoLZWdBoKZpKkDGnKylLKBJeDJSKiDmB5IPIVnmEgf5CcDPTsCWRnK0OdiIiI2oDlgcib6uqA3Fxgzx6ukET+RatVCkSvXspu10RERG5geSDyhqNHgV27lMnPXCWJ/F1cHNC7N9C9OydaExFRi1geiDzFYjl5lqGiQnQaorbTaJR5Eb17K/tJEBERnYblgaijioqUswwHDwIOh+g0RJ4RE6MMaerRg6s1ERFRA5YHovawWoF9+4Ddu4GyMtFpiLxHpVJWaurdW1n+lYiIQhrLA1FblJQoZxn27wfsdtFpiHwrKkpZqalnTyAsTHQaIiISgOWBqDV2u1IWdu1SygNRqFOpgG7dgIEDleFNREQUMlgeiJpjswE7dgDbtimToYnIlSQpE6zPPFNZsYmIiIIeywPR6axWpTRs387SQOSurCzgjDOAxETRSYiIyItYHojqsTQQdVznzsqZCC71SkQUlFgeiKxWpTBs3678PxF1XFqaciaCKzQREQUVlgcKXVarMp9hxw6WBiJvSU5WSkRGhugkRETkASwPFHosFuUsA0sDke8kJCgloksX0UmIiKgDWB4odFgsypmGnTtZGohEiY1VSkR2trJaExERBRSWBwp+ZvPJ0mCziU5DRICyP8SwYcoEayIiChgsDxS8nE6lNPzxB0sDkb/KzATOOUfZvZqIiPweywMFp8OHgdWrgcpK0UmIqDVqNdCvnzKcSasVnYaIiFrA8kDBpboaWLsWyMsTnYSI2iosDBgyBOjeXXQSIiJqBssDBQeHA9iyBdi6FbDbRachoo5ITlbmQ3C3aiIiv8PyQIEvP18521BVJToJEXmKJAE9ewJnnw0YjaLTEBHRn1geKHBVVQFr1gAFBaKTEJG36HTAmWcCOTmASiU6DRFRyGN5oMBjtysrKG3bpgxXIqLgx6VdiYj8AssDBZZDh5QhSjU1opMQkQhc2pWISCiWBwoMFRXKEKXDh0UnISLR1GpgwABlOBOHMhER+RTLA/k3hwP4/XdliJLTKToNEfmTuDhgzBggIUF0EiKikMHyQP6ruBhYtkw560BE1BSVChg4kGchiIh8hOWB/I/TCWzerOzbwLMNROSO+Hhg7FjlbAQREXkNywP5l/Jy5WxDSYnoJEQUaFQq5QzEwIE8C0FE5CUsD+QfZBnYvh3YuJHLrxJRxyQkKGchYmNFJyEiCjosDyRedbVytuH4cdFJiChYaDTAkCFA376ikxARBRWWBxJr/35g1SrAahWdhIiCUUYGMHo0YDSKTkJEFBRYHkgMm00pDfv2iU5CRMHOYFCWdM3IEJ2EiCjgsTyQ7xUXA//7H1BVJToJEYWSPn2AoUOVIU1ERNQuLA/kW1u2AJs2cQlWIhIjJgYYN44byxERtRPLA/mGyaRMij5yRHQSIgp1ajUwciTQo4foJEREAYflgbzv6FFg6VLAbBadhIjopJwcZRgT94QgInIbywN5165dwJo1HKZERP4pLQ0YP16ZVE1ERK1ieSDvcDqV0rBrl+gkREQti4wEJk4E4uJEJyEi8nssD+R5FguwZIkyXImIKBBoNMpyrl27ik5CROTXWB7Is8rLgcWLuQwrEQWmM84AzjoLkCTRSYiI/BLLA3lOQQHw66/cLZqIAltGhrKcq04nOgkRkd9heSDP2LoV2LAB4LcTEQWDmBhlHkR0tOgkRER+heWBOsbhAFasAPbtE52EiMizdDrlDERGhugkRER+g+WB2s9kAn75BThxQnQSIiLvkCTg7LOBgQNFJyEi8gssD9Q+JSXKxOjaWtFJiIi8r2tXZTUmjUZ0EiIioVgeqO0OHACWLwfsdtFJiIh8Jz4eOP98ICxMdBIiImFYHqhtNm0CNm8WnYKISIzISGDKFCAqSnQSIiIhWB7IPbKsnG3Yu1d0EiIiscLClAIRGys6CRGRz7E8UOucTmX/hoMHRSchIvIPBgMweTKQkCA6CRGRT7E8UMscDmDpUiA/X3QSIiL/otMBkyYBKSmikxAR+QzLAzXPbleWYj18WHQSIiL/pNEAEyYAnTuLTkJE5BMsD9Q0mw34+Wfg2DHRSYiI/JtKBZx7LtCli+gkRERex/JAjVmtwKJF3PyNiMhdkgSMHg306CE6CRGRV7E8kCuzWSkOJSWikxARBZ5hw4CcHNEpiIi8huWBTjKZgB9/BMrLRSchIgpcZ58NnHGG6BRERF7B8kCKmhqlOFRWik5CRBT4BgwAhgwRnYKIyONYHgioqlKKQ3W16CRERMGjTx9g+HBlPgQRUZBgeQh1FRVKcaitFZ2EiCj4dOsGjBmjrMhERBQEWB5CWVmZUhzq6kQnISIKXl27Kku58gwEEQUBvhUSqkpKgO+/Z3EgIvK2gweBNWtEpyAi8giWh1BUWaksx2qxiE5CRBQadu4ENm8WnYKIqMNYHkJNXZ1SHMxm0UmIiELLpk3A7t2iUxARdQjLQyix2YCffuKqSkREoqxaBRw6JDoFEVG7sTyECqcTWLKEO0cTEYkky8CvvwJHj4pOQkTULiwPoWL5cuDwYdEpiIjI4QB++QUoLRWdhIiozVgeQsH69cC+faJTEBFRPatVmX9WVSU6CRFRm7A8BLsdO4CtW0WnICKi09UvYMEls4kogLA8BLODB4G1a0WnICKi5lRVKQXCahWdhIjILSwPwerYMWDZMmVyHhER+a/SUmUOhMMhOgkRUatYHoJRWRmweDH/EBERBYqjR5VVmPiGDxH5OZaHYFNbq+zlwFPgRESB5dAhZR8IIiI/xvIQTCwWZexsba3oJERE1B67dys7URMR+SmWh2DhcChDlcrLRSchIqKO2LwZOHBAdAoioiaxPASLZcuA48dFpyAiIk9YvpybyBGRX2J5CAZbtijLshIRUXCw25UVmCwW0UmIiFywPAS6w4eBjRtFpyAiIk+rrgaWLuUKTETkV1geAllNDZf2IyIKZkeOAOvXi05BRNSA5SFQORzKKW2zWXQSIiLypm3bgP37RacgIgLA8hC4Vq0CSkpEpyAiIl9YsYITqInIL7A8BKLdu4HcXNEpiIjIV+onUHMDUCISjOUh0Jw4AaxeLToFERH5WnU18NtvolMQUYhjeQgkFouy8obTKToJERGJkJenzIEgIhKE5SGQLF+urLBERESha8MGoKhIdAoiClEsD4Fixw7lHSciIgptTqdyFpqr7RGRACwPgaC4GFi3TnQKIiLyF7W13OeHiIRgefB3Vivwv/9xngMREbk6fBj44w/RKYgoxLA8+LsVK4CqKtEpiIjIH/3+O3DsmOgURBRCWB782a5dwMGDolMQEZG/kmVlMQ27XXQSIgoRLA/+qqICWLtWdAoiIvJ3VVXKCkxERD7A8uCPZFnZCMjhEJ2EiIgCwY4dwPHjolMQUQhgefBHO3YoO0kTERG567ffOHyJiLyO5cHfVFcDGzeKTkFERIGmqop/P4jI61ge/M2KFXzniIiI2ofDl4jIy1ge/MmePcCRI6JTEBFRoOLqS0TkZSwP/sJk4i7SRETUcZWVwKZNolMQUZBiefAXK1cqu0kTERF11PbtQFGR6BREFIRYHvzBgQNAfr7oFEREFCzqhy9xyW8i8jCWB9HMZmD1atEpiIgo2FRUcPUlIvI4lgfR1qxRCgQREZGnbd/OfYOIyKNYHkQqKAD27xedgoiIgpUsK5vHcfgSEXkIy4MoVqsySZqIiMibKiq4+hIReQzLgyjr1wO1taJTEBFRKNi2DSguFp2CiIIAy4MIR48Cu3eLTkFERKFClrk4BxF5BMuDrzkcwIoVolMQEVGoOXFCWRqciKgDWB58bft2oKpKdAoiIgpFGzZw8jQRdQjLgy+ZzcCWLaJTEBFRqKquVt7EIiJqJ5YHX9q8WVlliYiISJQtW7i/EBG1G8uDr1RVAbt2iU5BREShzmrl0q1E1G4sD76ycSPgdIpOQUREpKz4V1EhOgURBSCWB18oLuYKF0RE5D9kGVi3TnQKopAxZswYjBkzRnQMj2B58AX+giYiIn9TUAAcOSI6BYUwk8mEOXPm4LfffhMdJeT8/e9/xzfffNOur2V58Lb8fODYMdEpiIiIGlu7VjkLQSSAyWTCU089FRLl4ZdffsEvv/wiOkYDlgd/JcvKmtpERET+qKwMyM0VnYLILbW1taIjtJtOp4NOpxMdwyNYHrwpNxcoLxedgoiIqHmbNgF2u+gU5AfmzJkDSZKwf/9+zJw5EzExMYiOjsYNN9wAk8nUcJzdbsff/vY3ZGdnQ6/XIysrC48++igsFovL7W3atAkTJ05EQkICjEYjunTpghtvvBEAkJeXh8TERADAU089BUmSIEkS5syZAwCYOXMmIiIicODAAUyePBmRkZG4+uqrAQArV67EZZddhoyMDOj1eqSnp+O+++5DXV1dmx7vb7/9BkmS8MUXX+Cpp55Cp06dEBkZienTp6OyshIWiwX33nsvkpKSEBERgRtuuKHRY3z//fcxbtw4JCUlQa/Xo0+fPnjzzTcb3dfpcx5Ove9nn30WnTt3hsFgwLnnnov9+/c3+tqcnBzs2rULY8eORVhYGDp16oQXX3yx0f1YLBY8+eST6NatW8Nz83//938uuSVJQm1tLebNm9fwvM+cOdPt503j9pHUNnY7l8IjIiL/ZzIpez+cdZboJOQnLr/8cnTp0gXPPfccNm/ejHfeeQdJSUl44YUXAAA333wz5s2bh+nTp2P27NlYv349nnvuOezevRtff/01AODEiROYMGECEhMT8fDDDyMmJgZ5eXn46quvAACJiYl48803cdttt+Hiiy/GJZdcAgDo379/Qw673Y6JEydixIgR+Mc//oGwsDAAwIIFC2AymXDbbbchPj4eGzZswGuvvYbDhw9jwYIFbX68zz33HIxGIx5++GHs378fr732GrRaLVQqFcrLyzFnzhysW7cOH3zwAbp06YInnnii4WvffPNN9O3bF9OmTYNGo8H333+P22+/HU6nE3fccUer9/38889DpVLhgQceQGVlJV588UVcffXVWL9+vctx5eXlmDRpEi655BJcfvnl+PLLL/HQQw+hX79+OP/88wEATqcT06ZNw6pVq3DLLbegd+/e2L59O15++WXs3bu3YZjSRx99hJtvvhmDBw/GLbfcAgDIzs52+/liefCWbduUX8hERET+bts2oHdvIDxcdBLyA2eccQbefffdho9LS0vx7rvv4oUXXsDWrVsxb9483Hzzzfjvf/8LALj99tuRlJSEf/zjH1i2bBnGjh2LNWvWoLy8HL/88gvOOqWYPvPMMwCA8PBwTJ8+Hbfddhv69++Pa665plEOi8WCyy67DM8995zL9S+88AKMRmPDx7fccgu6deuGRx99FAUFBcjIyGjT47Xb7Vi+fDm0Wi0AoLi4GJ999hkmTZqERYsWNTzG/fv347333nMpD8uXL3fJcuedd2LSpEmYO3euW+XBbDZjy5YtDUOaYmNjcc8992DHjh3IyclpOO7o0aP48MMPce211wIAbrrpJmRmZuLdd99tKA+ffPIJli5diuXLl2PEiBENX5uTk4NZs2ZhzZo1GDZsGK655hrMmjULXbt2bfJ5bw2HLXlDXR2wdavoFERERO6x25X9iIgAzJo1y+XjkSNHorS0FFVVVQ0vpu+//36XY2bPng0A+PHHHwEAMTExAIAffvgBNput3Vluu+22Rted+mK9trYWJSUlGDZsGGRZxh9//NHm+7juuusaigMADBkyBLIsNwyxOvX6wsJC2E8Z5ndqlsrKSpSUlGD06NE4ePAgKisrW73vG264wWUuxMiRIwEABw8edDkuIiLC5YW+TqfD4MGDXY5bsGABevfujV69eqGkpKThMm7cOADAsmXLWs3jDpYHb/j9d6ADPyhEREQ+t3cvUFIiOgX5gdPfuY+NjQWgDJ3Jz8+HSqVCt27dXI5JSUlBTEwM8vPzAQCjR4/GpZdeiqeeegoJCQm48MIL8f777zeaM9ASjUaDzp07N7q+oKAAM2fORFxcHCIiIpCYmIjRo0cDgFsv2E93+uONjo4GAKSnpze63ul0utzH6tWrMX78eISHhyMmJgaJiYl49NFH3c7S0nN9qs6dO0OSpEbHnnrcvn37sHPnTiQmJrpcevToAUAZSuYJHLbkaZWVwJ49olMQERG13ebNwIQJolOQYGq1usnr5VOW9T39hezpJEnCl19+iXXr1uH777/H4sWLceONN+Kf//wn1q1bh4iIiFZz6PV6qFSu73M7HA6cd955KCsrw0MPPYRevXohPDwcR44cwcyZM+F0Ot14hK6ae7ytPQ8HDhzAueeei169emHu3LlIT0+HTqfDokWL8PLLL7uVxZ3n2t3jnE4n+vXrh7lz5zZ57OllqL1YHjxtwwagHd+4REREwuXnAxUVwJ9DTohOl5mZCafTiX379qF3794N1xcVFaGiogKZmZkuxw8dOhRDhw7Fs88+i08++QRXX301PvvsM9x8882tFpCmbN++HXv37sW8efNw3XXXNVy/ZMmS9j+odvr+++9hsVjw3XffuZxB8NTwoLbKzs7G1q1bce6557pV7tqLw5Y8qbwcOHRIdAoiIqL2kWVl8jRRMyZPngwAeOWVV1yur3+3e8qUKQCUYTenv3s+cOBAAGgYulS/elJFRYXb91//Dvypty3LMl599VW3b8NTmspSWVmJ999/3+dZAGWVrCNHjjRMZD9VXV2dyz4Z4eHhbXreT8UzD57ESdJERBTo9u5Vlm3984Ud0akGDBiA66+/Hm+//TYqKiowevRobNiwAfPmzcNFF12EsWPHAgDmzZuHN954AxdffDGys7NRXV2N//73v4iKimooIEajEX369MHnn3+OHj16IC4uDjk5OS6rDJ2uV69eyM7OxgMPPIAjR44gKioKCxcubDRHwBcmTJgAnU6HCy64ALfeeitqamrw3//+F0lJSTh27JjP81x77bX44osvMGvWLCxbtgzDhw+Hw+HAnj178MUXX2Dx4sUNK18NGjQIS5cuxdy5c5GWloYuXbpgyJAhbt0Py4OnmEzAaZt6EBERBRynE9i+HXDzhUQwszvtDRebw6b812lruE6j0sCgMTRcdOrg2EG4Ne+88w66du2KDz74AF9//TVSUlLwyCOP4Mknn2w4pr5UfPbZZygqKkJ0dDQGDx6M+fPno0uXLi63ddddd+G+++6D1WrFk08+2WJ50Gq1+P7773H33Xfjueeeg8FgwMUXX4w777wTAwYM8OrjPl3Pnj3x5Zdf4vHHH8cDDzyAlJQU3HbbbUhMTGy0UpMvqFQqfPPNN3j55Zfx4Ycf4uuvv0ZYWBi6du2Ke+65p2HiNKCcKbrlllvw+OOPo66uDtdff73b5UGSTz+nRO2zYYOyyQ4REVGg0+mAq65S/htkZFlGtbUaVZYqVJorUWmpRJWlCjXWGpeSYHfaIaNtL5FUkgo6tc6lUBg0BujVehg0BkTqIxFvjEe0IdpLj47I+3jmwRPsdmD3btEpiIiIPMNqBXbtAv4cox6oTDYTSk2lKK0rRVldGUpNpai0VMIpe2dhE6fshNluhtlubvE4nVqHeGM8EsISGi4xhpgOTWIl8hWeefCEHTuANWtEpyAiIvKcsDBgxgygmSUi/VGNtQaFlYUorCrE8Zrjrb6I9ycalQZxxjgkhiU2FIpYYyxUEte2aSur1YqysrIWj4mOjnbZ4I3cxzMPHSXLythQIiKiYGIyAfv2Ab16iU7SLKfsxPGa4yioLEBhZSHKzb6fNOspdqcdJ2pP4ETtyY28tCotOkd1RmZMJjKiM2DQGAQmDBxr1qxpmLjdnPfffx8zZ870TaAgwzMPHXXwILB0qegUREREnhcdDVx+OeBHw2lqrbUorCpEQWUBjlQdgc1pEx3JJyRISAxPRGZ0JrJishBrjBUdyW+Vl5fj999/b/GYvn37IjU11UeJggvLQ0d98w3goe2+iYiI/M555wGnrI4jQqmpFAfKD6CgsgBldS0PRwkVsYZYdIvrhuy4bETpo0THoRDC8tARx48D330nOgUREZH3JCUBF13k87t1yk4cLD+IXcW7cLzmuM/vP5AkhiUiOy4b3eK6IUzL/TnIu1geOmLxYiA/X3QKIiIi77rgAsBHQzxMNhN2Fe/CnpI9MNlMPrnPYKGSVOgW1w0DkgdwWBN5DctDe1VWAp9/LjoFERGR96WnA+ef79W7OFp9FLuKdyGvIs9rS6mGkozoDAxIHoDUSI7rJ8/iakvttW2b6ARERES+UVgIlJUBcXEevVmbw4Z9Zfuwq3gX5zJ4WEFlAQoqC5AUnoT+yf3RJaYL95Egj+CZh/Ywm4H58wGHQ3QSIiIi3+jWDRg3ziM3ZbabseX4Fuwp2QOrw+qR26SWRemj0D+5P3rE94BGxfeOqf1YHtpj0yZg82bRKYiIiHxHpQKuvBKIiGj3TThlJ3ae2Infj/3O0iCIQWNA38S+6JvUl/tGULuwPLSV3Q588oly9oGIiCiUDBqkXNohryIP6w+vR6Wl0sOhqD20Ki0GpQ1CTlIOd7GmNmF5aKvdu4GVK0WnICIi8r2ICGDGjDZtGldqKsXaw2txtPqoF4NRe8UZ4zAyYySSI5JFR6EAwfLQVl99BZSUiE5BREQkxuTJQOfOrR5mspmw6egm5JbkQgZfavi7nvE9MaTzEA5lolZxxkxblJWxOBARUWjbs6fF8uBwOrCtaBu2HN8Cm9Pmw2DUEbmlucivzMfgToPRK6GX6Djkx1ge2iI3V3QCIiIisfLylHl/hsbvUOdV5GFN4RrUWGt8n4s6zGw3Y0X+CuSW5GJExgjEh8WLjkR+iMOW3OV0Ah9/zInSREREQ4cC/fs3fGhz2LC6cDX2lu4VGIo8SYKEvkl9cXba2dCqtaLjkB/h9Hp3FRSwOBAREQEuZ+KLaorw5a4vWRyCjAwZO07swOc7P0dBZYHoOORHeObBXYsXA/n5olMQERH5Bee0C7DZeQR/HPuDE6JDwJmpZ2JQ6iDuUk0sD26pq1N2lHY6RSchIiISzm7QYE+3MKzRV4mOQj6UHpWOcV3GQa/Ri45CAnHYkjv27WNxICIiAlAXZ8DxTjLCLTVQy3wXOpQUVhXiq91fodRUKjoKCcTy4I69HMdJREShTQZQ0TkMJ2LNcMABldOJdHBPgFBTba3Gt7nfco5LCGN5aE1ZmXIhIiIKUQ6tCie66lGpN7lc38nKkc+hyO6047e837CqYBWcMkdmhBqWh9YcOCA6ARERkTB2gwZFGWqYJUujz0WYzTDKagGpyB/sKt6F73O/h8lmav1gChosD61heSAiohBlC9PieCcZNjSzU7QMZMg634Yiv1JUW4SFuxbiWPUx0VHIR1geWnLiBFDFlSSIiCj0WKJ0OJ7qgAOOFo9LsnLYSqirs9fhx30/ch5EiGB5aMn+/aITEBER+VxdnAFFiTY40XoxCDNbYODLiZDnlJ34Le837C7eLToKeRl/2psjy8DBg6JTEBER+VRtohHFseY2bfyW7uS6/6RYWbAS24u2i45BXsTy0JyjRwETJwAREVHoqEoNQ0lUXZv3i07mqkt0irWH1+KPY3+IjkFewvLQHA5ZIiKiEFKeHobysPa9aRZuMUMv8yUFnbTx6EZsOrpJdAzyAv6kN0WWgfx80SmIiIh8ojw9DFW6Dpxtl4F0rrpEp9l8bDM2H9ssOgZ5GMtDU4qLAbNZdAoiIiKvq0rtYHH4U3Izq7lSaNt0dBO2FW0THYM8iOWhKYcPi05ARETkdbUJxnYPVTpdhNkMHV9WUBPWHV6HXcW7RMcgD+FPeVMKC0UnICIi8ipztB6l0R48yy5z1SVq3qqCVcgtyRUdgzyA5eF0VquyORwREVGQsoVpUZxga9NyrO5IsHv05ijIrMhfgcNVHN0R6FgeTnf4sDJhmoiIKAg59GqcSJXd2gCurSItVkj8E0rNkCHj10O/otpSLToKdQDLw+k434GIiIKUUy3hRGc17PDOKQK1w4EEaL1y2xQczHYzlhxcAruTp6kCFcvD6TjfgYiIgpAsAcUZelhh9er9pDhZHqhlJaYSrCpYJToGtRPLw6nKy4HaWtEpiIiIPK4swwizyvvLkMdaHV6/Dwp8e0v3YueJnaJjUDuwPJyKZx2IiCgI1SYaUaOp88l9GS0W7jZNbll7eC2KaopEx6A24k/3qVgeiIgoyNgNGpRFWXx6n6ngkq3UOqfsxJKDS2CyeWavEfINlod6djtw/LjoFERERB4jAyhJU3tlZaWWJHK3aXKTyWbC0oNL4ZR9+z1K7cfyUO/oUcDBcZpERBQ8qjqFwSL59qwDAERbvDspm4LL8ZrjWFu4VnQMchPLQz0u0UpEREHEEqVDpUHMcBC1w4E4LtlKbbCzeCf2le4THYPcwPJQj/MdiIgoSDjVEkoSnR7eP7ptEp0agfdOgWh14WrOfwgALA8AUF0NVFaKTkFEROQRZZ0NXtsIzl0x3AOM2sjqsGLd4XWiY1ArWB4AnnUgIqKgUZtgRK2PlmVtSYSVs6ap7faX7ceRqiOiY1ALWB4AzncgIqKgYNerURbt+wnSTdHY7YgAhy5R260qWAWHk4vY+CuWBwAo4gYlREQU+CpStD5flrUlSZz3QO1QaanE1qKtomNQM1geamuBOvGnd4mIiDrCHK1HrcYsOoaLOIckOgIFqD+O/YEqS5XoGNQElofiYtEJiIiIOkQGUJ4gcm2lpkVaOWua2schO7C6YLXoGNQEloeSEtEJiIiIOqQmxQgr/G9jNp3NBgNfalA7FVYV4mD5QdEx6DT8iWZ5ICKiAObUqFAZ7n/FoV6SrBMdgQLY2sK1sDm4cpc/YXngsCUiIgpglSl6OOC/K9PEOfhSg9qv1laLTUc3iY5Bpwjtn2hOliYiogBm16tRrfevSdKni7D7z+pPFJh2nNiBCnOF6Bj0p9AuDzzrQEREAawyWQsZ/jdR+lQGG4ecUMfIkLHl+BbRMehPoV0eON+BiIgClDVcixqtf591AAC1w4FwWS06BgW4/WX7UWutFR2DwPIgOgEREVG7VCYFzgvyeGhFR6AA55Sd2H5iu+gYhFAvDxy2REREAchu1MCk8v+zDvVinKH9coM8Y3fxblgd/ruyWKgI3Z9mTpYmIqIAVZ0QWMufctI0eYLNacOu4l2iY4S80C0PHLJEREQByKmSUKMLnLMOAGDkTtPkITtO7IDD6b9LE4eC0C0PHLJEREQBqDbJACcC6518jcPOnabJI0w2E/aV7RMdI6SF7k8yzzwQEVEAqg4PzHfx47nTNHnItqJtoiOENJYHIiKiAFEXq4cNgblvQrQcui85yLMqzBXIq8gTHSNkheZPssmkXIiIiAJIdbToBO0X7vDvzewosGw9vlV0hJAVmuWB8x2IiCjA2Iwa1KktomO0m4ErLpEHFdUW4XjNcdExQlJoloeKCtEJiIiI2qQmwJZnPZ3OHpjDrch/7S3dKzpCSArN8lBTIzoBERGR2wJxedbTaRxO6EL0ZQd5x8Hyg3DKPKPla6H5U1xdLToBERGR28xx+oBbnrUp0bJGdAQKIlaHFYWVhaJjhJzQLA8880BERAHEFCGJjuARkVCLjkBB5kD5AdERQg7LAxERkR+TJQT0ROlTRTiDowSR/8iryIPdGZh7nwSq0CsPVqtyISIiCgCW6OAYsgQAYVyulTzM7rQjvyJfdIyQEnrlgfMdiIgogJiigmeoj8HuEB2BghA3jPOt0CsPHLJEREQBpE4bPGfLtXYOLyHPK6wq5KpLPhR65YFnHoiIKEBYw7WwI3hecKucTmhlznsgz7I6rNwwzodCrzzwzAMREQWIuhit6AgeFy5xuVbyPA5d8p3Q+wlmeSAfcjidmPP99/h4/Xocr6pCWnQ0Zg4bhscnT4YkKe++1ZjNePjrr/HNli0ora1Fl4QE3D12LGaNHt3o9mRZxuTXXsPPO3fi69tuw0UDBwIAPlizBjfMm9dkhqKXXkJSVBQAYP769Xjxl1+wr6gI0UYjzs/JwUuXXor4iAjvPAFE1CEmQ/CcdagXJqtQwZMP5GEFlQUYlj5MdIyQEHrlgcOWyIde+PlnvLl8OebdcAP6pqZiU34+bpg3D9FGI+4eNw4AcP+CBfg1Nxcf33gjsuLj8cuuXbj900+RFhODaQMGuNzeK//7X0PpONUVZ52FSX37ulw384MPYLbbG4rD6v37cd377+Plyy/HBf3740hFBWbNn4+/fPQRvrrtNi89A0TUXnaDBlYEz3yHemEhOOiBvK/KUoUKcwViDDGiowS90PsJ5pkH8qE1Bw/iwoEDMaVfP2QlJGD6oEGY0KcPNhw65HLM9eecgzE9eyIrIQG3jBqFAZ07uxwDAFsKC/HPJUvw3nXXNbofo06HlOjohotapcKvubm4afjwhmPWHjyIrPh43D1uHLokJGBEt264deRIbMjL89rjJ6L2C8YhSwBg4IJL5CVFNUWiI4SE0CoPdjtQVyc6BYWQYV274n979mBvkfILbWthIVbt34/zc3Jcjvlu61YcKS+HLMtYlpuLvUVFmNCnT8MxJqsVV737Lv49YwZSoqNbvd8P161DmE6H6Wee2XDdOV27orC8HIu2b4csyyiqqsKXmzdj8ilZiMh/WPWiE3iHgVs9kJcUm4pFRwgJoTVsiWcdyMcenjQJVWYzej35JNSSBIcs49kLL8TVQ4Y0HPPalVfilo8/RueHH4ZGpYJKpcJ/r7kGo3r0aDjmvi++wLCuXXHhn3McWvPu6tW4avBgGHW6huuGd+uG+TfdhCv++1+YbTbYnU5c0L8//n3VVR57vETkOVZNcL5Fr3M4geA8qUKClZhKREcICSwPRF70xe+/Y/6GDfjkppvQNy0NWwoLce8XXyAtJgbXn3MOAOC1Zcuw7tAhfHf77ciMj8eKfftwx59zHsb37o3vtm7Fr7m5+OOxx9y6z7UHDmD3sWP46IYbXK7fdfQo7vn8czwxZQom9u2LY5WVeHDhQsyaPx/vNjEUiojEkSXAFoTzHQBA6+R6/OQdZXVlkGW5ybmB5DksD0Re9ODChXh44kRcefbZAIB+nTohv7QUz/30E64/5xzUWa149Jtv8PVtt2FKv34AgP6dO2NLYSH+8csvGN+7N37dswcHiosRc999Lrd96X/+g5Hdu+O32bNdrn9n9WoMTE/HoMxMl+uf+/lnDM/OxoMTJzbcT7hej5EvvYRnLrwQqW4MhyIi37BF6CAHa3lwsDyQd9iddpSbyxFnjBMdJaiFVnngSkvkYyarFSqV69QitUoFp6wM+rU5HLA5HFCd9i7Jqcc8PGkSbh4xwuXz/Z5+umHVpFPVmM34YtMmPHfxxU1m0Zye5c/7lWUOQibyJ9YwtegIXqN2OKACwApB3lBiKmF58LLQKg8mk+gEFGIu6N8fzy5ahIy4OPRNTcUfhYWYu3QpbhymrEUdZTRidI8eeHDhQhi1WmTGx2P53r34cN06zL3sMgBoWEHpdBlxceiSkOBy3eebNsHudOKaU+ZUnJrlLx99hDeXL8fEPn1wrLIS937xBQZnZSEtJsbzD56I2s0SpJOl6+mggpn1gbygxFSCHvE9Wj+Q2i20yoM1OE8Bk/967cor8ddvv8Xtn3yCE9XVSIuOxq0jR+KJqVMbjvns5pvxyNdf4+r33kNZbS0y4+Lw7IUXYtaoUW2+v3dXr8YlZ5yBmLCwRp+bOWwYqs1mvL5sGWYvWICYsDCM69kTL1xySYceIxF5XrBOlq6nl9UwSywPvrJ381788tEvKNhdgMqSStz2j9swcMzAJo+d//f5WPHVClx2/2UYf9V4AEDJ0RIsemcR9mzag6rSKkQnRGPI5CGYfONkaLQnX0puWrIJP73/E4ryixAZG4kxl4/BxOsmNnk/+7fsxz9v/SfSstPw10/+6rHHWlzLFZe8jeWByIsiDQa8csUVeOWKK5o9JiU6Gu/PnNmm25XfeqvJ69c89FCLX3fXuHG468/N6YjIP8kSYJNsomN4lZ4TWn3KWmdF5+6dMXzacPznwf80e9wfy/7AwR0HEZMY43L98bzjcMpOXPPoNUjsnIijB47io2c/grXOiun3TgcA7Fi9A+8+/i6ufPBK9BnaB8fzjuOjZz6CTq/D2CvGutyeqdqE9598H73O7oWqsiqPPtbSulJOmvYylgciIiI/YgvTQkZwlwetrAL42s5ncobnIGd4y3v6lJ8ox2cvfYZ7XrsHr9/7uuvXD8tBzrCTX5/YORHH849jxcIVDeVh3aJ1GDhmIEZPH91wzKSZk7D4w8UYc/kYlxfz8/8+H4MnDYZKpcKW5Vs89CgVdqcdFeYKxBpjPXq7dFJobRLH8kBERH7OGhH87+vpZDYHf+J0OvH+E+9jwrUTkJad5tbX1NXUISzq5BBZu9UOrc51Aw+dQYfyonKUHittuG71d6tRcqQEU/8yFd7C/R68i+WBiIjIj9h0wf/CWtf6IeRDi+cthkqtwrgr3RvWeqLwBJZ9vgyjLjk5N6/POX3wx7I/sHvDbjidThTlF2HJx0sAAJUllQCAooIifP3617jxbzdCrfHeimLcadq7gv/tjVOxPBARkZ+za4J/IrGGZx78Rv7ufPz62a947OPH3JonUH6iHP+6618YNH4QRl48suH6kRePRPHhYvz7vn/DYXfAEG7AuCvH4Ye3f4BKpYLT4cS7j7+LC265AMmZyd58SKixcl8vbwqd8uB0Ao7gXr2CiIgCnyMEViHScmsZv7Hvj32oLqvGI1MfabjO6XDiy1e+xK+f/oq/f//3husriiswd9ZcZPfPxjWPXeNyO5Ik4dK7L8XFd1yMytJKRMZGYs+GPQCAhE4JMJvMyN+Vj8LcQnz20mcAANkpQ5Zl3DbkNtzz+j3odXYvjzwms93skduhpoVOeeBZByIiCgB2Kfjf6NJyY0q/MXTyUPQe3Nvlun/d9S8MmTwEwy4Y1nBd+YlyzJ01F5m9MnH9k9c32gC1nkqtQmySMll54+KN6Nq/KyJjI+F0OvHEZ0+4HLv8y+XYs3EPbn3hViR0Smjq5tqF5cG7Qqc82IJ75QoiIgp8MgAngr88qNkdfMpsMqO48OQ8gJIjJSjMLUR4dDjiUuIQERPhcrxao0ZUfBRSslIA/Fkcbp2LuNQ4XHrvpagur244NjpB2cS0pqIGvy/9HT3P6gmbxYY136/B7//7HbPfmg0AUKlU6NStk8v9RMZGQqvXNrq+w4+X5cGrQqc82O2iExAREbXIqVdDDoHyoHIG/9Asf5K/Kx9zZ81t+HjBywsAAOdMPQcz58xs9et3r9+NE4UncKLwBB6e/LDL597adHLfobU/rsXCVxdClmV07d8Vs9+ajS45XTzzINrAYrdwrwcvkmQ5RM4dlpQAX30lOgUREVGzrBE6HEsO/mG2NQY9VhssomNQELtuwHUwaAyiYwQlnnkgIiLyE06N8k7pR98tx/zvl+NwkbI+fvfMVNx97VSMHey60Zcsy5j56GtYvnEn3nrqNkwcPhAAUF5Zg3ueexd7Dh1BRVUt4mMicd6wAXjwxosQGW4EAKzdkosZD8zF6TZ88SKS4qK9+Cg5bIm8z2w3szx4SeiUB660REREfs7xZ3lITYzBQzdfjKxOSZABLPxlLW554g38+J/H0SPr5CZe7y78X5NDM1QqCecNG4gHbrgQcTGRyD9yAn997VNUVNXiX4/d7HLsrx88jYiwky+yEmIivfPgTiGFyKAHEofzHryH5YGIiMhPOP/cN2v8OQNcrn/wxovw8ffL8cfugw3lYef+Qrzz5RJ898ajGHz5/7kcHx0ZjmunjW74uHNyPK6dNgZvf/FLo/uMj4lEdERYo+u9iSPRydtYHryH5YGIiMhPONWNl790OJz4ccXvqDNbcWafrgCAOrMV9/z9XTx91wy3hhgVlVTg55V/YEj/7o0+N/nWZ2C12dAzqxPuvW4qzsrp1vEH0gqeeSBvY3nwHpYHIiIiP1F/5gEA9hw8gkvufgEWqw1hRj3emjML3TOVsw5Pv/kFBvXtigl/znFozl3PvoMla7bAbLFh/Dn98fzs6xo+lxQfjWfvvRr9e2TCarPjs0WrcOXsf+Kb1x9BTvcMbzy8k1geyMssdk7I95bQKQ+cME1ERAGka3oyFr31OKpr67BoxWbMfvEDfD53NvKOFGPtllz8+J/HWr2Nv952Ge65dioOHS7Ci+9+jWfeXIBn7rkKAJCdnoLs9JSGYwf1zUb+sWK8u3ApXn74Rq89LgBoensxIs/hmQfvCZ3ywDWliYjIz0mnvCGv02qQ1SkJANCvRya25ebhva9+hUGvRf7RYvS/8D6Xr73tqf/g7Jzu+Hzu7IbrkuKikRQXjW4ZKYiJDMdl972Eu6+ZgqT4poc6DeyZhY079nv+gZ2OJx7Iy2xObg7sLaFTHrhRCBER+TmphRfVTlmG1WbHfddfgCvPH+HyuYl/eRp/ve1yjB/av4WvV95Es9iaf1G168DhZouFJ0lsD+Rlaknd+kHULqFTHtT8JiIiIj/352vqF975GmMG90VaUhxqTRZ8++sGrNu6Fx8+f3fD2YTTpSXFIT01AQCwbP12FJdXYUDPLIQZ9diXdwx/f3shzuqbjfQU5Zh3Fy5FekoCemSlwWK14bOfVmHNlj346Pl7fPAw+YYeeZdGFTovcX0tdJ5ZlgciIvJz9S+pSyuqcf8LH6C4rBKR4Ub06tIJHz5/N0YO6uPW7ej1Ony2aBX+9uYCWG12pCXGYuKIM3DbjEkNx9jsDjz71pc4XlIBo16HXl074eMX78OwgT298MhOw+5AXqZVa0VHCFqSLIfIkgd5ecAvjde3JiIi8hdVqWEoDzOJjuF1Vo0GyyK4kAl5z7D0YchJymn9QGqz0FnwQBM6J1mIiCgwhcz+B5yHSF7GYUveEzrlgcOWiIjI34VIeZBZHsjLWB68h+WBiIjIT0icDEDkESwP3hM65YHDloiIyN+FxokHyOxI5GUsD94TOuWBZx6IiMjPSSGynymXaiVvY3nwHpYHIiIiP6G2OURH8AmeeSBvY3nwHpYHIiIiP6GxhEh54JkH8jKtivs8eAvLAxERkZ9Qm+0IhYkPDnYH8jKeefCe0CkPnDBNRER+ToIEDYL/75WdS7WSF6kkFcK0YaJjBK3QKQ8qFTelISIiv6dxBv+ZcoeKf4/JeyJ0EZD4ms9rQqc8ABy6REREfk8dAuXBztd15EXR+mjREYIaywMREZEf0YTAhABrCMzrIHGi9FGiIwQ1lgciIiI/orEG/wtre2i9+iAfizbwzIM3hdaPLydNExGRnwuF5VptPPNAXsQzD94VWuVBpxOdgIiIqEUsD0QdE2OIER0hqIVWeQjjsl1EROTf1GZ70G+hZpVYHsg7tCotzzx4WWiVh4gI0QmIiIhaJEGCVg7u3XGtcIqOQEEqzhgnOkLQC63yEB4uOgEREVGr9LbgnqNXJwf/0CwSIz4sXnSEoMfyQERE5Gf0dcE7rMepkmDjsCXyEp558D6WByIiIj+jr7aJjuA1dnVwn1UhseKNPPPgbSwPREREfkZjcUCD4HyRbVeH1ksP8h21pOawJR8IrZ9glgciIgoQekdwTpq2SMG+lhSJkhqZCo0qOEu3Pwmt8qDVcq8HIiIKCHqz6ATeYeWZB/KS9Kh00RFCQuj9BPPsAxERBQB9tV10BK8wc7I0eUl6NMuDL7A8EBER+SFdrQ2qIPwzbQ6+h0R+IFIXyZ2lfST0foRZHoiIKEAE47wHs8QN4sjzeNbBd1geiIiI/JTBqhYdweNM4AZx5Hmc7+A7LA9ERER+ylgRfPs91CA453KQOGpJjU5RnUTHCBksD0RERH5Ka7JBi+AZumTTasBBS+RpKREpXKLVh1geiIiI/FiYJXjKg4W7S5MXcL6Db7E8EBER+bGw8uAZulSnCb2XHeR9GdEZoiOElND7KTYYAHXwTUAjIqLgpKsNnqFLptB71UFeFqGL4BKtPhaaP8YREaITEBERuS3cHBzloYbLtJKHdY3tKjpCyAnN8hAXJzoBERGR28LLrKIjeESVxJWWyHMkSOiT2Ed0jJATmuUhPl50AiIiIrdp6uwwyHrRMTpGAqpllgfynPTodETpo0THCDksD0RERAEgvDaw/2TbNFrIkugUFEx41kGMwP5N1F4sD0REFGDCSsyQELivvi0aLlZCnhOlj+Ku0oKEZnmIiAD0AX76l4iIQorKISPMbhAdo91q1aH5koO8o3dCb0hS4JbpQBa6P8k8+0BERAEmqiRw5wxUqWXREShIqCU1eib0FB0jZLE8EBERBQhdrQ1hzsA8+1CG4NnsjsTKjsuGQROYPwfBgOWBiIgogESVBt5eCbJKQiUC96wJ+Ze+iX1FRwhpLA9EREQBRF9lhUEOrHddzVxpiTwkKTwJieGJomOEtNAtD7GxgCp0Hz4REQWuqPLAmj9g4kpL5CFcnlW80H31rFIBMTGiUxAREbWZsdwCvawTHcNt1RrRCSgYGDVGZMdmi44R8kK3PABAQoLoBERERO0SVRk4f8IrpMCbp0H+Z1DaIKhVPIslWuD85vGGuDjRCYiIiNolrNQMLbSiY7ilDFbRESjAxRpi0Tuht+gYhFAvDzzzQEREASyqyv/fhbVptbBJgTVHg/zPOenncFM4PxHa5YErLhERUQALLzFDA/+eUFDDydLUQelR6egc1Vl0DPpTaJcHvR4IDxedgoiIqF0kGYgr9+/yUKnlu8XUfhIkDO08VHQMOkVolweAZx+IiCigGcvMCHMYRcdoVrGKm8NR+/VO7I1YY6zoGHQKlgfOeyAiogAXe8wKlR/+SXeqVCiXbaJjUIDSqXU4K+0s0THoNP73m8bXUlJEJyAiIuoQjcWB6Dr/23XapNNxZ2lqtzNSzoBB43/f16GO5SElhTtNExFRwIs8ZoIW/rVxXKWGzYHaJ1IXiZykHNExqAl81azRAElJolMQERF1iCQDcSX+9WK9TM3N4ah9hnQewg3h/BTLAwCkpopOQERE1GGGSgsi7H4yeVoCTkjcHI7aLi0yDV1ju4qOQc1geQCAtDTRCYiIiDwi5qgFaoh/x9as1cEObg5HbaNT6zAma4zoGNQClgcASE7mvAciIgoKapsTMTXi5z5U6/x7/wnyT8PThyNCFyE6BrWAr5gBznsgIqKgElFUB6NT7Co1xZzvQG3UNbYrusd3Fx2DWsHyUI9Dl4iIKIjEH7ZCA0Hv/kvAMcki5r4pIIVrwzEyY6ToGOQGlod6LA9ERBRE1DYnEk+oIMH3KzCZ9HrOdyC3SZAwJmsM9Bq96CjkBpaHeikpgFYrOgUREZHH6KqtiK31/fClMq34CdsUOM5MPROdojqJjkFuYnmop1Lx7AMREQWdyON1CHf4dvnWIrXdp/dHgatzVGecmXqm6BjUBiwPp+rcWXQCIiIij4srMPts92mHWo0ScH8Hal24NhzjuoyDJPnX5obUMpaHU6Wni05ARETkcSqnjMRjMlQ++LNfrRe/TCz5P5Wkwrldz4VBI3ZVMGo7lodTRUUpFyIioiCjNdkQV+n9CamlnD5IbhjaeShSIlJEx6B2YHk4Hc8+EBFRkAovqUOkLcyr93FU4pAlatnAlIHIScoRHYPaieXhdJz3QEREQSy2wOS1DeQsOh1McHjltik49E7ojcGdBouOQR3A8nC6Tp2UlZeIiIiCkAQgMd8Cg+z5IUxlekGb0lFAyI7NxoiMEaJjUAfxVfLpNBogNVV0CiIiIq+RnDJ2L9mJmx9/A4Ov+D9kjb8Vi1dvafb4R1+Zj6zxt+LdhUtdrj94uAg3//UNnHHJ/ciZdg9uuOVp5G7K9XJ6CkTpUekY22UsV1YKAiwPTcnOFp2AiIjIq+rqzDg7oTOeveuaFo/7edUf+GP3QSTHxzT63E2PvQ6Hw4FP/nE/vnn7CST3SMPr976OypJKL6WmQJQSkYLzss+DSuLLzmDA84tN6dIFWLUKcDpFJyEiImozuzocdk0k7KoI2GGEHWFwOHVwyhJkqABZhf4Dz0W/ARLsGhnAv1Fa1wmHq3sBACQVoFbJKCk7gSde+xJvPPs87n7yMVgRgzokQy3ZUFlRjENHTuCFB65D766dURwRhkvuvATLFyzH0QNHEZ0QLfZJIL8Qb4zHpG6ToFHxJWew4L9kU/R6ZdWl/HzRSYiIiBqRIcGmjYVdHQm7Khx22Qi7bIDdoYPdroXskODuvGXpz+MkqOGof8/MCVidMv760nO4YtoMJCZ2h9Mpodasx4nKWCWDnIiMtAx8/NNupGWNQbEuCmsWrkBUXDQyemV6/kFTwInWR2Ny98nQqbn3RzBheWhOt24sD0RE5DesuniY1Ukwy3GwWMPgtKkAm+duP8YUA41KA7vTDgD45JtPoFarcemUS5s8XpIk/HPOP/H4C49j5CUXQJJUiIyNx13PzkcE+kJrskCjq4JTXQILjkOWPBiW/F6ELgJTekyBUWsUHYU8jOWhOZmZyuRpu110EiIiCkE2bQzMmmSlLNjC4bCqvXp/KpsKKVUpKIoqwo59O7Dwx4X470v/bXaCqyzLeOW/ryAmKgZz//keSoyJWLXoM/z7rzfj0X9/h+j4JFitBgBJAPpApzdDo62EU10Mi1QEGfz7GqyMGiMmd5+MCF2E6CjkBSwPzdFogKwsYP9+0UmIiCgE2DURMGtTYUYczNZIOGxqj55ZcIfarEayMxlf7PkC5ZXluPzWyxs+53A68Ma8N/DlD1/i8/98js3bN2Pt72vxw7wfYErNRhj0uOqeZ7B78yqs/eVLTJpxu8ttWy0GWC0GAMmAlAO9rg4q3QlY1QVwwOTbB0peE2eMw6Ruk1gcghjLQ0u6dWN5ICIir3FKGpj0mahxpsFiDYM/vBmvtqpx7YBrMeTlITDL5obrH/zbg5gwagLOH3c+AMBsUT4naTQoxckx7ZKkglOWW74TGbBYjIAlE0Am9HoTVPoTsKjy4YS55a8lv5URnYFzu5wLrVorOgp5EctDSzp3ViZPWyyikxARURCx6hJQo85CrSUWTrOY5StrzbXIK85r+LiwpBA7C3ciJjwGneI6YahqKMoSylDjrAEAaNQaxMXGIaNTBgCgb8++iAyPxLOvv4Ax182GTm/Ayh8/Q8nxQvQbMrZNWSyWMMCSBSALBkMtJF3Rn0XC6qFHS96Wk5SDczqfw30cQoAky629PRDiVq4Edu8WnYKIiAKcU6VDrb4LahypsFo9v7tzW63NXYsZc2c0uv7Scy7FP2f+EwAgQ0ZVYhUq5ApcMesKTJ86HZdNvazh2D379+DfCz7CgdwdcDjsSM3sjqnX3o2cwW0rD02RVDIMxnLYNfthk8o7fHvkHRIkDM8Yjj6JfURHIR9heWjN0aPADz+ITkFERAHKrEtFjSodJksMZDkw35U1xZlQrCpu/AmNFnvC07x+/wZDLWRdHiyqw16/L3KfTq3D+K7j0Tmqs+go5EMsD62RZeCTT4DaWtFJiIgoQMhQocbYHdX2TrDZgmP8tyXSgmJDMRzyyQ0k6iJjka+K8lkGrdYKjfEozKoDXK1JsEhdJCZ1m4RYY6zoKORjLA/uWLcO2LZNdAoiIvJzMlSoNWaj0pYBuz34phU6dU6UxJSgzlkHADgc0wk1su8fp0rlhCG8CGb1Hs6LECA5PBkTsidwD4cQxfLgjpIS4KuvRKcgIiI/JUNCraErKu2ZsNuD40xDsySgMqES5Tozcg3JQqOoVE7ow4/CrM7lmQgf6R7XHaMyR0Gt8u6+I+S/gu9tEW9ISACio4HKStFJiIjIz9QZ0lHu6AabWdf6wcFABqKLo1GSlAyVwQonnMKiOJ0q1FV3hlqdCl14AeqkfYDE90S9waAxYETGCHSN7So6CgnGMw/u+v135UJERATAqo1DuboPzOZw0VF8TpYkLJc6wa6VoelUCovkH3sz6HQWSMZ9sEhHREcJKtmx2RieMRwGjUF0FPIDPPPgruxslgciIoJDbUSFLgc1dXE+3wHaX1TpjbCY1YAFcBxMQlhaFUzGSgDtfz9y+XcfYfn381FapKyo1Nyyr7Is47VHZ2LnxuW47am3MHD4xIbP7d22B1+9+wIK920HJAey+mbhkrsvQXqP9HbnCmVGjREjM0ciKyZLdBTyI2J2pglEMTHK8CUiIgpZNYZuOCqPVIpDCCtExCkfSTAdjYb2WCr0cvvfmY5JTMXFNz+ER9/4Ho++8R16nTEMbzxxC47m7XU57n8L321yIzJzXS3+9cj1iEtKw0OvfYP/e+VrhIcl4l93/QsOu6PR8dSybnHdcHnfy1kcqBGWh7bo1Ut0AiIiEsChMqDYcA5KzdlwOgNzrwZPsWs0OGpuXBJsJi0sB5NhrI6HGm2fTDvgnPHoN2Qskjt3QXLnrrjoxgehN4bh4O4/Go4p3L8TS758B9c98GKjrz9ecAC11RWYdv39SEnPRmpmT5x/5SOoKq1C5VGuyOSuMG0YJmZPxLgu46DXiN/MkPwPy0Nb9OgB6PmDREQUSuoMnXBMGgGT2Xf7GfizYl04ZDRfoOpOREAuSIXRHtHsMa1xOhzYuOw7WM116NrnTACA1VyHd/9+D2bc9TSi45IafU1KeleER8Vi9U+fw26zwmoxY9XPnyM1oxtiIqYgzNEXCNBN+nylR3wPXNbnMmTGZIqOQn6Mcx7aQqMBevcGtmwRnYSIiLxMltQoNw5AtSlRdBQ/ImG/JbLVo5w2Nery46GPDoczoQw2NyeHHDm4By/cfQlsVgv0xjDMmvMW0jK7AwC+ePNpdO07CAOHT2jyaw1hEZj9z8/w5pO34Mf5rwEAkjpl4Z7nP4RKpYWpujN0ukTAuB1WqdTNxxsaovRRGJY+DBnRGaKjUABgeWirvn2VDeOc4pamIyIi77Lq4lEi94fNFCLLr7qp0hgGU537Q5IslQagKhXG5BrYwithR8tzD5LTu+LxtxahrrYam1cswgcvzsbsuZ+j+EgecresxWP/+bHZr7VazPjwn/+H7L6DcPOj/4LT6cCSBf/F64/diEf+/R10egOsVj0k2yAYI/NQp9rb7G2FijBtGM5MPRO9EnpBJXEwCrmHS7W2x//+Bxw4IDoFERF5mAwJ1cbeqKhL78C6QcFriz4FRZb2Dd+VVDIMSdWwhlfB0UqJqPfyg1cjMS0DWr0By77+ANIpL3CdTgcklQrdc87G7LmfY9VPn+Obd1/Ci19sgEqlHGe3WXHfxQNw3ewXcPbYaS63bQwvh1m7OSQ3l9Or9RiQMgA5STnQqPg+MrUNv2Pao18/lgcioiBj10SgVH0GzHVhoqP4JYtO1+7iAACyU0Ld8ShIqgiEpVTDbKxqdYM5WXbCbrPiguvvw4jzr3T53NN/mYjLb/sr+g8dD0CZEyGpJJeVmCSVChIkyM7GVbCuNhY63Qg4wzbDjqp2P65AolPr0DexLwakDIBOzbNq1D4sD+2RlKRcTpwQnYSIiDzArE9FsS0HTjuHbjTnsLr1uQ7ukJ0qmI5GQ6WJhDG5ChZDNZxw4ut3XkDfwWMQl5QGi6kWG379Fnu3rsPdz3+I6LikJidJxyWlISFV2cOhz6ARWPj23/Hpv/6KsRfNhCw78fNnb0KlVqPnwHOazGK16qGyD4Ehcg/MUqFHHp8/MmgMyEnKQU5SDksDdRjLQ3vl5AC//io6BRERdZDJkIUSSw/IXImnWQ61Goc8vJO2065C3ZEYSOooGBNrUVNRjg9euB+VZcUwhkeiU5deuPv5D9Fn0Ei3bi8loxvueOZd/PDhq3jh7oshqVRI79YXdz83D9HxjYtHQw6nCubKPjBGxKJOvR2QgmfAWpg2DP2T+6NPYh8OTyKP4ZyH9nI6gU8/BWprRSchIqJ2qjb2RFldlugYfq8oLApbTLFevx99TB2k2BqYVSav31dTDMYqWHQbIEuBu6mcBAmdojqhe1x3dI3tCrWq7XtuELWE5aEjtmwBNmwQnYKIiNqhwtgflXWpomMEhNWaTqix++6da43BDm1CNaz6WrcnV3uKXm+CzbgeTgTWxnJxxjj0iO+BbnHdEKblvB3yHpaHjrBYgPnzAXvordRARBSoZEgoM56Fmro40VECQpUhDGvNYva6kFQy9LF1kCJrYVbXQfbRGlg6nQUO43o4pDqf3F97hWnD0D2uO7rHd0eckd/P5BssDx21ciWwe7foFERE5AanpEGJfjDqzJ6Z/BsKOrI8qydJaicMcXWQI0ywqLxfJLRaG+SwjbBL1V69n7bSqrToEtsF3eO6Iy0yzWV1KSJfYHnoqIoK4IsvRKcgIqJWOFR6FGuHwGIxio4SMGp1BqyyJouO0YikckIfawYiTLBpzF4b2qRWO6CK3Awbyrxy++6K0EUgJSIFGdEZyIrJ4uRnEorlwRMWLQIOHxadgoiImmHXROCEdDZsNi5T2RY7DEk4Yvb/sqUx2qCNsgBGM2xqC+we3PhNpXJCG7kNFqnIY7fZEgkS4oxxSIlIabiE6zy70hVRR7A8eEJhIfDTT6JTEBFRE+yaSBzHYDh8OOE3GJh1Oiy3BuaEco3RDm2kGTCa4dDYYIOtQ8OcVConNFF/wIoSD6ZUaFQaJIYlNhSF5Ihk7sVAfo2/ST0hPR2IiVGGMBERkd9wqPQ4IZ0Fh41/7toqTxUtOkK72es0sNdFAIj48xoZGqMdmjAbVHobnFobHGob7JJ7pcLpVMFRPRDaiN9hk8rbnEej0iBCF4FwbbjyX53y3zhjHBLCEqCSuDkhBQ6eefCUXbuAVatEpyAioj/JUOGEfjjMFi5b2VZWrRbLbGmiY/iESuv48+KEWusANE5IGgdklROy2gFZcgJ/Vgy12gZtzFboDFaoJBUkSJAkCSpJBZWkQpg2DOHa8IZyUF8Y9BrxE86JPIVvxXhKz57Kvg81NaKTEBERgFLj2TDXsTi0R4EmCrCJTuEbTpsaTpv7G6lpo9Jx/oWA0f+nghB5Bc+TeYpaDQwaJDoFEREBqAgbgNq6GNExApJdo8HBOk7QbU5VFfDzz9ziiUIXy4Mn9eihzH0gIiJhaozdUWlKER0jYBVqoyCDewe0pLgYWLoU4MBvCkUsD54kScDZZ4tOQUQUsuoMnVBW11V0jIBl16hxwBzR+oGEggJln1iiUMPy4GldugBJSaJTEBGFHKsuHiXWvl7edzi4FWii4ZB51sFde/YAO3eKTkHkWywP3jB4sOgEREQhxa4OxwnnQDidfOHbXjatlmcd2mHdOqC0VHQKIt9hefCGtDSgc2fRKYiIQoJT0uCE+mxuAtdBBzXRcHKuQ5s5HMr8B1uIrE5FxPLgLZz7QETkE+WGM2Czch39jrDodMjjCkvtVlnJrZ4odLA8eEtiItCVk/aIiLzJZMhETV2c6BgBb68UIzpCwNu3D9i7V3QKIu9jefCms88GVHyKiYi8waEOQ5mtu+gYAa/WYMBRC3c884RVq5SzEETBjK9svSk6Wtn7gYiIPK5EeyYcDvd3Bqam5TpjREcIGna7Mv/B4RCdhMh7WB68bdAgZfdpIiLymKqwXjCbOUa/o6oMYSjmfBGPKi1VVmAiClYsD94WHg707Ss6BRFR0LBpolBRlyE6RlDY7YgRHSEo7dwJ5OWJTkHkHSwPvnDGGYBOJzoFEVFQKFMPgMyNzDqs2BiJCptWdIygtXIlYLWKTkHkeVwU2xf0emDAAGDjRtFJiIgCWo2xO8x1YS0e88bPb+DFr1/EDeNuwJNXPImK2gq8/N3LWLl7JY6UHUF8RDwmDJyA+y+8H1HGKADArsJdeHPxm9i0fxPKasrQOb4zrh51NW4898aG2539wWwsXLuw0f11T+2OJXOWePaBeplDrcZOS7ToGEGtrg7YvBkYOlR0EiLPYnnwlX79gB07lN8mRETUZg51GMotWS0eszVvKz5Z8Ql6de7VcF1RRRGKKovw6KWPontadxwpPYLH5j+GosoivHnrmwCAHQU7EB8Zj5dvfBlpsWn4/cDveOTjR6BWqXH92OsBAE9e8SQeuvihk3mcDpz/t/MxedBkzz9YL8vXxcBSx/l43rZjB9C7t7J+ClGwYHnwFY1GWbp1xQrRSYiIAlKZdgCc5uZH29aaa3Hvu/fi+Wufx2uLXmu4vmennvjPrP80fJyZmIkHLnoA9713H+wOOzRqDS4ffrnLbWUkZmDzwc34+Y+fG8pDlDGq4UwFACzeshiVpkpcNuwyTz1En7DodNjPDeF8wukE1q4FJk0SnYTIczjnwZd69QKSk0WnICIKOGZ9GkzmqBaP+eunf8XYfmMxoveIVm+vuq4aEYYIaNTNv4dWXVeNmPCYZj//xaovMKLXCHSO79zq/fmTXYiDDM4Z8ZWCAqCwUHQKIs9hefC1kSO5cRwRURtVoFuLn/9u43fYWbAT/3fx/7V6W2U1ZXjtx9cwY+SMZo/5/cDv+GHTD80eU1RRhN92/oYrRlzR6v35k3JjOE5waVafW7tWOQtBFAz4KtbX4uKAnBzRKYiIAkadoRMsLeyAfLTsKJ7+/Gm8ctMrMGgNLd5WdV01bnjtBnRL7YZ7L7i3yWNyj+TiL2/8BfdMvQej+oxq8pgv136JKGMUJgyc4PbjEM2pUmG7NVZ0jJBUUaEs30oUDDjnQYSzzgIOHgRqakQnISLyexXOls86bC/YjpLqEkx9dmrDdQ6nAxv2bcCHv32Ivf/eC7VKjRpzDa7/1/WIMETgrdveglbdeJnSfUf34eqXr8aMkTNw15S7mrw/WZaxYM0CXDz0Yug0gbMM9xFDNOpMnCQtyu+/A927A4aW+y2R32N5EEGjAYYNA375RXQSIiK/ZjJkwGpu+dXW8F7DsfiJxS7XPTjvQWSnZGPWxFlQq9SorqvGda9eB51Wh3fueKfJMxR7j+7FVXOvwqXnXIoHL3qw2ftbt3cd8k7k4YrhgTNkyarVYo8pUnSMkGa1Ahs2AKOaPplFFDBYHkTJygIyM4H8fNFJiIj8VqWza6vHRBgi0LNTT5frjHojYsJj0LNTT1TXVePaV6+F2WrGKze9guq6alTXVQMA4iPjoVapkXskF1e9fBVG9RmFm8bfhBOVJwAAapUa8ZHxLrf9xeovMLDLwEb36c/2qOLg5CRp4XJzlZHLcXGikxC1H8uDSMOHA0eOAHa76CRERH6n1pgFa13HJ/fuKNiBLYe2AABGPz7a5XMrn12J9IR0LNq8CKXVpfh6/df4ev3XDZ/vFN8Jq/++uuHjqroq/LT5Jzx5xZMdzuUrpcZIHKvjWBl/IMvAli3AuHGikxC1nyTLsiw6REjbtg1Yt050CiIivyJDwjHtGNhsgTOnwB/ZNRqscKTCJnN9FH+hUgFXXQWEtbxROpHf4m8T0fr1A5KSRKcgIvIrtcauLA4esFcTx+LgZ5xOrrxEgY2/UUSTJGD0aO79QET0JxkqVNoyRccIeOWGcBSam1/ilsTZvZsjlilw8RWrP4iNBc44Q3QKIiK/UGvMht3eeBlVcp9DrcY27ungt8xmYN8+0SmI2oflwV+ccQaXXyAiAlDtSBMdIeAd0MXC7OSeDv5s+3bRCYjah+XBX6hUyvAliUvpEVHosmpjYbVyZaCOqDYYcaguXHQMakVFBVBYKDoFUduxPPiTxERlAjURUYiq1XKuQ0c4VSpsscW3fiD5BZ59oEDE8uBvzjoLiI4WnYKIyOdkSKi1JIiOEdAO6ONgcnC4UqA4fBgoLxedgqhtWB78jUYDnHsuV18iopBjNqTBwRe+7VZhDMdBDlcKODz7QIGGr1D9UUICMHSo6BRERD5VK3UWHSFg2TUa/GHhohuB6MABwOEQnYLIfSwP/ionB8jKEp2CiMgnnCodTGYO2WyvHeoEWJ38kx6IbDZOnKbAwt80/mzMGCAyUnQKIiKvM+kyIMtcba49joVFo8iiFx2DOuDAAdEJiNzH8uDPdDrOfyCikFArp4qOEJDq9HpsN/GMTaArKOCO0xQ4+KrU3yUlAYMHi05BROQ1dk0kzJYw0TECjlOlwh+OBMjgGZtAx6FLFEhYHgJB//5AJtc+J6LgVKPrIjpCQDqgj0O1XSM6BnnIoUOiExC5h+UhUIwZA0REiE5BRORxJjtXCWorLssafAoLAVkWnYKodSwPgUKv5/wHIgo6DpUeNisn+7aFRafF72YWrmBjsQBFRaJTELWOr0QDSXKysgM1EVGQsOiSRUcIKE6VCpudibDL/PMdjAoKRCcgah1/+wSagQOB9HTRKYiIPMKiihcdIaDk6uJRZdeKjkFewvJAgYDlIRCNHQuEc6wrEQU+iz1KdISAccwYjQIzV6UKZmVlQG2t6BRELWN5CEQGAzBuHCBxeT4iClxOSQOr1SA6RkCoNRiwvY77OYSCEydEJyBqGctDoEpNBQYNEp2CiKjdrLokcHGZ1tk1Gmyycj+HUFFSIjoBUctYHgLZGWdw/gMRBSyzOkF0BL8nSxK2qRJgdqpFRyEfYXkgf8fyEMgkSVm+NY5L9hFR4LE4Od+hNYcMcSjmUrYhheWB/B3LQ6DT6YDzz+cEaiIKKDJUsFg4+bclxWGR2FfHzUFDTV0dJ02Tf2N5CAbh4cCkSYCWy/cRUWCw6hIgyxzD35wagxF/mGJFxyBBiotFJyBqHstDsIiPB847jztQE1FAsGg436E5Vq0WGzlBOqRx6BL5M77SDCadOwMjRohOQUTUKqscKTqCX3Ko1dgkJ8Hq5J/nUMbyQP6Mv52CTa9eyi7URER+zO7g/g6nkyUJ29SJqLZrREchwVgeyJ+xPASjwYOBbt1EpyAiapbdwTlap9urT8AJrqxEAEwm5ULkj1gegtXo0cpGckREfsap0sHh4L4FpyoMi0WematP0UmlpaITEDWN5SFYqdXAhAlATIzoJERELuxqznc4VYkxErtM3POCXPHMA/krlodgptcre0AYjaKTEBE1YHk4qdIYhs11XJKVGqurE52AqGksD8EuMlLZA0LDCXhE5B/sKg7PAYBagwEb6rgkKzWN5YH8FctDKEhMBM49F5D4B4qIxHPIOtERhKvT67HOkggniwM1g+WB/BXLQ6jIzATOOUd0CiIiOBDaKwpZdDqssyXBLvNPMDXPbBadgKhp/M0VSnJygAEDRKcgohDnkEN3mVabVov1Dm4CR63jmQfyV/ztFWqGDGGBICKhHM7QnINl16ixQU5CHZepJTewPJC/YnkIRUOGAGecIToFEYUoZwjuoOxQq/G7lIyaEHzs1D4ctkT+iuUhVJ19NnDmmaJTEFEIcjhD6513p0qFLeokVNhCd7gWtZ3TCVgsolMQNcbyEMrOOku5EBH5kiyLTuAzTpUKWzRJKLFyhSlqOw5dIn/E86eh7swzlSVcN24UnYSIQoQkSQiF+uBQq7FFzeJA7cehS+SPeOaBlPkPgweLTkFEoUIK/urgUKuxWcXiQB3D7ZnIH7E8kGLgQGDoUNEpiIgCXn1xKLOxOFDHqPgqjfwQvy3ppP79uZEcEflA8J55cKjV2KRKZnEgj1CH1toCFCBYHshVv37AsGGiUxBREAvWkRj1xYGrKpGn8MwD+SN+W1JjOTnAiBGiUxBRsArC9mDXqLFBYnEgz+KZB/JHXG2JmtanjzJTa+VK0UmIKNgE2aglq1aLjXISN4Ajj+OZB/JH/E1HzevdWykQK1aITkJEwUSSg6ZAmHV6rLcnwhxiG9+Rb/DMA/kjlgdqWa9eym+v5cuV7S6JiDooWJafrDEYsd6SALvMt4fJO3jmgfwRvy2pdd27A+efD+i4eggREQCUGSOw1pzI4kBexTMP5I/4W4/c06kTMG0aEBEhOgkRBboA3yTueFg0NtbFwxmMM7/Jr7A8kD9ieSD3xcUBF10EJCSITkJEAUyjsouO0G75xjhsNcWIjkEhgEOWyF/xW5PaJixMOQORkSE6CREFKI3aIjpCm8mShFxjAvbURYqOQiHCaBSdgKhpLA/UdhoNMHGispwrEVEbqSWz6Aht4lCrsU2XhLy6cNFRKIRwlDD5K5YHah9JUjaSGzo0eJZOISKf0Mgm0RHcZtHpsE5KwXGLQXQUCjHh7Krkp1geqGP691fOQnAlJiJyk0auFR3BLVWGMKyyJXPzNxKCZx7IX7E8UMdlZCgTqaOiRCchogCgsVeLjtCqY2HRXIqVhGJ5IH/F34rkGTExwMUXK0u6EhG1QGOvER2hWfUTo7dxRSUSLJJz88lPsTyQ5+j1ymZyffuKTkJEfkyCExqN/y3XatdosFmbwonR5BdiYkQnIGoaywN5lkoFDB8OjBzJRaqJqFkatVV0BBd1ej3WyCkosXL+FomnUvHMA/kvzgIj7+jdG4iNBf73P6A2MCZHEpHvqFUWAGGiYwAAisOisMUUwx2jyW9ERfH9N/Jf/NYk70lJAS69FMjKEp2EiPyMxg/2enCqVNhjSMRmUyyLA/kVDlkif8byQN5lMAATJih7QqjVotMQkZ8QvVyrWafDOlUq8s3+cfaD6FQsD+TPWB7IN/r0UVZjiosTnYSI/IDeXiLsvovDIrHSmoJq7t9AfioxUXQCouaxPJDvxMUpBaJPH9FJiEgwra0Sah+vuORUqZBrTMBmUxyHKZFfS00VnYCoeSwP5FtqtTKEacIEZUgTEYUsg9Z3+z1YdDqsV3EZVvJ/cXH880j+jedsSYysLOW87LJlwNGjotMQkQAGlKEWMV6/nxNhUdhWFwOHzLMN5P/S0kQnIGoZzzyQOOHhwJQpwODBXJOOKAQZbMe9evt2jQbb9Mn4wxTL4kABg0OWyN/xzAOJJUnAwIHKWy2//gpUVYlOREQ+orFXQ6Oxw+6FictlhghsscTCZucbExRYWB7I3/G3KvmHpCTgkkuAbt1EJyEiH9Jrqz16ew61GrsNidhojodN5p84Ciyc70CBgL9ZyX/odMC4ccCYMYBWKzoNEfmAAWUeu60qQxhWyako4N4NFKA434ECAYctkf/p0UPZnXrVKuDwYdFpiMiLlHkP2R26DadKhYO6WBwwR3gmFJEgHLJEgYBnHsg/RUUBkycD48cDYXwXkShYaew10Ghs7f76KkMY1kipLA4UFFgeKBDwzAP5t65dgfR0YNMmYMcOQJZFJyIiDzNoq1Fjb9vu83aNGvs1ccjnECUKEpzvQIGCZx7I/2m1wDnnKBOqk5JEpyEiDzOgpE3HnzBGYoUjjcWBgkp2x0bvEfmMJMt8K5cCzO7dwIYNgMUiOgkReYBT0uIwxkJuZS8Gi06HHYhHiVXno2REvnPVVUAER99RAOCwJQo8vXsDXboA69YBe/eKTkNEHaSSbQgzVKDWHNvk52WVCgX6aOTWRUIGN3uj4JOWxuJAgYPDligwGQzKkq7TpgGxTb/gIKLAEY4jTV5fZQjDaikVe+qiWBwoaPXoIToBkfs4bIkCn9MJbNsGbN4M2O2i0xBRO8iQcER9LhwONQDAqtUiVxWLoxaj4GRE3qXRANdey+2NKHBw2BIFPpUKGDhQ2Z169WogP190IiJqIwkywvWlqDCnoFAfg9y6CJ5poJDQtSuLAwUWDlui4BERAUycqFwiI0WnIaK2UKmgz9BiBdKwh3MbKIRwyBIFGp55oOCTmansDbFnjzKUyWQSnYiIWtK1KzB4MMKiohBTDhQViQ5E5BsREcpkaaJAwvJAwUmlAvr0AXr2BHbtArZsAerqRKciolOlpABDh7rs39KnD8sDhY7u3UUnIGo7Tpim0GC3KztUb9sGmM2i0xCFtpgYYPBgICur0accDmD+fP6YUmi44gogOlp0CqK2YXmg0GKzAdu3KyXCahWdhii0GI3AoEFAr17K2cFmrFun/IgSBbNOnYApU0SnIGo7lgcKTRaL8upkxw6lUBCR90RGAgMGKMMI1epWD6+qAj7/HOBfJwpm06YpI/eIAg3LA4U2s1mZD7FrF/eIIPK0uDhlGeWuXVs809CU337jBvIUvNLSgKlTRacgah+WByJAWZFpyxZg925l0DURtV9KilIaMjLafRPV1crZB6fTc7GI/AXPOlAgY3kgOlVtrbK8a24uX7UQtVVGhlIaPPSqaNUq5aQgUTDhWQcKdCwPRE2prlYmVufmck4EUUtUKmVY0sCByjAlD6qtBT77jCcDA9HevSvwyy8voaDgd1RWHsNtt32NgQMvAgA4HDZ8883j2LFjEUpKDsJojEbv3uNx8cXPIybm5KYHixY9i+3bf0Rh4RZoNDq88kpFo/vJy9uIr756GAUFv0OSJGRlDcYll7yI9PQBDcccPrwNn356B/LyNiIyMhFjx96FiRP/z9tPQbN41oECHXeYJmpKZCQwbBhw9dXKf6OiRCci8i8ajbIpwxVXAOPGebw4AEB4ONC3r8dvlnzAaq1F584DMGPGv5v4nAmFhZsxZcpf8dhjmzFr1lc4fjwX//73NJfj7HYrBg26DKNH39bkfZjNNfjXvyYhLi4DDz+8Hg8+uAoGQyT+9a+JcDiUN33q6qrw6qsTEBeXicce+x2XXvoSvv9+DlaseNvzD9oNnTqxOFDg4yZxRC3R6YCcHOUVTEGBcjbi6FHRqYjE0emUn4ecHGXpVS8bOFCZisQTgIElJ+d85OSc3+TnjMZo3HvvEpfrZsx4Hc89NxhlZQWIi1Pmykyb9hQAYM2aD5q8nePH96C2tgzTpj2NuLh0AMDUqU/i6af7o7Q0H0lJ3bBhw3zY7VZcf/170Gh0SEvri8LCLVi6dC5GjbrFQ4/WfYMG+fwuiTyOZx6I3CFJQGamMlB1+nRlnXo3lpwkChoREcCQIcrZuLPP9klxAACDAejXzyd3RQLV1VVCkiQYjTFuf01KSk+Eh8dj9ep3YbdbYbXWYdWqd5Ga2hvx8VkAgIMH16J791HQaHQNX9e370QUFeWitrbcw4+iZTzrQMGCZx6I2iouDhg1SnkhlZurvC1aWSk6FZHnaTTKLtA9eyqvfATp3x/YuVPZnoWCj81mxldfPYSzz54Bo9H9IaIGQyRmz/4Nb755EX788W8AgKSk7rjnnsVQq5WXN5WVx5GQ0MXl6yIjkwEAVVXHER4e65kH4QaedaBgwfJA1F56vfKqpn9/ZSjTrl1AXh5XaaLAl5SkFIbsbGWYkmA6nbLH3IYNopOQpzkcNrz99uWQZRlXXfVmm77Waq3Dhx/ehOzs4bj55k/hdDqwZMk/8PrrU/DIIxuh0/nm7Jg7MjN51oGCB8sDkSekpSmXurqTZyOqq0WnInKf0Qh0766UhljfvRvrrpwc5exDba3oJOQp9cWhrCwf9933a5vOOgDAhg2foLQ0Dw89tBaqPzchvOmmT3DffbHYuvVbnH32lYiOTkFVVZHL11VXKx9HRfnm1bxGAwwf7pO7IvIJlgciTzIalRmeAwYAhw8D+/cD+fmA1So6GVFjKpWyN0PPnkB6ept3gfYljUYZLfjTT6KTkCfUF4cTJ/bh/vuXISIivs23YbWaIEkqSJLUcF39x7KsnAHu2vUcfPPNY3A4bFCrtQCAXbuWIDm5p8+GLJ11ljJliChYsDwQeYMkKS/G0tOVReoPHwYOHmSRIP8QF6cUhu7dlRnJASI9XYmdmys6CbXGbK5BcfH+ho9LSg6hsHALwsPjEB2dirfemo6Cgs24444f4HQ6UFl5HAAQHh7XMLm5rKwAtbVlKCsrgNPpQGHhFgBAYmI3GAwR6NPnPCxc+CA+/fQOjB17F2TZiZ9/fh4qlQY9e44FAAwefBV++OEpfPjhTZg48SEcObIDv/76Ki677GWfPA/x8cpZM6Jgwk3iiHyJRYJE0euBbt2UV98JCaLTtJvVCixYwOFL/i439zfMnTu20fXnnHM9pk6dg8ce69LEVwH3378MPXuOAQB88MFMrF07r8Vjdu1agh9+eApHj+6AJKmQnn4GLrroWXTtOrTh+FM3iYuISMDYsXdh0qSHOv4gWyFJwIUXKlOIiIIJywORKCwS5G1hYcrb9ZmZyn+DZHnhwkIOXyL/168fcM45olMQeR7LA5E/YJEgT0lIUMpCRgaQmCg6jdesWAHs2SM6BVHToqOBSy9V5uoQBRuWByJ/wyJBbaHVKnswZGQol7Aw0Yl8wmoFvvwSqKkRnYTIFYcrUbBjeSDyZw6HsodE/aWkBOCPLEVFnSwLaWl+vUqSNx0+DCxaJDoFkasBA5Q9RImCFcsDUSCxWoHjx5UicewYy0SoUKmUHabqC0NMjOhEfoPDl8ifxMUBF18cNNOLiJrE8kAUyE4tE0ePAqWlLBPBQJKUjdqSk5UhSZ07+8VOz/6Iw5fIXxgMSnGIjBSdhMi7WB6IgonVqpyROHaMZSKQaLXKAOnkZOUMQ1ISy0IblJYC334L2O2ik1CoUqmAyZOVUYREwY7lgSiY1ZeJo0eBoiKgvByw2USnCm31ZxUSEk4Whrg45Xpqt7w8YMkSdmUSY9gwbgZHoYPlgSjUVFcrJaKsTLmUlwMVFcrkbPIsSVLmJyQmKmUhMVHZcpbrN3rF1q3A+vWiU1Co6dULGDVKdAoi32F5ICLl7drKypOlov6/VVWA0yk6nf/TapUVkE691J9dYFHwqd9+A/buFZ2CQkVKCjB1asgueEYhiuWBiJrncChnJU4tFeXlQG1t6J2pCA9XZkKeXhKiopSZkuQXnE7gxx+V0XpE3hQRoUyQNhpFJyHyLZYHImofsxkwmZQi0dTFbFYugXDmQqdTzh7o9corglOLQWSkcuEZhIBhNgPffKOcOCPyBo0GmDZNOblIFGpYHojIu6xWoK5OeUVX/9/6i92ulIv6iyw3/f+tHQMoBaA9F62Wk5WDUEWFUiC4QTt5w7hxQLduolMQicHyQEREQenwYeCnn7gCE3nW4MHAwIGiUxCJwyk+REQUlDp3BkaOFJ2CgsmQISwORBzES0REQatXL+W/K1aIzUGB75xzgH79RKcgEo/DloiIKOjl5ioFgn/xqD24CRzRSSwPREQUEvbuBZYvZ4GgthkxAujTR3QKIv/B8kBERCFj/35lI7lAWEGYxBs16uTQNyJSsDwQEVFIKSwElixRVgomaookKcWhZ0/RSYj8D8sDERGFnKIi4OefAYtFdBLyN5IEjB4N9OghOgmRf2J5ICKikFRWBixapGyUTgQo+0aOGwdkZIhOQuS/WB6IiChk1dYCS5cqZyIotMXFARMmAFFRopMQ+TeWByIiCmlOJ7B+PbB9u+gkJEq3bsocBw13vyJqFcsDERERgEOHlKVcrVbRSchXVCpg6FDu4UDUFiwPREREf6qqUlZiKi0VnYS8zWgExo8HUlNFJyEKLCwPREREp3A4gNWrgT17RCchb0lOBs47DwgLE52EKPCwPBARETVh715g1SruBxFs+vQBhg1ThiwRUduxPBARETWjrExZjamiQnQS6qjwcGDECCAzU3QSosDG8kBERNQChwPYuhXYsoVnIQJV797AkCHKPg5E1DEsD0RERG6orgbWrgXy8kQnIXdFRSlLsKaliU5CFDxYHoiIiNqgoABYs0ZZmYn8k1oNDByoXNRq0WmIggvLAxERURs5HMowpi1blP8n/5GZqUyIjowUnYQoOLE8EBERtVNVlXIWoqBAdBKKilJKQ0aG6CREwY3lgYiIqIPy84ENG4DyctFJQk9MDHDGGUB2NpdfJfIFlgciIiIPKShQVmY6dkx0kuCXkKCUhi5dRCchCi0sD0RERB524oRSIvLyAP6V9ayUFKU0pKeLTkIUmlgeiIiIvKSyEti2TdmtmhOrO6ZzZ+DMM5XyQETisDwQERF5WV0dsGMHsGsXYLGIThM4VCogKwsYMABITBSdhogAlgciIiKfsdmA/fuVC+dFNE2SgNRUoFs3oGtX7gpN5G9YHoiIiASoqTlZJMrKRKcRLzFRKQzZ2UBYmOg0RNQclgciIiLBysuBQ4eUCdYlJaLT+E5MjFIYunVT9mkgIv/H8kBERORHamqUEpGfDxQVAXa76ESeo9MBSUnKpOeMDGW5VSIKLCwPREREfsrpVIY0nThx8lJRITqV+yIilKKQkgIkJwNxccqcBiIKXCwPREREAcRqdS0TJ04AZrPoVMrKSHFxSkmoLwzh4aJTEZGnsTwQEREFuOpq5WIyAbW1ysVkOvmxydTxfSbUamUic3i48t+oKNdLeDjPKhCFApYHIiKiEGA2nywUDofyQr/+AjT9/5KkzFMICwP0enHZich/sDwQEREREZFbVKIDEBERERFRYGB5ICIiIiIit7A8EBERERGRW1geiIiIiIjILSwPRERERETkFpYHIiIiIiJyC8sDERERERG5heWBiIiIiIjcwvJARERERERuYXkgIiIij5IkCXPmzGn31955552eDUREHsPyQEREFABMJhPmzJmD3/6/vfuPjfmO4zj+uracUr3jen4kfrQOo5qSbBHzI7XE1o0FNz9ik+it6ZK11Bii80erEbkIFjSb/ejS1UpIrZVgmRCTbNGqH5ssYZmilUnmV69jqqr63R/Si1Pqc8xs83z8dd/Pffq+9+fz173uvp/rgQNPuxUAzzDCAwAA/wENDQ3Kz88nPAB4qggPAAD8D12/fv1ptwDgf4jwAADAI1i+fLlsNpuqq6vl8/nkdDrlcDj09ttvq6GhITivublZK1askMfjkd1uV3x8vJYtW6abN2+G1Dty5IhSU1MVFxen6OhoJSQkKD09XZJUU1Mjt9stScrPz5fNZgs5V+Dz+RQTE6PTp09r4sSJ6tq1q2bPni1J+v777zVjxgz169dPdrtdffv21cKFC3Xjxo2w1tvU1KTc3Fw9//zzcjgc6tKli8aNG6fvvvvOeK9++eUXzZw5U7GxsXK5XHrvvffU2Nh437/ZsWOHkpKSZLfbNWzYMH377bchz9fW1iorK0vPPfecoqOj5XK5NGPGDNXU1IS1LgDhiXraDQAA8F82c+ZMJSQkyO/369ixYyosLFSPHj20atUqSVJGRoaKi4s1ffp0LVq0SIcOHZLf79fJkydVXl4uSbp48aJeeeUVud1u5eTkyOl0qqamRmVlZZIkt9utjRs3KjMzU16vV2+88YYkKTk5OdhHc3OzUlNTNXbsWK1Zs0adO3eWJJWWlqqhoUGZmZlyuVyqqqpSQUGBfvvtN5WWlhqv8+rVqyosLNSbb76pd955R9euXdMXX3yh1NRUVVVVacSIEUZ7FR8fL7/fr8rKSm3YsEGBQECbNm0KmffDDz+orKxMWVlZ6tq1qzZs2KBp06bp3LlzcrlckqTDhw/r4MGDmjVrlvr06aOamhpt3LhR48eP14kTJ4LrB/A3swAAQNjy8vIsSVZ6enrIuNfrtVwul2VZlvXTTz9ZkqyMjIyQOYsXL7YkWfv377csy7LKy8stSdbhw4cf+HqXLl2yJFl5eXltnktLS7MkWTk5OW2ea2hoaDPm9/stm81m1dbWPnSdrZqbm62bN2+GjAUCAatnz55t9uDePlv3avLkySHzsrKyLEnW8ePHQ/62Y8eOVnV1dXDs+PHjliSroKCg3XVVVFRYkqxNmzYZrwtAeLhtCQCAx/Duu++GXI8bN05XrlzR1atX9c0330iS3n///ZA5ixYtkiTt3r1bkuR0OiVJu3bt0q1btx65l8zMzDZj0dHRwcfXr1/X5cuXNXr0aFmWpR9//NG4dmRkpDp27ChJamlpUV1dnZqbm/XCCy/o2LFjRjXmzp0bcp2dnS1JwX1qNWHCBHk8nuB1cnKyYmNjdebMmfuu69atW7py5YoGDhwop9Np3A+A8BEeAAB4DP369Qu57tatmyQpEAiotrZWERERGjhwYMicXr16yel0qra2VpKUkpKiadOmKT8/X3FxcZoyZYqKioranItoT1RUlPr06dNm/Ny5c/L5fOrevbtiYmLkdruVkpIiSfrjjz/CWmtxcbGSk5PVqVMnuVwuud1u7d6927jOoEGDQq49Ho8iIiLanFO4d0+lO/saCASC1zdu3FBubq769u0ru92uuLg4ud1u1dfXh70uAOY48wAAwGOIjIy877hlWcHHNput3Ro2m03bt29XZWWldu7cqT179ig9PV1r165VZWWlYmJiHtqH3W5XREToZ4K3b9/Wyy+/rLq6Oi1dulRDhgxRly5ddP78efl8PrW0tBis8I6SkhL5fD5NnTpVS5YsUY8ePRQZGSm/36/Tp08b17nbg/bFZE+zs7NVVFSkBQsW6MUXX5TD4ZDNZtOsWbPCWheA8BAeAAB4Qvr376+WlhadOnVKQ4cODY5fuHBB9fX16t+/f8j8UaNGadSoUVq5cqW2bNmi2bNna+vWrcrIyHhoALmfn3/+Wb/++quKi4s1Z86c4PjevXvDrrV9+3YNGDBAZWVlIb3k5eUZ1zh16pQSEhKC19XV1WppaVF8fPwj9ZOWlqa1a9cGxxobG1VfXx92LQDmuG0JAIAnZOLEiZKkdevWhYx/+OGHkqRJkyZJunOL092fqksK/npR661Lrb8eFM6b49ZP8O+ubVmW1q9fb1yjvVqHDh1SRUWFcY2PPvoo5LqgoECS9Nprrz1SP/fuWUFBgW7fvh12LQDm+OYBAIAnZPjw4UpLS9Nnn32m+vp6paSkqKqqSsXFxZo6dapeeuklSXfOEnz88cfyer3yeDy6du2aPv/8c8XGxgYDSHR0tBITE7Vt2zYNHjxY3bt3V1JSkpKSkh74+kOGDJHH49HixYt1/vx5xcbG6uuvvw45O2Dq9ddfV1lZmbxeryZNmqSzZ8/qk08+UWJiov7880+jGmfPntXkyZP16quvqqKiQiUlJXrrrbc0fPjwR+rnq6++ksPhUGJioioqKrRv377gT7kCeDIIDwAAPEGFhYUaMGCAvvzyS5WXl6tXr1764IMPQm73aQ0VW7du1YULF+RwODRy5Eht3rw55DafwsJCZWdna+HChWpqalJeXl674aFDhw7auXOn5s+fL7/fr06dOsnr9WrevHlhv2H3+Xz6/fff9emnn2rPnj1KTExUSUmJSktLdeDAAaMa27ZtU25urnJychQVFaV58+Zp9erVYfXRav369YqMjNTmzZvV2NioMWPGaN++fUpNTX2kegDM2Kx7v/MDAAD4Gy1fvlz5+fm6dOmS4uLinnY7AB4DZx4AAAAAGOG2JQAAnmFNTU2qq6trd47D4Qj5p2wAnl2EBwAAnmEHDx4MHtx+kKKiIvl8vn+mIQD/apx5AADgGRYIBHT06NF25wwbNky9e/f+hzoC8G9GeAAAAABghAPTAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGCE8AAAAADACOEBAAAAgBHCAwAAAAAjhAcAAAAARggPAAAAAIwQHgAAAAAYITwAAAAAMEJ4AAAAAGDkL9WzTK6+nO8kAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -738,7 +789,7 @@ "source": [ "# Get unique users having debt\n", "debt_df = df_loans[df_loans['Debt (USD)'] > 0]\n", - "debt_protocol_users = get_unique_users(debt_df, 'Debt (USD)')\n", + "debt_protocol_users = get_unique_users_by_protocol(debt_df)\n", "\n", "\n", "# Prepare sets for Venn diagrams (top 3 protocols by user count)\n", @@ -759,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "0c4a2a57-bd8e-44e0-ab0a-c969a311cb2a", "metadata": {}, "outputs": [ @@ -778,7 +829,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJsCAYAAAARCFkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJpUlEQVR4nOzdd3gU1f/28XvTKUkASYDQewklCEqVgIABkSKggigdFSkCUozSBVFRiiBF6cKXKl3pVQSUrvQivYSeUAMk5/mDJ/vLkgQSmCQE3q/r2gt2dmb2s5Oz5Z45c8ZmjDECAAAAADwRp+QuAAAAAACeBYQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCukWGvXrpXNZtPatWuTuxS7SZMmyWazaevWrYn6PDabTX379k3U57BCYtRZuXJlVa5c2dJ1Ps2aN2+utGnTJncZeI5EfY4dO3bMkvVFRkaqaNGiGjhwoCXrexJJ/flRuXJlFS1aNEmeK1euXGrevHmSPFdiOHbsmGw2myZNmmSf1rdvX9lstmSpp3nz5sqVK1eyPHdievB1Xbp0SWnSpNHvv/+efEU9YwhXSBCbzRavW3wCz1dffaX58+cnes2S9O+//6phw4bKmTOnPDw8lDVrVlWvXl0jRoxItpqSSlhYmPr166cSJUoobdq0SpUqlYoWLaoePXrozJkzSVrLxo0b1bdvX129ejVJnzepNW/ePF7vk5T8Q2jUqFGy2WwqU6ZMcpeSaCpXruzw98qQIYNeeuklTZgwQZGRkZY9z969e9W3b1/LwszTZvr06Tp58qTat29vn5ZUO6KSwpkzZ9S3b1/t3LkzuUuxzJ07dzR8+HCVLFlSXl5eSpcunfz9/fXBBx9o//79yV0eLPTCCy+odevW6tWrV3KX8sxwSe4CkLL88ssvDvenTJmiFStWxJheuHDhR67rq6++UsOGDVWvXj0rS4xh48aNqlKlinLkyKE2bdooc+bMOnnypDZv3qzhw4erQ4cOSV5TUvnvv/9UrVo1nThxQm+99ZY++OADubm56Z9//tH48eM1b948HTx4MNGe/9atW3Jx+b+PmY0bN6pfv35q3ry50qVLl2jPm9w+/PBDVatWzX7/6NGj6t27tz744AO98sor9ul58+ZNjvIsMW3aNOXKlUt///23Dh8+rHz58iV3SYkiW7ZsGjRokCTpwoULmjJlilq1aqWDBw/q66+/tuQ59u7dq379+qly5crP5J7ywYMHq1GjRvL29k7uUrR8+XLL13nmzBn169dPuXLlUkBAgOXrj68DBw7IycmafeYNGjTQkiVL1LhxY7Vp00Z3797V/v37tXjxYpUvX16FChWy5HkepWfPnvrss8+S5Lke9PPPP1u6E+Vp9tFHH+mHH37Q6tWr9eqrryZ3OSke4QoJ8t577znc37x5s1asWBFj+tNk4MCB8vb21pYtW2L8oD9//nzyFJUE7t27p/r16yskJERr165VxYoVHR4fOHCgvvnmm0StwcPDI1HXn9xu374tNze3GD9oypUrp3Llytnvb926Vb1791a5cuWe6vdKfB09elQbN27U3Llz9eGHH2ratGnq06ePJeuOa5smF29vb4e/2YcffqiCBQtq5MiR+vLLL+Xq6hpjmcjISN25c+eZb//xsWPHDu3atUvff/99cpciSXJzc3vkPE9bG4wvd3d3S9azZcsWLV68WAMHDtTnn3/u8NjIkSOTtOeBi4uLww66pBTbe/tZVbhwYRUtWlSTJk0iXFkgZX1yIEW4ceOGPv30U2XPnl3u7u4qWLCgvvvuOxlj7PPYbDbduHFDkydPjtFF6vjx4/r4449VsGBBpUqVSi+88ILeeuutx+4yc+TIEfn7+8d6pMTX1zfRa7py5YpefvllZcuWTQcOHJAkhYeHq0+fPsqXL5/c3d2VPXt2de/eXeHh4Q7LhoeHq3PnzvLx8ZGnp6fq1KmjU6dOxet1//rrr9q1a5e++OKLGMFKkry8vBzOgfjjjz/01ltvKUeOHPaaOnfurFu3bjksF3UO0H///aegoCClSZNGfn5+6t+/v8PfWHI856pv377q1q2bJCl37tz2bRy1DSdOnKhXX31Vvr6+cnd3V5EiRTR69Oh4vdbY2Gw2tW/fXtOmTVPBggXl4eGhUqVKaf369THmPX36tFq2bKlMmTLJ3d1d/v7+mjBhgsM8Uef4zZgxQz179lTWrFmVOnVqhYWFPXaNs2fPVqlSpZQqVSplzJhR7733nk6fPv3I5Xbu3CkfHx9VrlxZ169fT/BrmDVrlgYOHKhs2bLJw8NDVatW1eHDh+Nd97Rp05Q+fXrVqlVLDRs21LRp02Kd7+rVq+rcubNy5cold3d3ZcuWTU2bNtXFixcd6olrm8Zn+5w7d04tWrRQtmzZ5O7urixZsqhu3boO782tW7cqKChIGTNmVKpUqZQ7d261bNky3q83utSpU6ts2bK6ceOGLly4IMmxrfn7+8vd3V1Lly6VdD9c1KxZU15eXkqbNq2qVq2qzZs329c3adIkvfXWW5KkKlWqxNq1etSoUfb1+vn5qV27drH+wP3rr7/0+uuvK3369EqTJo2KFy+u4cOHO8yzevVqvfLKK0qTJo3SpUununXrat++fY983Y+7DefPny83NzdVqlTpkfPG5lHbL8o///yjwMBApUqVStmyZdOAAQM0ceLEGOeOPXjO1cPa4OXLl9W1a1cVK1ZMadOmlZeXl2rWrKldu3Y5LP/SSy9Jklq0aGH/+0U/b0i6f3SySpUqSp06tbJmzapvv/3W4fHo781+/fopa9as8vT0VMOGDRUaGqrw8HB16tRJvr6+Sps2rVq0aBHj+yK2c64e9R6MzZEjRyRJFSpUiPGYs7OzXnjhBYdpp0+fVqtWreTn5yd3d3flzp1bbdu21Z07dyQpXtsxLrGdcxX1fps/f76KFi1q/7yLes9Ft3btWpUuXVoeHh7Kmzevxo4dG+/zuGI752rGjBkqVaqUPD095eXlpWLFisV4j8VWQ2ynS8R2jll8Ps8kacmSJfb3saenp2rVqqU9e/bEeO6obeTh4aGiRYtq3rx5cdZZvXp1LVq0KMb3OBKOI1ewlDFGderU0Zo1a9SqVSsFBARo2bJl6tatm06fPq2hQ4dKut+9sHXr1nr55Zf1wQcfSPq/LlJbtmzRxo0b1ahRI2XLlk3Hjh3T6NGjVblyZe3du1epU6dOUE05c+bUpk2btHv37oeeWJwYNV28eFHVq1fX5cuXtW7dOuXNm1eRkZGqU6eONmzYoA8++ECFCxfWv//+q6FDh+rgwYMO53y1bt1aU6dO1bvvvqvy5ctr9erVqlWrVrxe98KFCyVJ77//frzmnz17tm7evKm2bdvqhRde0N9//60RI0bo1KlTmj17tsO8ERERqlGjhsqWLatvv/1WS5cuVZ8+fXTv3j31798/1vXXr19fBw8e1PTp0zV06FBlzJhRkuTj4yNJGj16tPz9/VWnTh25uLho0aJF+vjjjxUZGal27drF6zU8aN26dZo5c6Y6duwod3d3jRo1SjVq1NDff/9tbwshISEqW7as/Qvbx8dHS5YsUatWrRQWFqZOnTo5rPPLL7+Um5ubunbtqvDw8HjtCY/NpEmT1KJFC7300ksaNGiQQkJCNHz4cP3555/asWNHnN0mt2zZoqCgIJUuXVoLFixQqlSpEvwavv76azk5Oalr164KDQ3Vt99+qyZNmuivv/6KV+3Tpk1T/fr15ebmpsaNG2v06NHasmWL/UemJF2/fl2vvPKK9u3bp5YtW+rFF1/UxYsXtXDhQp06dcr+95di36bx3T4NGjTQnj171KFDB+XKlUvnz5/XihUrdOLECfv91157TT4+Pvrss8+ULl06HTt2THPnzk3Q3yu6//77T87Ozg5/o9WrV2vWrFlq3769MmbMqFy5cmnPnj165ZVX5OXlpe7du8vV1VVjx45V5cqVtW7dOpUpU0aVKlVSx44d9cMPP+jzzz+3d6mO+rdv377q16+fqlWrprZt2+rAgQP27f3nn3/a966vWLFCb7zxhrJkyaJPPvlEmTNn1r59+7R48WJ98sknkqSVK1eqZs2aypMnj/r27atbt25pxIgRqlChgrZv3x5nl8Qn2YYbN25U0aJFH+soQHy2n3T/x31UMA0ODlaaNGk0bty4BB3Jia0N7t27V/Pnz9dbb72l3LlzKyQkRGPHjlVgYKD27t0rPz8/FS5cWP3794/R7bd8+fL2dV+5ckU1atRQ/fr19fbbb2vOnDnq0aOHihUrppo1azrUMWjQIKVKlUqfffaZDh8+rBEjRsjV1VVOTk66cuWK+vbtq82bN2vSpEnKnTu3evfuHedrSsh7MLqcOXNKuv8+r1ChwkOPHJ05c0Yvv/yyrl69qg8++ECFChXS6dOnNWfOHN28eVNubm7677//HrkdE2rDhg2aO3euPv74Y3l6euqHH35QgwYNdOLECXv427Fjh2rUqKEsWbKoX79+ioiIUP/+/e3fOQm1YsUKNW7cWFWrVrX3+ti3b5/+/PNP+3vsST3q80y6/1ulWbNmCgoK0jfffKObN29q9OjRqlixonbs2GGfb/ny5WrQoIGKFCmiQYMG6dKlS/bgFptSpUpp6NCh2rNnT5INwvLMMsATaNeunYnejObPn28kmQEDBjjM17BhQ2Oz2czhw4ft09KkSWOaNWsWY503b96MMW3Tpk1GkpkyZYp92po1a4wks2bNmofWuHz5cuPs7GycnZ1NuXLlTPfu3c2yZcvMnTt3Ysz7pDVNnDjRSDJbtmwxZ8+eNf7+/iZPnjzm2LFj9nl++eUX4+TkZP744w+H9Y0ZM8ZIMn/++acxxpidO3caSebjjz92mO/dd981kkyfPn0e+rpLlixpvL29HzrPo17joEGDjM1mM8ePH7dPa9asmZFkOnToYJ8WGRlpatWqZdzc3MyFCxfs0x+sc/DgwUaSOXr0aLyePygoyOTJk8dhWmBgoAkMDHzk65FkJJmtW7fapx0/ftx4eHiYN9980z6tVatWJkuWLObixYsOyzdq1Mh4e3vb64pqb3ny5Im11ofZsmWLkWQmTpxojDHmzp07xtfX1xQtWtTcunXLPt/ixYuNJNO7d2/7tGbNmpk0adIYY4zZsGGD8fLyMrVq1TK3b99+7NdQuHBhEx4ebp9v+PDhRpL5999/H/latm7daiSZFStWGGPu/+2zZctmPvnkE4f5evfubSSZuXPnxlhHZGSkQz0PbtP4bp8rV64YSWbw4MFx1jtv3jz7ezKhAgMDTaFChcyFCxfMhQsXzL59+0zHjh2NJFO7dm37fJKMk5OT2bNnj8Py9erVM25ububIkSP2aWfOnDGenp6mUqVK9mmzZ8+O9bPs/Pnzxs3Nzbz22msmIiLCPn3kyJFGkpkwYYIxxph79+6Z3Llzm5w5c5orV644rCNqWxtjTEBAgPH19TWXLl2yT9u1a5dxcnIyTZs2tU+L+hyLep8+yTbMli2badCgQYzp0T8r4xLf7dehQwdjs9nMjh077NMuXbpkMmTIEOPz5sHPj4e9r2/fvu2w3Y0x5ujRo8bd3d3079/fPu3B93d0gYGBMb4nwsPDTebMmR22S1QdRYsWdfhuaty4sbHZbKZmzZoO6y1XrpzJmTOnw7ScOXM6fH/F5z0Ym8jISHvdmTJlMo0bNzY//vijw/dAlKZNmxonJ6dY/45RzxHf7Xj06NEY27FPnz4OvzGMuf9+c3Nzc/g9sWvXLiPJjBgxwj6tdu3aJnXq1Ob06dP2aYcOHTIuLi4x1hmbZs2aOWzjTz75xHh5eZl79+49ctno4vqt8uDrjc/n2bVr10y6dOlMmzZtHKafO3fOeHt7O0wPCAgwWbJkMVevXrVPW758uZEUo+0YY8zGjRuNJDNz5swEvT7ERLdAWOr333+Xs7OzOnbs6DD9008/lTFGS5YseeQ6UqVKZf//3bt3denSJeXLl0/p0qXT9u3bE1xT9erVtWnTJtWpU0e7du3St99+q6CgIGXNmtV+dMfqmk6dOqXAwEDdvXtX69evt+8JlO4fISpcuLAKFSqkixcv2m9R/ZzXrFkjSfZhUR/clg8ehYhLWFiYPD094zXvg6/xxo0bunjxosqXLy9jjHbs2BFj/ugjf0UdMblz545WrlwZ7+eM6/lDQ0N18eJFBQYG6r///lNoaOhjrbNcuXIqVaqU/X6OHDlUt25dLVu2TBERETLG6Ndff1Xt2rVljHH4ewQFBSk0NDTG37dZs2YOtT6OrVu36vz58/r4448dzsupVauWChUqpN9++y3GMmvWrFFQUJCqVq2quXPn2vfKP85raNGihcMRt6i97f/9998ja582bZoyZcqkKlWqSLr/t3/nnXc0Y8YMRURE2Of79ddfVaJECb355psx1vFgl5wHt2l8t0+qVKnk5uamtWvX6sqVK7HWG3V0afHixbp79+4jX9+D9u/fLx8fH/n4+Khw4cIaMWKEatWqFaPLZWBgoIoUKWK/HxERoeXLl6tevXrKkyePfXqWLFn07rvvasOGDY/sUrpy5UrduXNHnTp1cjj/p02bNvLy8rJvhx07dujo0aPq1KlTjCOeUdv67Nmz2rlzp5o3b64MGTLYHy9evLiqV6/+0GGYn2QbXrp0SenTp0/QMlLCtt/SpUtVrlw5h8EkMmTIoCZNmsT7+WJ7X7u7u9u3e0REhC5duqS0adOqYMGCCfouSps2rcN5e25ubnr55Zdjfb81bdrU4ShfmTJlZIyJ0QWzTJkyOnnypO7duxfn8ybkPfjgY8uWLdOAAQOUPn16TZ8+Xe3atVPOnDn1zjvv2LukRkZGav78+apdu7ZKly4d53NYtR2jq1atmsOAQMWLF5eXl5d9m0ZERGjlypWqV6+ew5GxfPnyxThaGF/p0qXTjRs3tGLFisda/lHi83m2YsUKXb16VY0bN3b4rHd2dlaZMmXsvx+i3u/NmjVzGEimevXqDp9T0UW9Tx/WZRTxQ7iCpY4fPy4/P78YP+qjurgcP378keu4deuWevfubT9nK2PGjPLx8dHVq1cf+0f2Sy+9pLlz5+rKlSv6+++/FRwcrGvXrqlhw4bau3ev5TW9//77On/+vNatW6esWbM6PHbo0CHt2bPH/oMt6lagQAFJ/zfIxvHjx+Xk5BRjRLmCBQvG6zV7eXnp2rVr8ZpXkk6cOGH/4ZU2bVr5+PgoMDBQkmK8RicnJ4cfPJLs9T/uuXF//vmnqlWrZj8XxMfHx34y9eP+3fPnzx9jWoECBXTz5k1duHBBFy5c0NWrV/XTTz/F+Hu0aNFCUsxBT3Lnzv1YtUQX9T6I7W9ZqFChGO+T27dvq1atWipZsqRmzZrlEIwe5zXkyJHD4X7Ul2pcX+hRIiIiNGPGDFWpUkVHjx7V4cOHdfjwYZUpU0YhISFatWqVfd4jR47Eu2vJg9s0vtvH3d1d33zzjZYsWaJMmTKpUqVK+vbbb3Xu3Dn7/IGBgWrQoIH69eunjBkzqm7dupo4cWKM81XikitXLq1YsUIrV67Uhg0bdO7cOS1evDhGl6oHX8OFCxd08+bNWF9D4cKFFRkZqZMnTz70uePaDm5ubsqTJ4/98ahzZB62vR+2TQsXLqyLFy/qxo0bsS77pNvQPMY5HAnZfsePH491tMqEjGAZ2/s6MjJSQ4cOVf78+R0+9//5558EfSZly5YtRphJnz59rO+3B9+bUT+Ms2fPHmN6ZGTkQ+tIyHvwQe7u7vriiy+0b98+nTlzRtOnT1fZsmXtXV+l+3+jsLCwRz6HVdsxuge3k+S4Tc+fP69bt249cbuI7uOPP1aBAgVUs2ZNZcuWTS1btoz1PK/HFZ/Ps0OHDkmSXn311Rif98uXL3f4/SDF/h0Y12+IqPdpcl1X7FnCOVd46nTo0EETJ05Up06dVK5cOXl7e8tms6lRo0ZPPCyqm5ubXnrpJb300ksqUKCAWrRoodmzZz9ypLOE1lS/fn1NmTJFw4cPtw/jHCUyMlLFihXTkCFDYn2uB79EH1ehQoW0Y8cOnTx58pHrjIiIsJ8b1qNHDxUqVEhp0qTR6dOn1bx580QfjvbIkSOqWrWqChUqpCFDhih79uxyc3PT77//rqFDhyba80et97333lOzZs1inad48eIO95/0qNXjcHd31+uvv64FCxZo6dKleuONN+yPPc5rcHZ2jnW+R/0IXr16tc6ePasZM2ZoxowZMR6fNm2aXnvttYeuIzZPsk07deqk2rVra/78+Vq2bJl69eqlQYMGafXq1SpZsqRsNpvmzJmjzZs3a9GiRVq2bJlatmyp77//Xps3b37kBZrTpEnjMKx+YryGp92TbMMXXnjhkaH9aRDb3++rr75Sr1691LJlS3355ZfKkCGDnJyc1KlTpwR9JiXk/RbXvI/7nrVClixZ1KhRIzVo0ED+/v6aNWtWjAE7Hsaq7RhdcmwPX19f7dy5U8uWLdOSJUu0ZMkSTZw4UU2bNtXkyZPjXC6usBL9SH+UR32eRW2vX375RZkzZ46x/JOMrBj1Po3rXDzEH+EKlsqZM6dWrlypa9euORy9irroYPTucXF94MyZM0fNmjVzGLr39u3blg//GtWN4ezZs5bX1KFDB+XLl0+9e/eWt7e3w3U68ubNq127dqlq1aoP3UOUM2dORUZG6siRIw57mqJGHHyU2rVra/r06Zo6daqCg4MfOu+///6rgwcPavLkyWratKl9elzdHyIjI/Xff//Zj1ZJsl8v62HX6Ynr9S5atEjh4eFauHChwx7JqC4OjytqL190Bw8eVOrUqe0nNXt6eioiIiJeP6CtEvU+OHDgQIxhbw8cOODwPpHub7dp06apbt26euutt7RkyRL7iGdRI0kmxWuYNm2afH199eOPP8Z4bO7cuZo3b57GjBmjVKlSKW/evNq9e/djPU9Ct0/evHn16aef6tNPP9WhQ4cUEBCg77//XlOnTrXPU7ZsWZUtW1YDBw7U//73PzVp0kQzZsxQ69atH6vGR/Hx8VHq1Kljfb/u379fTk5O9p0ecb0vom+H6EeK79y5o6NHj9r/3lFHt3fv3h1nG4i+rtjqyZgxo9KkSfPQ1/Q427BQoUI6evToQ9cbm4Rsv5w5c8Y62mVCRsCMzZw5c1SlShWNHz/eYfrVq1cdfoA+rXv6n+Q9GBtXV1cVL15chw4d0sWLF+Xr6ysvL69HPkd8t6OVfH195eHhYXm7cHNzU+3atVW7dm1FRkbq448/1tixY9WrV684j4hF9Qx48PdCXD15HvZ5FvVe9/X1fejnfdT7PbbvwLh+Q0S9T+NznVI8HN0CYanXX39dERERGjlypMP0oUOHymazOfR1TpMmTazhxNnZOcbepxEjRsS6lyc+1qxZE+verKhzDKIHFytr6tWrl7p27arg4GCHIcXffvttnT59Wj///HOMZW7dumXvmhO1rX744QeHeYYNGxbnc0bXsGFDFStWTAMHDtSmTZtiPH7t2jV98cUX9tcnOe71M8Y8dIjZ6H9jY4xGjhwpV1dXVa1aNc5lon68PbiNY3v+0NBQTZw4Mc51xcemTZsc+vSfPHlSCxYs0GuvvSZnZ2c5OzurQYMG+vXXX2P9gRA11LbVSpcuLV9fX40ZM8aha9WSJUu0b9++WEeEdHNz09y5c/XSSy+pdu3a+vvvvyUpyV7DrVu3NHfuXL3xxhtq2LBhjFv79u117do1+3mMDRo00K5du2Id+vdRe5fju31u3ryp27dvOyybN29eeXp62pe7cuVKjOeLOjcnvt3aHoezs7Nee+01LViwwKGrbEhIiP73v/+pYsWK8vLykhT3+6JatWpyc3PTDz/84PAaxo8fr9DQUPt2ePHFF5U7d24NGzYsxjqilsuSJYsCAgI0efJkh3l2796t5cuX6/XXX4/ztTzJNixXrpx2796d4G2dkO0XFBSkTZs2aefOnfb5Ll++HOclAhJSw4Ove/bs2TEuBxDX3y+5Pe578NChQzpx4kSM6VevXtWmTZuUPn16+fj4yMnJSfXq1dOiRYu0devWOJ8jvtvRSs7OzqpWrZrmz5+vM2fO2KcfPnw4Xud+x+bSpUsO952cnOy9Ah7WvnPmzClnZ+cYlwEZNWqUw/34fJ4FBQXJy8tLX331VaznP0Z93kd/v0fverlixYo4T4XYtm2bvL295e/vH+drQfxw5AqWql27tqpUqaIvvvhCx44dU4kSJbR8+XItWLBAnTp1cjh/qFSpUlq5cqWGDBkiPz8/5c6dW2XKlNEbb7yhX375Rd7e3ipSpIg2bdqklStXxri2Rnx16NBBN2/e1JtvvqlChQrpzp072rhxo2bOnKlcuXLZz0tJjJoGDx6s0NBQtWvXTp6ennrvvff0/vvva9asWfroo4+0Zs0aVahQQREREdq/f79mzZqlZcuWqXTp0goICFDjxo01atQohYaGqnz58lq1alW897q5urpq7ty5qlatmipVqqS3335bFSpUkKurq/bs2aP//e9/Sp8+vQYOHKhChQopb9686tq1q06fPi0vLy/9+uuvcXbn8fDw0NKlS9WsWTOVKVNGS5Ys0W+//abPP//8ocPcRg0u8cUXX6hRo0ZydXVV7dq19dprr9n3CH744Ye6fv26fv75Z/n6+jocWUyookWLKigoyGEodknq16+ffZ6vv/5aa9asUZkyZdSmTRsVKVJEly9f1vbt27Vy5Updvnz5sZ8/Lq6urvrmm2/UokULBQYGqnHjxvahxnPlyqXOnTvHulyqVKm0ePFivfrqq6pZs6bWrVunokWLJslrWLhwoa5du6Y6derE+njZsmXl4+OjadOm6Z133lG3bt00Z84cvfXWW2rZsqVKlSqly5cva+HChRozZoxKlCjxxNvn4MGDqlq1qt5++20VKVJELi4umjdvnkJCQtSoUSNJ0uTJkzVq1Ci9+eabyps3r65du6aff/5ZXl5eDw0UVhgwYIBWrFihihUr6uOPP5aLi4vGjh2r8PBwh+scBQQEyNnZWd98841CQ0Pl7u5uv+ZbcHCw+vXrpxo1aqhOnTo6cOCARo0apZdeesk+SIKTk5NGjx6t2rVrKyAgQC1atFCWLFm0f/9+7dmzR8uWLZN0//OoZs2aKleunFq1amUfit3b29t+PbrYPMk2rFu3rr788kutW7cu1i6jEyZMiPW8lU8++STe26979+6aOnWqqlevrg4dOtiHYs+RI4cuX7782EeW3njjDfXv318tWrRQ+fLl9e+//2ratGkxzjfNmzev0qVLpzFjxsjT01Np0qRRmTJlLDk/80k87ntw165devfdd1WzZk298sorypAhg06fPq3JkyfrzJkzGjZsmH2H2FdffaXly5crMDDQfmmRs2fPavbs2dqwYYPSpUsX7+1otb59+2r58uWqUKGC2rZta9/xW7RoUYcgHl+tW7fW5cuX9eqrrypbtmw6fvy4RowYoYCAgIce7fH29tZbb72lESNGyGazKW/evFq8eHGMc2Hj83nm5eWl0aNH6/3339eLL76oRo0aycfHRydOnNBvv/2mChUq2Hd8Dho0SLVq1VLFihXVsmVLXb58WSNGjJC/v7/9+ojRrVixQrVr135qj8SmKEkyJiGeWQ8OxW7M/aFCO3fubPz8/Iyrq6vJnz+/GTx4cIyhX/fv328qVapkUqVKZSTZh5C9cuWKadGihcmYMaNJmzatCQoKMvv3748xzGx8h2JfsmSJadmypSlUqJBJmzatcXNzM/ny5TMdOnQwISEhltYU2/DCERERpnHjxsbFxcXMnz/fGHN/qOlvvvnG+Pv7G3d3d5M+fXpTqlQp069fPxMaGmpf9tatW6Zjx47mhRdeMGnSpDG1a9c2J0+ejNdQ7FGuXLlievfubYoVK2ZSp05tPDw8TNGiRU1wcLA5e/asfb69e/eaatWqmbRp05qMGTOaNm3a2Ie3jT40btTQ4EeOHDGvvfaaSZ06tcmUKZPp06dPjOF2Y6vzyy+/NFmzZjVOTk4OwyQvXLjQFC9e3Hh4eJhcuXKZb775xkyYMOGRQynHRZJp166dmTp1qsmfP79xd3c3JUuWjLW9hISEmHbt2pns2bMbV1dXkzlzZlO1alXz008/2eeJam+zZ89+5HM/KK6hmmfOnGlKlixp3N3dTYYMGUyTJk3MqVOnHOaJPhR7lIsXL5oiRYqYzJkzm0OHDj3xa4htCOQH1a5d23h4eJgbN27EOU/z5s2Nq6urfUj4S5cumfbt25usWbMaNzc3ky1bNtOsWTP744/apo/aPhcvXjTt2rUzhQoVMmnSpDHe3t6mTJkyZtasWfZ5tm/fbho3bmxy5Mhh3N3dja+vr3njjTcchuiPS2BgoPH393/kfFFtLTbbt283QUFBJm3atCZ16tSmSpUqZuPGjTHm+/nnn02ePHmMs7NzjM+1kSNHmkKFChlXV1eTKVMm07Zt2xhDrhtzf6j+6tWrG09PT5MmTRpTvHhxh6GpjTFm5cqVpkKFCiZVqlTGy8vL1K5d2+zdu9dhngeHYn+SbWiMMcWLFzetWrWK9Tniup08eTJB22/Hjh3mlVdeMe7u7iZbtmxm0KBB5ocffjCSzLlz5+zzxTUUe2xt8Pbt2+bTTz81WbJkMalSpTIVKlQwmzZtivUzaMGCBaZIkSL2Yb6j3ktxtaEHh/mOq464hqyPGqI8+qUvHvw+MubR78HYhISEmK+//toEBgaaLFmyGBcXF5M+fXrz6quvmjlz5sSY//jx46Zp06bGx8fHuLu7mzx58ph27drZL/cQ3+2YkKHYY3u/xfb6V61aZUqWLGnc3NxM3rx5zbhx48ynn35qPDw84nz9UR78G82ZM8e89tprxtfX17i5uZkcOXKYDz/80OF7NC4XLlwwDRo0MKlTpzbp06c3H374odm9e7fD643P51mUNWvWmKCgIOPt7W08PDxM3rx5TfPmzWO8J3/99VdTuHBh4+7ubooUKWLmzp0b43UZY8y+ffuMJLNy5cpHvhY8ms0YLsUMIP6aN2+uOXPmxLrn62lis9nUrl27GF1UASStX375Re3atdOJEyfivDh2YujUqZPGjh2r69evxzkAAp4/9erV0549e2I9H+l51alTJ61fv17btm3jyJUFOOcKAAAkmiZNmihHjhyxDoRilVu3bjncv3Tpkn755RdVrFiRYPUce7BdHDp0SL///rt9QCDcf6+MGzdOAwYMIFhZhHOuAABAonFycrJ01LrYlCtXTpUrV1bhwoUVEhKi8ePHKywsTL169UrU58XTLU+ePGrevLn9unCjR4+Wm5ubunfvntylPTVeeOGFp74nSkpDuAIAACna66+/rjlz5uinn36SzWbTiy++qPHjx6tSpUrJXRqSUY0aNTR9+nSdO3dO7u7uKleunL766qtYL64LWIVzrgAAAADAApxzBQAAAAAWIFwBAAAAgAU45yoWkZGROnPmjDw9PRk5BQAAAHiOGWN07do1+fn5ycnp4cemCFexOHPmjLJnz57cZQAAAAB4Spw8eVLZsmV76DyEq1h4enpKur8Bvby8krkaAAAAAMklLCxM2bNnt2eEhyFcxSKqK6CXlxfhCgAAAEC8ThdiQAsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALuCR3AQAAANGV6jYluUtAEto2uGlylwBYhiNXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWSNZwtX79etWuXVt+fn6y2WyaP3++w+M2my3W2+DBg+NcZ9++fWPMX6hQoUR+JQAAAACed8karm7cuKESJUroxx9/jPXxs2fPOtwmTJggm82mBg0aPHS9/v7+Dstt2LAhMcoHAAAAADuX5HzymjVrqmbNmnE+njlzZof7CxYsUJUqVZQnT56HrtfFxSXGsgAAAACQmFLMOVchISH67bff1KpVq0fOe+jQIfn5+SlPnjxq0qSJTpw48dD5w8PDFRYW5nADAAAAgIRI1iNXCTF58mR5enqqfv36D52vTJkymjRpkgoWLKizZ8+qX79+euWVV7R79255enrGusygQYPUr1+/xCgbAAAAT6lS3aYkdwlIQtsGN03050gxR64mTJigJk2ayMPD46Hz1axZU2+99ZaKFy+uoKAg/f7777p69apmzZoV5zLBwcEKDQ21306ePGl1+QAAAACecSniyNUff/yhAwcOaObMmQleNl26dCpQoIAOHz4c5zzu7u5yd3d/khIBAAAAPOdSxJGr8ePHq1SpUipRokSCl71+/bqOHDmiLFmyJEJlAAAAAHBfsoar69eva+fOndq5c6ck6ejRo9q5c6fDABRhYWGaPXu2WrduHes6qlatqpEjR9rvd+3aVevWrdOxY8e0ceNGvfnmm3J2dlbjxo0T9bUAAAAAeL4la7fArVu3qkqVKvb7Xbp0kSQ1a9ZMkyZNkiTNmDFDxpg4w9GRI0d08eJF+/1Tp06pcePGunTpknx8fFSxYkVt3rxZPj4+ifdCAAAAADz3kjVcVa5cWcaYh87zwQcf6IMPPojz8WPHjjncnzFjhhWlAQAAAECCpIhzrgAAAADgaUe4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAskartavX6/atWvLz89PNptN8+fPd3i8efPmstlsDrcaNWo8cr0//vijcuXKJQ8PD5UpU0Z///13Ir0CAAAAALgvWcPVjRs3VKJECf34449xzlOjRg2dPXvWfps+ffpD1zlz5kx16dJFffr00fbt21WiRAkFBQXp/PnzVpcPAAAAAHYuyfnkNWvWVM2aNR86j7u7uzJnzhzvdQ4ZMkRt2rRRixYtJEljxozRb7/9pgkTJuizzz57onoBAAAAIC5P/TlXa9eula+vrwoWLKi2bdvq0qVLcc57584dbdu2TdWqVbNPc3JyUrVq1bRp06Y4lwsPD1dYWJjDDQAAAAAS4qkOVzVq1NCUKVO0atUqffPNN1q3bp1q1qypiIiIWOe/ePGiIiIilClTJofpmTJl0rlz5+J8nkGDBsnb29t+y549u6WvAwAAAMCzL1m7BT5Ko0aN7P8vVqyYihcvrrx582rt2rWqWrWqZc8THBysLl262O+HhYURsAAAAAAkyFN95OpBefLkUcaMGXX48OFYH8+YMaOcnZ0VEhLiMD0kJOSh5225u7vLy8vL4QYAAAAACZGiwtWpU6d06dIlZcmSJdbH3dzcVKpUKa1atco+LTIyUqtWrVK5cuWSqkwAAAAAz6FkDVfXr1/Xzp07tXPnTknS0aNHtXPnTp04cULXr19Xt27dtHnzZh07dkyrVq1S3bp1lS9fPgUFBdnXUbVqVY0cOdJ+v0uXLvr55581efJk7du3T23bttWNGzfsowcCAAAAQGJI1nOutm7dqipVqtjvR5331KxZM40ePVr//POPJk+erKtXr8rPz0+vvfaavvzyS7m7u9uXOXLkiC5evGi//8477+jChQvq3bu3zp07p4CAAC1dujTGIBcAAAAAYKVkDVeVK1eWMSbOx5ctW/bIdRw7dizGtPbt26t9+/ZPUhoAAAAAJEiKOucKAAAAAJ5WhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACyQrOFq/fr1ql27tvz8/GSz2TR//nz7Y3fv3lWPHj1UrFgxpUmTRn5+fmratKnOnDnz0HX27dtXNpvN4VaoUKFEfiUAAAAAnnfJGq5u3LihEiVK6Mcff4zx2M2bN7V9+3b16tVL27dv19y5c3XgwAHVqVPnkev19/fX2bNn7bcNGzYkRvkAAAAAYOeSkJmvXr2qefPm6Y8//tDx48d18+ZN+fj4qGTJkgoKClL58uUT9OQ1a9ZUzZo1Y33M29tbK1ascJg2cuRIvfzyyzpx4oRy5MgR53pdXFyUOXPmBNUCAAAAAE8iXkeuzpw5o9atWytLliwaMGCAbt26pYCAAFWtWlXZsmXTmjVrVL16dRUpUkQzZ85MtGJDQ0Nls9mULl26h8536NAh+fn5KU+ePGrSpIlOnDjx0PnDw8MVFhbmcAMAAACAhIjXkauSJUuqWbNm2rZtm4oUKRLrPLdu3dL8+fM1bNgwnTx5Ul27drW00Nu3b6tHjx5q3LixvLy84pyvTJkymjRpkgoWLKizZ8+qX79+euWVV7R79255enrGusygQYPUr18/S+sFAAAA8HyJV7jau3evXnjhhYfOkypVKjVu3FiNGzfWpUuXLCkuyt27d/X222/LGKPRo0c/dN7o3QyLFy+uMmXKKGfOnJo1a5ZatWoV6zLBwcHq0qWL/X5YWJiyZ89uTfEAAAAAngvxClePClZPOv/DRAWr48ePa/Xq1Q89ahWbdOnSqUCBAjp8+HCc87i7u8vd3f1JSwUAAADwHEvQgBaStHr1as2dO1fHjh2TzWZT7ty51bBhQ1WqVMny4qKC1aFDh7RmzZrHCm3Xr1/XkSNH9P7771teHwAAAABESdBQ7B999JGqVaum6dOn69KlS7pw4YKmTZumKlWqqEOHDgl+8uvXr2vnzp3auXOnJOno0aPauXOnTpw4obt376phw4baunWrpk2bpoiICJ07d07nzp3TnTt37OuoWrWqRo4cab/ftWtXrVu3TseOHdPGjRv15ptvytnZWY0bN05wfQAAAAAQX/E+cjVv3jxNnDhREyZMULNmzWSz2SRJkZGRmjRpktq2bavq1avH6zpUUbZu3aoqVarY70ed99SsWTP17dtXCxculCQFBAQ4LLdmzRpVrlxZknTkyBFdvHjR/tipU6fs5335+PioYsWK2rx5s3x8fOJdFwAAAAAkVLzD1cSJE9WlSxc1b97cYbqTk5NatmypAwcOaPz48QkKV5UrV5YxJs7HH/ZYlGPHjjncnzFjRryfHwAAAACsEu9wtX37dvXs2TPOx+vXr68GDRpYUhSA+CvVbUpyl4AktG1w0+QuAQAAxCHe51xdvHhR2bJli/PxbNmyWT4EOwAAAACkFPEOV3fu3JGrq2ucj7u4uDgMNAEAAAAAz5MEDcXeq1cvpU6dOtbHbt68aUlBAAAAAJASxTtcVapUSQcOHHjkPAAAAADwPIp3uFq7dm0ilgEAeNoxeMrzhcFTACDhEnQR4djcu3dP169ft6IWAAAAAEix4h2uFi1apEmTJjlMGzhwoNKmTat06dLptdde05UrV6yuDwAAAABShHiHqyFDhujGjRv2+xs3blTv3r3Vq1cvzZo1SydPntSXX36ZKEUCAAAAwNMu3uFqz549Kl++vP3+nDlzVL16dX3xxReqX7++vv/+ey1atChRigQAAACAp128w9W1a9f0wgsv2O9v2LBBVatWtd/39/fXmTNnrK0OAAAAAFKIeIerrFmzat++fZKk69eva9euXQ5Hsi5duhTnNbAAAAAA4FkX73D11ltvqVOnTvrll1/Upk0bZc6cWWXLlrU/vnXrVhUsWDBRigQAAACAp128r3PVu3dvnT59Wh07dlTmzJk1depUOTs72x+fPn26ateunShFAgAAAMDTLt7hKlWqVJoyJe4LSK5Zs8aSggAAAAAgJXriiwgDAAAAABJw5Cp9+vSy2Wwxpnt7e6tAgQLq2rWrqlevbmlxAAAAAJBSxDtcDRs2LNbpV69e1bZt2/TGG29ozpw5nHcFAAAA4LkU73DVrFmzhz4eEBCgQYMGEa4AAAAAPJcsO+fqjTfe0P79+61aHQAAAACkKJaFq/DwcLm5uVm1OgAAAABIUSwLV+PHj1dAQIBVqwMAAACAFCXe51x16dIl1umhoaHavn27Dh48qPXr11tWGAAAAACkJPEOVzt27Ih1upeXl6pXr665c+cqd+7clhUGAAAAAClJvMPVmjVrErMOAAAAAEjRLDvnCgAAAACeZ/EKVx999JFOnToVrxXOnDlT06ZNe6KiAAAAACCliVe3QB8fH/n7+6tChQqqXbu2SpcuLT8/P3l4eOjKlSvau3evNmzYoBkzZsjPz08//fRTYtcNAAAAAE+VeIWrL7/8Uu3bt9e4ceM0atQo7d271+FxT09PVatWTT/99JNq1KiRKIUCAAAAwNMs3gNaZMqUSV988YW++OILXblyRSdOnNCtW7eUMWNG5c2bVzabLTHrBAAAAICnWrzDVXTp06dX+vTpra4FAAAAAFIsRgsEAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxGu0wJIlS8Z7qPXt27c/UUEAAAAAkBLFK1zVq1cvkcsAAAAAgJQtXuGqT58+iV0HAAAAAKRonHMFAAAAABaI15Gr6CIiIjR06FDNmjVLJ06c0J07dxwev3z5smXFAQAAAEBKkeAjV/369dOQIUP0zjvvKDQ0VF26dFH9+vXl5OSkvn37JkKJAAAAAPD0S3C4mjZtmn7++Wd9+umncnFxUePGjTVu3Dj17t1bmzdvTowaAQAAAOCpl+Bwde7cORUrVkySlDZtWoWGhkqS3njjDf3222/WVgcAAAAAKUSCw1W2bNl09uxZSVLevHm1fPlySdKWLVvk7u5ubXUAAAAAkEIkOFy9+eabWrVqlSSpQ4cO6tWrl/Lnz6+mTZuqZcuWlhcIAAAAAClBgkcL/Prrr+3/f+edd5QzZ05t3LhR+fPnV+3atS0tDgAAAABSigSHq/Xr16t8+fJycbm/aNmyZVW2bFndu3dP69evV6VKlSwvEgAAAACedgnuFlilSpVYr2UVGhqqKlWqJGhd69evV+3ateXn5yebzab58+c7PG6MUe/evZUlSxalSpVK1apV06FDhx653h9//FG5cuWSh4eHypQpo7///jtBdQEAAABAQiU4XBljZLPZYky/dOmS0qRJk6B13bhxQyVKlNCPP/4Y6+PffvutfvjhB40ZM0Z//fWX0qRJo6CgIN2+fTvOdc6cOVNdunRRnz59tH37dpUoUUJBQUE6f/58gmoDAAAAgISId7fA+vXrS5JsNpuaN2/uMDJgRESE/vnnH5UvXz5BT16zZk3VrFkz1seMMRo2bJh69uypunXrSpKmTJmiTJkyaf78+WrUqFGsyw0ZMkRt2rRRixYtJEljxozRb7/9pgkTJuizzz5LUH0AAAAAEF/xPnLl7e0tb29vGWPk6elpv+/t7a3MmTPrgw8+0NSpUy0r7OjRozp37pyqVavmUEOZMmW0adOmWJe5c+eOtm3b5rCMk5OTqlWrFucykhQeHq6wsDCHGwAAAAAkRLyPXE2cOFGSlCtXLnXt2jXBXQAT6ty5c5KkTJkyOUzPlCmT/bEHXbx4UREREbEus3///jifa9CgQerXr98TVgwAAADgeZbgc6769OmT6MEqqQUHBys0NNR+O3nyZHKXBAAAACCFideRqxdffFGrVq1S+vTpVbJkyVgHtIiyfft2SwrLnDmzJCkkJERZsmSxTw8JCVFAQECsy2TMmFHOzs4KCQlxmB4SEmJfX2zc3d0dziEDAAAAgISKV7iqW7euPXzUq1cvMeuxy507tzJnzqxVq1bZw1RYWJj++usvtW3bNtZl3NzcVKpUKa1atcpeZ2RkpFatWqX27dsnSd0AAAAAnk/xCld9+vSJ9f9P6vr16zp8+LD9/tGjR7Vz505lyJBBOXLkUKdOnTRgwADlz59fuXPnVq9eveTn5+cQ8KpWrao333zTHp66dOmiZs2aqXTp0nr55Zc1bNgw3bhxwz56IAAAAAAkhngPaPGgrVu3at++fZKkIkWKqFSpUo+1jugXHu7SpYskqVmzZpo0aZK6d++uGzdu6IMPPtDVq1dVsWJFLV26VB4eHvZljhw5oosXL9rvv/POO7pw4YJ69+6tc+fOKSAgQEuXLo0xyAUAAAAAWCnB4erUqVNq3Lix/vzzT6VLl06SdPXqVZUvX14zZsxQtmzZ4r2uypUryxgT5+M2m039+/dX//7945zn2LFjMaa1b9+eboAAAAAAklSCRwts3bq17t69q3379uny5cu6fPmy9u3bp8jISLVu3ToxagQAAACAp16Cj1ytW7dOGzduVMGCBe3TChYsqBEjRuiVV16xtDgAAAAASCkSfOQqe/bsunv3bozpERER8vPzs6QoAAAAAEhpEhyuBg8erA4dOmjr1q32aVu3btUnn3yi7777ztLiAAAAACClSHC3wObNm+vmzZsqU6aMXFzuL37v3j25uLioZcuWatmypX3ey5cvW1cpAAAAADzFEhyuhg0blghlAAAAAEDKluBw1axZs8SoAwAAAABStMe+iLAk3b59W3fu3HGY5uXl9UQFAQAAAEBKlOABLW7cuKH27dvL19dXadKkUfr06R1uAAAAAPA8SnC46t69u1avXq3Ro0fL3d1d48aNU79+/eTn56cpU6YkRo0AAAAA8NRLcLfARYsWacqUKapcubJatGihV155Rfny5VPOnDk1bdo0NWnSJDHqBAAAAICnWoKPXF2+fFl58uSRdP/8qqjh1itWrKj169dbWx0AAAAApBAJDld58uTR0aNHJUmFChXSrFmzJN0/opUuXTpLiwMAAACAlCLB4apFixbatWuXJOmzzz7Tjz/+KA8PD3Xu3FndunWzvEAAAAAASAkSfM5V586d7f+vVq2a9u/fr23btilfvnwqXry4pcUBAAAAQErxRNe5kqScOXMqZ86cVtQCAAAAAClWvLsFrl69WkWKFFFYWFiMx0JDQ+Xv768//vjD0uIAAAAAIKWId7gaNmyY2rRpIy8vrxiPeXt768MPP9SQIUMsLQ4AAAAAUop4h6tdu3apRo0acT7+2muvadu2bZYUBQAAAAApTbzDVUhIiFxdXeN83MXFRRcuXLCkKAAAAABIaeIdrrJmzardu3fH+fg///yjLFmyWFIUAAAAAKQ08Q5Xr7/+unr16qXbt2/HeOzWrVvq06eP3njjDUuLAwAAAICUIt5Dsffs2VNz585VgQIF1L59exUsWFCStH//fv3444+KiIjQF198kWiFAgAAAMDTLN7hKlOmTNq4caPatm2r4OBgGWMkSTabTUFBQfrxxx+VKVOmRCsUAAAAAJ5mCbqIcM6cOfX777/rypUrOnz4sIwxyp8/v9KnT59Y9QEAAABAipCgcBUlffr0eumll6yuBQAAAABSrHgPaAEAAAAAiBvhCgAAAAAsQLgCAAAAAAsQrgAAAADAAvEa0GLhwoXxXmGdOnUeuxgAAAAASKniFa7q1asXr5XZbDZFREQ8ST0AAAAAkCLFK1xFRkYmdh0AAAAAkKJxzhUAAAAAWOCxLiJ848YNrVu3TidOnNCdO3ccHuvYsaMlhQEAAABASpLgcLVjxw69/vrrunnzpm7cuKEMGTLo4sWLSp06tXx9fQlXAAAAAJ5LCQ5XnTt3Vu3atTVmzBh5e3tr8+bNcnV11XvvvadPPvkkMWpMkUp1m5LcJSAJbRvcNLlLAAAAQDJL8DlXO3fu1KeffionJyc5OzsrPDxc2bNn17fffqvPP/88MWoEAAAAgKdegsOVq6urnJzuL+br66sTJ05Ikry9vXXy5ElrqwMAAACAFCLB3QJLliypLVu2KH/+/AoMDFTv3r118eJF/fLLLypatGhi1AgAAAAAT70EH7n66quvlCVLFknSwIEDlT59erVt21YXLlzQ2LFjLS8QAAAAAFKCBB+5Kl26tP3/vr6+Wrp0qaUFAQAAAEBKlOAjV6+++qquXr0aY3pYWJheffVVK2oCAAAAgBQnweFq7dq1MS4cLEm3b9/WH3/8YUlRAAAAAJDSxLtb4D///GP//969e3Xu3Dn7/YiICC1dulRZs2a1tjoAAAAASCHiHa4CAgJks9lks9li7f6XKlUqjRgxwtLiAAAAACCliHe4Onr0qIwxypMnj/7++2/5+PjYH3Nzc5Ovr6+cnZ0TpUgAAAAAeNrF+5yrnDlzKleuXIqMjFTp0qWVM2dO+y1LliyJFqxy5cplP2IW/dauXbtY5580aVKMeT08PBKlNgAAAACIkuCh2CXpyJEjGjZsmPbt2ydJKlKkiD755BPlzZvX0uIkacuWLYqIiLDf3717t6pXr6633norzmW8vLx04MAB+32bzWZ5XQAAAAAQXYLD1bJly1SnTh0FBASoQoUKkqQ///xT/v7+WrRokapXr25pgdG7H0rS119/rbx58yowMDDOZWw2mzJnzmxpHQAAAADwMAkOV5999pk6d+6sr7/+Osb0Hj16WB6uortz546mTp2qLl26PPRo1PXr15UzZ05FRkbqxRdf1FdffSV/f/845w8PD1d4eLj9flhYmKV1AwAAAHj2Jfg6V/v27VOrVq1iTG/ZsqX27t1rSVFxmT9/vq5evarmzZvHOU/BggU1YcIELViwQFOnTlVkZKTKly+vU6dOxbnMoEGD5O3tbb9lz549EaoHAAAA8CxLcLjy8fHRzp07Y0zfuXOnfH19ragpTuPHj1fNmjXl5+cX5zzlypVT06ZNFRAQoMDAQM2dO1c+Pj4aO3ZsnMsEBwcrNDTUfjt58mRilA8AAADgGRbvboH9+/dX165d1aZNG33wwQf677//VL58eUn3z7n65ptv1KVLl0Qr9Pjx41q5cqXmzp2boOVcXV1VsmRJHT58OM553N3d5e7u/qQlAgAAAHiOxTtc9evXTx999JF69eolT09Pff/99woODpYk+fn5qW/fvurYsWOiFTpx4kT5+vqqVq1aCVouIiJC//77r15//fVEqgwAAAAAEhCujDGS7o/E17lzZ3Xu3FnXrl2TJHl6eiZOdf9fZGSkJk6cqGbNmsnFxbHkpk2bKmvWrBo0aJCk+0fYypYtq3z58unq1asaPHiwjh8/rtatWydqjQAAAACebwkaLfDBEfoSO1RFWblypU6cOKGWLVvGeOzEiRNycvq/U8euXLmiNm3a6Ny5c0qfPr1KlSqljRs3qkiRIklSKwAAAIDnU4LCVYECBR55Qd7Lly8/UUGxee211+xHzh60du1ah/tDhw7V0KFDLa8BAAAAAB4mQeGqX79+8vb2TqxaAAAAACDFSlC4atSoUaIPtw4AAAAAKVG8r3P1qO6AAAAAAPA8i3e4iuucJwAAAABAAroFRkZGJmYdAAAAAJCixfvIFQAAAAAgboQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwwFMdrvr27SubzeZwK1So0EOXmT17tgoVKiQPDw8VK1ZMv//+exJVCwAAAOB59lSHK0ny9/fX2bNn7bcNGzbEOe/GjRvVuHFjtWrVSjt27FC9evVUr1497d69OwkrBgAAAPA8eurDlYuLizJnzmy/ZcyYMc55hw8frho1aqhbt24qXLiwvvzyS7344osaOXJkElYMAAAA4Hn01IerQ4cOyc/PT3ny5FGTJk104sSJOOfdtGmTqlWr5jAtKChImzZteuhzhIeHKywszOEGAAAAAAnxVIerMmXKaNKkSVq6dKlGjx6to0eP6pVXXtG1a9dinf/cuXPKlCmTw7RMmTLp3LlzD32eQYMGydvb237Lnj27Za8BAAAAwPPhqQ5XNWvW1FtvvaXixYsrKChIv//+u65evapZs2ZZ+jzBwcEKDQ21306ePGnp+gEAAAA8+1ySu4CESJcunQoUKKDDhw/H+njmzJkVEhLiMC0kJESZM2d+6Hrd3d3l7u5uWZ0AAAAAnj9P9ZGrB12/fl1HjhxRlixZYn28XLlyWrVqlcO0FStWqFy5cklRHgAAAIDn2FMdrrp27ap169bp2LFj2rhxo9588005OzurcePGkqSmTZsqODjYPv8nn3yipUuX6vvvv9f+/fvVt29fbd26Ve3bt0+ulwAAAADgOfFUdws8deqUGjdurEuXLsnHx0cVK1bU5s2b5ePjI0k6ceKEnJz+Lx+WL19e//vf/9SzZ099/vnnyp8/v+bPn6+iRYsm10sAAAAA8Jx4qsPVjBkzHvr42rVrY0x766239NZbbyVSRQAAAAAQu6e6WyAAAAAApBSEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALPNXhatCgQXrppZfk6ekpX19f1atXTwcOHHjoMpMmTZLNZnO4eXh4JFHFAAAAAJ5XT3W4Wrdundq1a6fNmzdrxYoVunv3rl577TXduHHjoct5eXnp7Nmz9tvx48eTqGIAAAAAzyuX5C7gYZYuXepwf9KkSfL19dW2bdtUqVKlOJez2WzKnDlzYpcHAAAAAHZP9ZGrB4WGhkqSMmTI8ND5rl+/rpw5cyp79uyqW7eu9uzZ89D5w8PDFRYW5nADAAAAgIRIMeEqMjJSnTp1UoUKFVS0aNE45ytYsKAmTJigBQsWaOrUqYqMjFT58uV16tSpOJcZNGiQvL297bfs2bMnxksAAAAA8AxLMeGqXbt22r17t2bMmPHQ+cqVK6emTZsqICBAgYGBmjt3rnx8fDR27Ng4lwkODlZoaKj9dvLkSavLBwAAAPCMe6rPuYrSvn17LV68WOvXr1e2bNkStKyrq6tKliypw4cPxzmPu7u73N3dn7RMAAAAAM+xp/rIlTFG7du317x587R69Wrlzp07weuIiIjQv//+qyxZsiRChQAAAABw31N95Kpdu3b63//+pwULFsjT01Pnzp2TJHl7eytVqlSSpKZNmypr1qwaNGiQJKl///4qW7as8uXLp6tXr2rw4ME6fvy4WrdunWyvAwAAAMCz76kOV6NHj5YkVa5c2WH6xIkT1bx5c0nSiRMn5OT0fwfgrly5ojZt2ujcuXNKnz69SpUqpY0bN6pIkSJJVTYAAACA59BTHa6MMY+cZ+3atQ73hw4dqqFDhyZSRQAAAAAQu6f6nCsAAAAASCkIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWCBFhKsff/xRuXLlkoeHh8qUKaO///77ofPPnj1bhQoVkoeHh4oVK6bff/89iSoFAAAA8Lx66sPVzJkz1aVLF/Xp00fbt29XiRIlFBQUpPPnz8c6/8aNG9W4cWO1atVKO3bsUL169VSvXj3t3r07iSsHAAAA8Dx56sPVkCFD1KZNG7Vo0UJFihTRmDFjlDp1ak2YMCHW+YcPH64aNWqoW7duKly4sL788ku9+OKLGjlyZBJXDgAAAOB54pLcBTzMnTt3tG3bNgUHB9unOTk5qVq1atq0aVOsy2zatEldunRxmBYUFKT58+fH+Tzh4eEKDw+33w8NDZUkhYWFPXbtEeG3HntZpDxP0laeFG3t+UJbQ1KhrSGp0NaQVB63rUUtZ4x55LxPdbi6ePGiIiIilClTJofpmTJl0v79+2Nd5ty5c7HOf+7cuTifZ9CgQerXr1+M6dmzZ3+MqvE88h7xUXKXgOcEbQ1JhbaGpEJbQ1J50rZ27do1eXt7P3SepzpcJZXg4GCHo12RkZG6fPmyXnjhBdlstmSsLGUJCwtT9uzZdfLkSXl5eSV3OXiG0daQVGhrSCq0NSQV2lrCGWN07do1+fn5PXLepzpcZcyYUc7OzgoJCXGYHhISosyZM8e6TObMmRM0vyS5u7vL3d3dYVq6dOker2jIy8uLNyuSBG0NSYW2hqRCW0NSoa0lzKOOWEV5qge0cHNzU6lSpbRq1Sr7tMjISK1atUrlypWLdZly5co5zC9JK1asiHN+AAAAALDCU33kSpK6dOmiZs2aqXTp0nr55Zc1bNgw3bhxQy1atJAkNW3aVFmzZtWgQYMkSZ988okCAwP1/fffq1atWpoxY4a2bt2qn376KTlfBgAAAIBn3FMfrt555x1duHBBvXv31rlz5xQQEKClS5faB604ceKEnJz+7wBc+fLl9b///U89e/bU559/rvz582v+/PkqWrRocr2E54a7u7v69OkTo4slYDXaGpIKbQ1JhbaGpEJbS1w2E58xBQEAAAAAD/VUn3MFAAAAACkF4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAAAOIiMjk7uEFIlwBQAAAMDu66+/Vvv27XX37t3kLiXFIVwhxYm6egBXEQAAwBp8pyK6bNmyacyYMerVqxcBK4EIV0hxrly5ovDwcF27dk0SXwhIfLQxAM+yvXv3ymazSZImTJigrVu3JnNFSE7GGL333nuaPXu2hgwZop49e+r27dvJXVaKQbhCivLLL7+obt26evHFF/XGG29o/vz59i8EwEq//fabFi5cKEmy2WwELCQKzmlAcvvnn39Uq1YtDR06VN26ddPHH3+sDBkyJHdZSCbRv+sCAwP1zTffaPDgwfruu+90586dZKws5XBJ7gKA+Jo7d64++OADfffdd7p586aOHj2q+vXrKzg4WF26dNELL7yQ3CXiGTFnzhy9/fbbypo1q+7du6f69evbAxZhHlaJjIyUk9P9fZwLFizQ4cOH5evrq1KlSqlIkSLJXB2eFxkyZFDLli01YMAARUREaO/evcqTJ4/u3bsnFxd+Jj5vor7jfv31V3366aeqWrWqcuTIod69e+vatWsaMGCAXF1dk7nKpxvvGqQYv//+u9599121a9fOPq18+fJq2rSp7t69q/79+8vDwyMZK8SzYMeOHfruu+/UunVrRUREqGfPnjLGqEGDBgQsWMYYYw9WPXr00JQpU+Tv76+zZ88qZ86c+uCDD1SvXr3kLRLPhWzZsilr1qy6du2a/Pz8tGDBAnXu3FkuLi6KiIiQs7NzcpeIJHbgwAG1bt1agwYNUsuWLRUaGqr58+fr448/liR9+eWXcnNzS+Yqn16EK6QIxhidPXtWfn5+kv6vK817770nFxcXNWnSRAULFlSrVq348Ysn4uzsrJw5c+qTTz6RJA0dOlS9evWSJAIWLBPVfn744QfNmDFD8+bNU9myZTVs2DB99tln9nNL33nnHUmizcFSUUdNo9pVpUqV9Mcff2jZsmUaM2aMbt++reDgYILVcyosLEwZMmRQUFCQ3Nzc5OPjozZt2igiIkIff/yx0qVLp06dOilVqlTJXepTiXOu8FSL6vsb9eE/e/Zs7d271/6lYIxRo0aN1KdPH/Xu3VvHjx/nBwgeS1RgL168uL777jv5+/vL399f7du3V7ly5dSrVy/NmTNH0v32eOvWreQsF8+A69eva+/everatavKli2r+fPnq2/fvurUqZM8PDz01Vdfad68eZLE5xosE7076u7du7VlyxalTp1aZcqUUbt27dSwYUNNnjxZ3377rX2ZQYMGadeuXclVMpKYh4eHjh49qv/++0/S/30/vv766/L19dUXX3yhr7/+OjlLfKrZDGdpIwW4d++erl+/rrfffltubm4aPny48ubNa+8T/ueff6pBgwZaunSpAgICkrtcpGBRbSp6d5hdu3bphx9+0KZNmzRw4EDVqVNHr776qrp3765atWolc8VIyQ4ePKg0adIoNDRUtWvXVocOHdSpUydNnz5dbdq0UdasWTV8+HDVqFEjuUvFMyD6EdAvvvhCs2fPVmRkpO7evav69eurW7ducnJy0o8//qjp06erQoUKunjxonbv3q3//vuPI1nPoKg28WAX0HfffVcnTpzQkCFD9PLLL0u6v0Ooc+fOKl++vMqVK6dChQolV9lPNY5c4ak3ceJE1apVS+nSpVOrVq0UFhamTz/9VAcOHLCfbJstWzalS5eOoULxRCZNmqSaNWvq3r17cnZ2th85LVGihDp27KgKFSro888/V6FChXTkyBG99tpryVwxUoqIiIhYp+fJk0dZs2bVH3/8oSxZsqhVq1aS7ndPDQwMVKtWrWhnsExUsBoyZIjGjx+vsWPH6vDhw3r11Vc1ZcoUHT9+XJkzZ1a7du306aef6vTp0/Ly8tLhw4fl7OzM6JbPmKhgtWrVKvXo0UNdunTR3r17JUkff/yxvL291bFjRy1evFi7du3SgAEDtHbtWr355psEq4cgXOGpZozR3bt3denSJZ09e1bvvPOOmjdvrhs3buj111/XlClTNGvWLH300Ufy9va2710BEsoYozt37ig0NFSnTp2yT4sesBo3bqxjx47Jx8dHx44dk6urq+7du5ecZeMpd+bMGUmy7xH+4Ycf1K5dO7Vq1Upnz5617yAyxujixYvaunWr7t69q2nTpqlcuXL2IwlxhTMgIYwxunfvnv744w8FBwerSpUqWrRokebOnauBAweqXLlyCg8PV6ZMmdS2bVutXLlS//vf/+yfdVHdCfFssNlsWr58uYKCgnTs2DFNmzZN77zzjiZPnqyKFSuqZ8+eKlSokOrWrauGDRtq6tSpmjVrltKlS5fcpT/V6BaIp0psJ22HhoaqRIkSeuONNzRy5EhJ0ubNmzVt2jTNnDlTuXLlko+Pj+bPny9XV1dGN0K8PKyt1a1bV8OHD3d47OrVq2rYsKHOnj2rXbt2ycXFhaGK8VDBwcEaM2aM/vrrLxUoUEB9+/bV8OHDVbNmTW3dulW3bt3StGnTVKlSJW3btk2ffvqp/vvvP7m4uChNmjTavn27XF1dGcwClomMjNSdO3dUtWpV/fjjj7p27Zpef/11fffdd/rwww8VHh6un376SaVLl1bZsmXt7Y42+GyJ+nueP39e/fr1U4kSJfTBBx9Iut8dcP/+/Wrfvr2aNm0qFxcXHThwQMYYpU+fXpkyZUrm6lMAA6QAs2bNMkWKFDEbN250mH7u3Dlz/fp1ExkZaYwx5u7du8lRHp4hUW3tr7/+cpj+77//mrffftvcuXPHGENbw6NduHDBlC9f3hQqVMjs3r3btGjRwvz999/GGGMiIiJMnTp1jK+vr1mzZo0xxpgdO3aYmTNnmtGjR9vbF+0MTyIiIiLW6Y0bNza5c+c2adKkMZMnT7ZPDwkJMYGBgWbMmDFJVSKSyV9//WUqVKhgSpUqZVavXm2ffufOHfPuu++agIAA89NPP5lr164lY5UpE8d38dT56quv1LhxY/3222/2aSVKlJCbm5u2bNkiSfauWL6+vkqTJo1sNpsiIyM5ioAEeVhb27x5s6T/GyWpaNGimjlzpr17DG0Nj5IxY0YtXrxYXl5eqlmzpnbt2qW0adNKkpycnLRgwQKVK1dOb7/9ttatW6eAgAC9/fbb+uijj+yDqtDO8Liijwr4zz//aN++fQoNDZV0/9pqvr6+ypMnj5o2bSpjjK5cuaLmzZvr3r17at26dXKWjiRQqFAh2Ww2bd++XTt37rR3gXd1ddWUKVNUvHhxDRo0yD5KLuKPcIWnTkBAgI4fP66+ffuqYsWK2rhxowoUKKBOnTqpd+/eOnHihP0HR/RuCvQFR0LFp61FDfsfHT94EV/p06fXkiVLVKxYMe3YsUMXLlyQ9H+hff78+apYsaKqVKmiHTt2OCxL92Y8iajvxO7du6t+/foqWbKkPvroIy1ZssQ+SM/du3eVLVs2BQYGqkaNGgoJCdGaNWvk7OzMeX7PmAe/x7y8vPT777/r1Vdf1S+//KJFixbZ/+bOzs4aP368qlevrsDAwOQoN0XjnCs8lW7cuKFdu3bp66+/1sGDB5UtWzY1bNhQ06ZNU+3atfXpp5/ywwOWoK3BStGPFkR35coVvf7667p8+bIWLlyoggULOpzH8tlnn2ngwIG0NTyx6G3w999/1yeffKLRo0fr0qVLGjdunCIiItSpUyfVqVNHp0+f1oQJE+Ts7KwsWbKoadOmcnZ25uj8Mybqs+bvv//Wpk2bdPv2bQUEBCgoKEjXrl1TnTp1dOvWLX3++eeqVasWn0NPiHCFp86DP04WLVqkdevW6ccff1R4eLhatGih8ePHJ2OFeFbQ1mCl6O1p0aJFOn36tHLlyqV8+fIpX758Cg0NVfXq1RUWFqYFCxbECFiSGJAHllm+fLkWLlyoPHnyqEuXLpLudw/s06ePrl69qo8//lhvvfVWjOVog8+mX3/9VR9//LFKliwpb29vzZ49WwMHDlRwcLA9YN29e1effPKJ6tevTxt4AoQrPLUe/OG7Y8cOLVu2TF27dmWPGixFW4OVevTooVGjRilPnjw6ceKEihUrppYtW6p58+YKDQ1VUFCQrl+/rpkzZ8rf3z+5y8Uz6NixY6pVq5aOHj2qjz76SEOGDLE/FhWwbty4oUaNGqlly5bJWCkSS/QdN3v37lX16tXVs2dPtW3bVidPnlTu3LnVpUsXDRo0SM7OzgoLC1OlSpXk4+OjefPm2c8PRcJxkgqS3IN5Pq58H/3HrjFGJUuW1GeffWYfAht4FNoakkL0c1O2bNmilStXatmyZdq1a5dWrFihggULasSIEZoxY4a8vb21ZMkS3b59WwMHDkzGqvEsefCzLVeuXBozZoxKliyp9evXa8WKFfbHihcvrv79++v27dvauXNnEleKxLZo0SJJsg/0JUkXLlxQoUKF1LZtWx09elTly5dXmzZt9O2338rZ2Vn79++Xl5eXNmzYoHHjxhGsnhDhCkkm6sM/ak/Kf//953D/YR6ch6MJeBjaGpLC3r17Jf3fwBPffPONxowZo8KFC6ts2bKSpNKlS6tTp07KnTu35s+fr7t37yp9+vTasWOHfvnll2SrHc+OyMhI++fWuXPndPPmTUVEROiVV17RgAED5O7urjFjxmj16tX2ZYoVK6aJEydq2LBhyVQ1EsORI0dUt25dvffee5L+b8fhrVu3dP78ef3999+qUqWKXn/9dft1Qzds2KB+/frp+PHjSps2rXLmzJls9T8rCFdIMtH3ogwaNEg9e/aM13LR98jRixXxQVtDYuvcubOaN2+u9evX26ddu3ZNEydO1MaNG3X69Gn7dH9/fzVo0EC//vqrTp48KUny9PRkRDZYIuoHdL9+/VStWjVVrVpVXbt21a1bt1SlShX169dP586d048//qg1a9bYl8ubN6+cnJzsn5VI+XLnzq2FCxdq6dKlatasmX16vnz55OPjo9dee02vvPKKxo4da98ptGDBAoWGhsrT0zO5yn7mEK6Q6D7//HP7HpKoL4HLly+rcOHCkvTQD/bofYYXLVrk8MUAPIi2hqTSpk0bhYeH65tvvtHatWslSQMGDNDw4cN17NgxTZo0SZcuXbLPnzdvXuXLly9GN1NOGsfjiv55NnXqVI0cOVJdunTRiy++qE2bNqlu3bq6efOmqlWrpn79+unChQvq27evtm/f7rAeLmPy7HByclLNmjU1efJkzZs3T02bNpV0P1zVqFFD7u7uypo1q/bu3at9+/ape/fuGj9+vL799ltlyJAhmat/dvCOQqI6deqU/v33X82YMUMTJ060Tz927Jj9R0ZcH+zRf+yOGTNGdevWpYsW4kRbQ1KJiIhQkSJFNHv2bJ04cULffvutvctVhw4dNGDAAPXp00eDBg3SunXrtGfPHvXp00eenp7Kly9fMlePZ0H0QXgWL16sM2fO6IcfflDLli31ww8/qFu3brpy5Yrq1KljD1jdu3dXkSJFFBAQkLzFI1FE9bYICwtTrVq1NH36dC1cuFBNmjSRdP96Z61atdKaNWtUokQJvf/++1q6dKlWr16tokWLJmfpzx4DJLK9e/eaZs2amfLly5tx48YZY4ypW7eu6devnzHGmIiIiBjL3L171/7/MWPGmHTp0pk5c+YkTcFIsWhrSCr37t0zxhhz4MABU7RoUVOzZk2zatUq++NfffWVsdlsxmazmWbNmpn69eubO3fuGGNib4dAfNSsWdPs2rXLfn/Lli2mQIECxsvLy8ybN88+/c6dO+bXX381L730knnttdfM9evXHdZDG3x2REZG2v+/cuVKU6NGDXP37l1z584ds3jxYuPt7W3effdd+zzHjx83a9euNfv37zfnz59PjpKfeRy5QqKJ6rJQuHBh9ejRQ3nz5tW4ceM0bdo05cqVS5kyZdKRI0d0/PhxhYSE6Ny5c9q0aZOk/xtEYOzYserevbvGjRunBg0aJNtrwdONtoakEL0bVlR3vgIFCtjPpRo8eLD9CFZwcLBGjBghSSpVqpQmTJggV1dXRURE0A0Lj+X48eMqXry4ChUqZJ+WN29etW/fXhkyZNC4cePs011dXVW7dm0FBwdr//79+vzzzyX939EN2mDKN2TIEC1YsMDhHOO///5badOmlYuLi1xdXfX6669r2rRp+u233+xHsHLkyKHAwEAVLFhQPj4+yfkSnl3Jne7wbIq+VywkJMQYc38P7/vvv2/KlCljbDab8fLyMvnz5zeZMmUyvr6+xtfX19SpU8e+F2bUqFHG29ubowh4KNoakkL0drZv3z6zadMmExYWZm7dumWMMWb//v2maNGipkaNGg5HsL788ktjs9nMsGHDzJUrV5K6bDyjvv/+e7NmzRpjjDFhYWFm1KhRplixYqZ58+YO8925c8esXbvWfqQVz4YrV66YRo0amTRp0pilS5fap3fs2NE0adLEYd6IiAizePFikzFjRlOvXr2kLvW5RLiC5aL/COnfv7+pX7++2bZtmzHGmD179pj333/flC1b1nTs2NGEhoaakJAQs2vXLnPw4EH7F8B///1ncuXKZWbPnp0srwEpA20NSSF6t5svvvjCFChQwLzwwgumRIkSZujQoebcuXPGmPuhq1ixYqZWrVrm999/ty/z7bffGpvNZkaNGuWwLuBxXLx40dSqVcukS5fO/Pnnn8YYY65evWpGjhxpAgICTIsWLWJdjoD1bDl06JBp06aNSZcunVm0aJExxpjOnTub1q1bG2OMfcePMfe7v8+dO9fkyJHDnD59OlnqfZ4QrpBogoODTaZMmczUqVPNqVOn7NP37t1rmjZtasqWLWsmT54cY7moL4CzZ88mWa1I2WhrSApffvmlyZIli1myZIkxxpg6deqYnDlzmi+++MLehvbv3298fX1Nly5dHH7MDh061OzduzdZ6kbKFlsg//fff817771nMmbMaDZs2GCM+b+AVapUKVO3bt0krhJJJfpOxY0bN5oePXqYdOnSmT/++MMMHz7cdOvWzdy+fdtcvXrVPt+JEyeMMSbGuXdIHIQrJIqtW7eaPHnymJUrVzpMj/pQ2Ldvn2nevLnJnz+/fY9LFPbsIiFoa0gKe/bsMRUrVjQLFy40xhizfPly4+npaapVq2Zy5MhhevXqZQ9Yx48ftwer6AOmAAkV/Yd0ZGSkw/1///3XNG7cOEbA+vrrr03z5s0ZtOIZFBkZaf/eWrFihQkICDCTJ082H374ofH29jY+Pj4mb968Jnfu3CZLliwmf/78JmfOnKZw4cLm8uXLyVz984OxhpEoLl26JGOMSpQoYZ9mjJGTk5Pu3r2rQoUKqWvXrsqbN69q1qzpsGzUkNhAfNDWkBT8/PzUsWNHvfrqq/rjjz/0/vvv67vvvtMHH3ygoKAgTZkyRVeuXFGfPn2UI0cOSfeHbGdIfzyu6MOtjxkzRuvXr5fNZtPLL7+sTz75REWLFtUXX3whY4zq16+vefPmqXz58mrfvr1Sp05tH+iAwSueDeb/D0Zis9k0Y8YMvfvuu5KkNGnSaMCAAfLw8NC4cePUuHFjdezYUceOHdPdu3dls9lUoEABpU+fPjnLf67wqY9E4e7urjNnzujYsWPKmDGjzP2jpLLZbFq1apXSpUunsmXLyt/fX9L9HyFcTBOPg7aGpJAuXTrVqFFDadKk0eTJk1W/fn21atVKkpQrVy6dPHlSkZGReuGFF+zL0M7wJKJC0WeffaZffvlFDRs2lKenp3r06KELFy5owIAB8vf3V8+ePeXs7KyKFStq165dKlasmKT/28mEZ4fNZtOcOXP07rvvau7cuZo5c6b27NmjBg0aqE2bNrp7964mT56shg0bqmrVqsld7nOLdx2eSPShiaPLmTOnypYtqyFDhuiff/6RzWazH0n49ttvtWjRIof5+RGCR6GtIbl5enpKki5fvqwbN27YL04dGhqq77//XiNHjpTNZrPvYQae1PTp0zVnzhz9+uuvGj58uEqXLq2IiAh99dVXatu2rSTJ399fXbt2Ve/evVWkSBH7shyZf7bYbDbNmzdPb7/9tsaPH6969erp+vXrOnPmjKT77aBLly565513FBgYqOXLlydzxc8vm+FbAI8peneDJUuW6Pr16woPD9d7770nSZo0aZJ+/vlnpUqVSk2aNJGzs7N++eUXnT9/Xtu2baO7DOKNtoanSbdu3bRs2TLly5dPZ8+eVWhoqP799185OzvTDQuWiYiI0NixY3X79m116dJFv/32m9577z0NGDBAqVKlUuvWrRUcHKyBAwc6LHfv3j0+855RS5Ys0ZUrV+xdAjt27KirV69qypQp9nkWL16sbdu2qVGjRipYsGBylfpcI1zhsUR1u5LuXyxz+vTpSp8+vS5cuKBixYrpl19+UcaMGbVgwQItWLBAs2fPVtGiRZUlSxbNnDnTfjFNjiLgUWhreFpEb4uff/65QkJC5OTkpNGjR8vFxYV2hicSvX1FCQsL04ULF5Q2bVoFBQWpSZMm6tatm3bv3q3AwEBduXJFX331lT777LNkqhrJIaqtfPXVV1q4cKH+/PNPOTs7q3///vr999+1ePFiZcyYMbnLfH4l6fAZeOYMHjzYZM6c2WzZssUYY8xPP/1kbDabqVy5sv3aL8bcv7jrtWvX7KPcMIIWEoq2hqdBXNcKop3hSTx4MfQH29nmzZtNwYIFzbFjx4wxxhw+fNi0bNnSrFmzhutXPYeivt9GjhxpChYsaIwxpm/fvsbFxcV+rUckH/ouIEEiIiLs/w8JCdHu3bs1YsQIlS5dWgsWLFC3bt3Uv39/HT9+XE2aNNHJkyclSb6+vkqbNq39fAS6LOBRaGtICiaOzhtxTY86MvXgOYC0MzyJqK6kffv2Vd26dfXSSy9p6tSpCgkJkXT/fL+DBw9q2rRp2rdvnzp06KALFy4oMDBQzs7O9vP/8HwpWrSoMmTIoPbt22vQoEHavHmzXnzxxeQuC8mb7ZBSHThwwBhjzNy5c8358+fNli1bTK5cuczIkSONMcYMGzbM2Gw2ExAQYM6fP5+cpSKFo60hsUQ/WrBnzx6zb98+c+TIkVgfjy769dEOHDhgwsLCEq9IPDcmTZpksmTJYn766SdTr1494+/vb7p3726OHz9ujLl/9N7FxcXky5fPlC5d2ty5c8cYw/X6nmebN282NpvNuLi4mO3btyd3Ofj/OHKFeJk3b5769OkjSerUqZN69Oihe/fu6c0335SPj4/++OMPFSlSxH6Spaenp1q1aiV/f39lyJAhOUtHCkNbQ1Iw0Yap7t27t959911VrlxZLVq00IgRIyTdP5rw4BEqE+28mBEjRuidd97RlStXkrZ4PBMebFvh4eHq3bu32rRpo3nz5qlJkyZasWKFRowYoZCQEHXt2lX79u3T1KlT9ddff8nV1VX37t1jVMDnWEBAgPr376/du3erZMmSyV0O/j/6MeCRwsPDdfjwYX399ddat26dtm3bpk2bNjl0gzl48KCOHz8ub29vXbt2TQsWLFDlypXVuXNnSVxbCPFDW0NSifpB2q9fP40ZM0b/+9//lDVrVn3zzTf65JNPdOPGDX322Wf2gOXk5OQQrMaOHavevXtr9OjR9osGA/EVPdxPmzZNISEh2rFjh4KCguzzBAcHS5Jmz54tm82mtm3bKl++fMqXL5+k++GM7qjPN3d3dwUHB/Od97RJ3gNnSClu375typcvb2w2m2nXrp19etSJtPv27TMvvPCCyZkzpylQoIApWrQoJ3jjsdDWkJiid6HaunWrefnll83atWuNMcYsXbrUeHp6mjfffNOkSZPGfPvtt/Z5o7exMWPGGC8vL/Prr78mXeF4ZkTvbtqtWzfj5eVlihYtapydnU3ZsmXN0aNHHeb/+uuvTdasWc2IESOSuFIAj4NdHohT9Ou13L17V6+++qpefvllTZ48WT4+PurTp4+cnZ11584dFSpUSJs3b9bMmTOVOnVqdejQgaGJEW+0NSSF6O1s//79Kl68uOrVq6eXXnpJq1evVvPmzfXdd9/p7bffVsOGDdWjRw/7UNdRRwjGjh2r7t27a8KECapfv35yvhykUFFt8ODBg7p48aJWr16tgIAAjRs3TlOmTFHPnj01cOBA5cyZU5LUo0cP+fn52btCA3i6cZ0rxCr6j5DZs2cra9asevHFFxUZGalRo0ZpwIAB6ty5s/3cGEnau3evw9Xh+bGL+KCtISmYB66XtnnzZi1YsEAeHh5yc3NTq1atlDZtWg0ePFhubm5q166d/vnnH3l7e2vRokWy2WyaPXu2mjZtqmnTphGs8ERmzpypzz//XFmyZNGiRYuUPn16SffD+9SpU5UzZ0599dVXMbqc8lkHPP0Y0AIxmGh9wT/77DN17NhRBw4c0K1bt5Q6dWq1aNFCPXv21LBhw9SzZ0/duHFDr7/+ugYPHuywHr4A8Ci0NSSVqGD1999/a8OGDfr666/l5eUlNzc3hYeHa+fOnQoPD5ebm5tu3ryp8+fPq127dlq8eLF92YCAAC1atIhghScWGRmp7Nmza+/evbp165Z9+ocffqj3339fp06d0kcffWQfij0Kn3XA048jV4jTN998oyFDhmjx4sUKCAiQq6ur/bHw8HD99NNP6tatm7Jnz65UqVJp27ZtDvMA8UVbQ1IYNWqUNm7cqDt37mj69Olydna2Hzn95ptvNGLECFWvXl2HDh3SzZs3tWXLFjk7O8sY47AjALDC4sWL1bdvX6VKlUrTpk1zOEo1dOhQHTp0SCNHjqTdASkM4QqxCg8P1zvvvKNy5cqpR48eOnHihPbu3auxY8eqcOHCatKkifz9/XXo0CHt2bNHtWvXtl/IkNGLkBC0NSSVb7/9Vp9//rmyZ8+uFStW2Eddk6QjR45ozpw5Wr16tbJmzaqxY8fK1dWVbliwXPQuqvPnz9eIESMUGRmpKVOmKHv27DHmi951GsDTj3CFGIwxun79uqpXr65ixYqpQoUKmjdvnq5fvy5Jun37tooUKaKRI0fK3d3dvhw/QpBQtDUkllWrVqlKlSpycnJSv379lDlzZn344YcaNWqUevXqpdatW6tDhw7Kli1bnOsgwCOxRA9Y8+bN08iRI2Wz2TRu3DjlypUr1vkApAzsCnnOGWNiXMhQun9h1k6dOmnt2rX67LPPVLJkSfXr10+rVq1SuXLlFBoa6vBjV6IvOB6OtoakcvbsWbVv315ly5ZVx44dNWjQIJUtW1aS9PHHH+uzzz7TtGnTNH78eJ05c8a+XPT2aYwhWCHR2Gw2Re3bfvPNN9WxY0edP39e33//fYz5AKQsfHM8x0JDQ+Xt7W3/8B45cqQOHTqkiIgI9enTR40aNVLFihVls9mUNWtW+3J79uxR7ty5k6tspEC0NSSlTJkyafLkyQoKCtLu3bu1YcMGlShRQrdu3VKqVKnUrVs3GWPs57M0b95c2bNnd+h6xY9aJLaogGWz2VS3bl2lT59eFStWTO6yADwhjlw9p4KDg5U9e3adP3/efr9v3746duyYVq5cKX9/f+3YsUPZsmVT1qxZFRoaqmXLlql27do6efKkfvjhB0kSvUrxKLQ1JJWoI09OTk5ycXFRhgwZ5Ofnp86dO+v27dtKlSqVbt++LUnq3r27OnTooL59+2rFihXJWTaeIXF9TsU1PfoRrEqVKnFuFfAM4F38nGratKmKFSumV155RSdPnrT/oF2wYIHWr1+v8uXLKygoSNu3b5ck/ffff/r6669ls9m0Y8cO+0Vb2buLR6GtISlEP+l/9+7dypw5s7Zt26YpU6bo2rVrevXVVxUeHi4PDw/7j9lu3bpp9uzZatasWXKWjmdEZGSk/XNq79692r9/v/777z9Jsg9M8SgHDx7UtWvXErVOAImLAS2eY4cPH1aTJk104sQJ5ciRQ1OnTlX+/PklSVevXlWLFi20ceNGLVmyRC+++KIOHTqkvHnzysnJiRO9kSC0NSSm6MGqV69eWrJkiQYOHKjq1asrMjJSa9euVdeuXZU2bVqtXLlSHh4eatmypQIDA+3BikFS8CSiDzzRu3dvLVy4UOfOnVPBggXVsGFDdejQQZJijPwXfbkRI0ZowoQJWrBgQYyLBwNIQQyeKxEREQ73Dx06ZN544w3j6upq/v33X4d5rly5YurXr29sNpvZv39/nOsAYkNbQ1L74osvTObMmc3ixYvNpUuX7NMjIiLM2rVrTbFixUzmzJlNpUqVTI4cOczdu3eTsVo8i/r27Wt8fHzMihUrzN69e02zZs2MzWYzgwYNss8T9bkWGRlpnzZmzBiTLl06M3369CSvGYC12B38HIm+x2zTpk3KmjWr8uXLp++//15XrlxRvXr1tHHjRvn6+soYo3Tp0unnn39WgQIFHK4HQ59wPAptDUltz549mjVrliZNmqSgoCCFhYXp0KFD+uOPP1SoUCEFBgZqwYIFmjBhgiIjI7Vq1Sp7l1OOWOFxmWhHnrZt26bff/9ds2fPVmBgoJYtW6a5c+eqXr16GjBggJydndWtW7cYR+THjh2r7t27a+LEiapfv35yvhwAVkjmcIckEv0IQHBwsClWrJiZM2eOuXHjhjHGmIMHD5qyZcuavHnzmnPnzsVYxhjDXl7EC20NyWHnzp2mYMGC5s8//zTr1q0z7dq1M/7+/sbPz8+UKFHCLFy4MMYy9+7dS4ZK8ayI/rm1b98+c+fOHfPVV1+ZGzdumFWrVpnMmTObsWPHmitXrpiqVasam81mgoODHdYxZswY4+XlZebMmZPU5QNIJOwWfk5EHQHo06ePJkyYoO+//15BQUFKnTq1JCl//vyaMWOGXnjhBVWqVElnzpyJcdSA814QH7Q1JLbYBgYoWLCgnJyc1Lp1a1WrVk2SNGjQIG3atEn37t3TuXPnYizDESs8LmOM/XMrODhYbdu21a1bt/Tpp58qderUmjZtmt5++201b95c6dKlU8GCBVWhQgX9888/9gFVZs+erU6dOmnixIlq0KBBcr4cABbiF8xz5L///tOvv/6qsWPHqnr16rp48aIOHz6s5cuXK1euXHr77bc1Z84cValSRZ07d9bMmTOTu2SkULQ1JJboXU63bNliH6Ht5Zdf1o4dO7R48WL5+PioYsWK9vm8vLziNVIbEF9RXQH//vtvbdiwQd999528vLwkSeHh4dq5c6deeuklubm56ebNmzp//rzatWunRo0a2dcREBCgRYsW2XcGAHg2EK6eIy4uLnJzc1NoaKhWrlyp6dOna/v27QoPD9fNmzd15coVffjhh1q7dq2yZMmS3OUiBaOtITFEP1rQo0cPTZ8+XTabTSEhIWrcuLF69eplPwJw48YNXb16VW3atNHt27fVunXr5Cwdz6BRo0Zp48aNypIli0qXLi3pfvh3d3fX22+/rREjRqhFixY6dOiQbt68qbfeekvS/XZsjFH+/Pnto6YCeHbQLfAZFdte2syZMytz5swaNmyYgoKC5OXlpa+//lobN25U/vz5dfnyZUlStmzZ5OzsrIiIiKQuGykQbQ1JJepowciRIzVhwgTNmDFDy5cv1+LFi7V06VL16NFDx48flySNGzdOdevW1fXr1/XXX3/RzmC569eva8aMGdqyZYuOHj0q6f+6RUcNv37mzBkVKFDAoQ3abDYG6wGeYRy5egZF7zazZ88eubm5yRijAgUKaO7cufrrr7+UNm1alSpVyr7MrVu3Ypx/wPkIeBTaGpLDli1b1KBBA5UvX17GGBUsWFBLlixRpUqVVLhwYfXv31/NmjWTl5eXmjZtKmdnZ66XhieyatUqValSRU5OTurXr58yZ86s7t27K23atOrVq5d+/vlndejQQdmyZZMk5c2bVz169FCPHj3s66ANAs8HLiL8jDHRhoXt27ev5syZo5s3b8rNzU3BwcH2C2ZK9/e6RfUDP3v2rLZu3coHP+KNtoakEL2dSdLdu3dVs2ZNZcuWTZMmTVJkZKTu3bsnNzc3DRkyRGPGjNGmTZv0wgsv2JdhuHU8ibNnz+rVV1+Vp6enypYtq59++kl//fWXSpQoIUkaPHiwhg8frjZt2qhNmzby8/OT5Ljz6cF2DODZxXHpZ0z0H7ujRo3S0KFDtWzZMpUuXVotWrTQ2LFj7fNOmTJFTZs21Z07d7Rlyxb7NV+A+KCtIbFFDVYh3R8k5fz583J1dVXTpk01Z84crVq1Sk5OTnJ1dZUkubu7K2PGjPL09HRYD8EKTyJTpkyaPHmyDh06pHHjxmnDhg0qUaKEbt26JUnq1q2bOnbsqPHjx2v8+PE6efKkJMfr9BGsgOcH4eoZtG3bNq1bt04zZsxQ9erVdfDgQf3222+qVauW2rZtq59//lmS1KpVK3Xp0kXLly+Xq6ur7t27x48QJAhtDYkp6sfp559/rjp16qhIkSL2rlgtW7ZUu3bttHTpUkVGRio0NFSLFy9W1qxZ7WELeBJR55M6OTnJxcVFGTJkkJ+fnzp37qzbt28rVapUun37tiSpe/fu6tChg/r27asVK1YkZ9kAkhndAp8BD3Y3OHXqlKZNm6ZOnTrpzz//1HvvvafevXvr/fff15tvvqmVK1fqm2++Ubdu3ezL0G0G8UFbQ1KI3p1q9uzZ6ty5s0aOHKl//vlHS5cuVY4cOVS2bFmdPn1aQ4cOVZ48eeTs7Cx3d3dt2bJFrq6udMPCE4neBnfv3q0MGTIoderU2rt3rz7++GOlTp1aa9askbu7u0Nbmzt3rurWrctnHPAcI1ylcNF/qB45ckRp06ZVpkyZ7F8MzZs3V+rUqTV8+HC5urrqo48+0rZt2+Th4aH169fz4wPxRltDUlu/fr1+/fVXlShRQi1btpQkLVy4UCNGjFD69OnVpk0b+fr62gdOeeeddxi8Ak8serDq1auXlixZooEDB6p69eqKjIzU2rVr1bVrV6VNm1YrV66Uh4eHWrZsqcDAQPu5puxEAp5fdAtMoUaPHq2dO3faP7yDg4NVt25d+fv7q3v37tq2bZskadeuXUqTJo1cXV1169YtXbhwQX379tUff/whm80msjUehbaG5HDu3Dm1bNlSkyZNUlhYmH16nTp11LFjR126dEmjRo1SeHi4PvjgA7377rv2oa4JVngSUcGqZ8+eGjdunPr166eXXnrJ3j3w/7V3/zFR1w8cx193xo+TH/NmJuH0hLFRd2NAojYyXMqmblzWVlJjQhjoGjkonc5WC7TmcrGJ3JIV4KQ/Kq0cyG44vWWlNrnlAVc6ZpNNVoKaEcWmQNAfzc9X+mb+Or04no8/733vz73vs/c+d6/P+8dn0aJFqqqqUn9/vxISErRw4UJ5PB7l5eUZxyBYARMXI1fjUFdXl7KysrRs2TJt2LDBmKZwddqM2+1WfHy8Xn/9dR05ckTr169XYWGh2traNDQ0JK/Xq0mTJjFtBjdEX0MwdXR06Nlnn5XNZlNlZaVSUlKMMrfbrY0bNyonJ0dbt24NYisRir7//ns9/fTTqq6u1pIlS9Tf36/e3l59/fXXeuihh5SZmamuri7V19drZGREFRUVxkY9BCtgYiNcjVNtbW0qKirS448/LrPZLLvdrhdffFGS1NzcrMrKSlmtVj333HO6ePGimpqaNGPGDNXU1CgsLIwfANw0+hqCqb29XYWFhcrIyFBpaakcDodRduzYMc2fP5/+hYBrb29Xbm6u6uvrNTw8rD179ujw4cP65ZdfNG3aNG3ZskVOp3NMHa51ACSmBY5baWlpev/993XkyBHt2rVLv/32m1GWk5OjV199Vf39/dqzZ49SU1PV0tKiuro6dmrDLaOvIZhSU1NVV1enb7/9VlVVVTp58qRRlpmZaUwFBG7X1V0Br5WcnCyz2ayioiJlZ2dLkrZu3apvvvlGw8PD6unp+b86XOsASISrce2RRx5RfX29rFar3G63/H6/UeZ0OvXKK6+os7NT+/fvN14fHR1lPQJuGX0NwZSenq7a2lq1tbXpzTffVFdX15hy/tTidl27eYXX69Xx48fV2tqqyMhI+Xw+bdmyRYcOHdKOHTvkdDo1a9YsxcbG/mMgAwCJaYEhgWkzuFfoawim1tZW1dTUqLa2dswDWoHbce1a0I0bN+qjjz6SyWRSb2+vnn/+eb3xxhtKTEyUJA0MDKivr0/FxcXq6ekx1pMCwN8RrkKEz+dTUVGR5syZo7KyMtnt9jHlzAVHoNDXEExX/xBfO+IA3AmXy6WKigo1NjZq6tSp6u7u1sqVK7VgwQK9++67stlsqqqq0ocffqjJkyfL4/GwnhTAdRGuQojP59OaNWtks9m0bds2JSQkBLtJCFH0NQQTu08ikAoKCmSxWFRTU2P0rba2NmVlZamsrEybN29WX1+f9u3bp/z8fJ6lBuBfcdsvhKSnp8vlcikmJkY2my3YzUEIo68hmAhWuF1/v588NDSkH3/8UZcvXzbKBwcHlZaWpvLycn388cf6+eefNWXKFBUWFvIsNQA3RLgKMfPmzVNdXZ3MZjMLbnFX0dcAjCcjIyNGMD9z5ozOnz+vsLAw5efn69NPP5XH45HZbFZYWJgkKSIiQvfff79iYmLGHIepgAD+DeEqBJlMJo2OjrIeAXcdfQ3AeHH1OvXaa6/pySeflN1u14YNGxQdHa1Vq1appKRELS0tGhkZ0a+//qrm5mbNmDHDCFsAcDMY1w5RTJvBvUJfA/Bfdu3mJ3v37lVDQ4NcLpc6OjrU0tKis2fP6tFHH5XT6VROTo4SExM1adIkRUREyOv1GjeRuNYBuBlsaAEAAELeV199pc8++0ypqalatWqVJKmpqUnV1dWyWq0qLi7WAw88oOPHjys6Olq5ublsXgHglhGuAABASOvp6dGCBQt04cIFVVRUqKyszCjbv3+/tm/frtjYWG3atEnz5s0zythuHcCtYqEEAAAIaXFxcfr8888VFxcnt9stv99vlDmdTq1bt04//PCD9u3bN6YewQrArWLkCgAATAjt7e0qLCxURkaGSktL5XA4jLJjx45p/vz5BCoAd4RwBQAAJgyfz6eioiLNmTNHZWVlstvtY8qZCgjgThCuAADAhOLz+bRmzRrZbDZt27ZNCQkJwW4SgBDBmisAADChpKeny+VyKSYmRjabLdjNARBCGLkCAAAT0tXnV137LCwAuBOEKwAAMGHxgGAAgcRtGgAAMGERrAAEEuEKAAAAAAKAcAUAAAAAAUC4AgAAAIAAIFwBAAAAQAAQrgAAAAAgAAhXAAAEUXl5udLS0oLdDABAABCuAADjzgsvvCCTySSTyaTw8HAlJSVp8+bNGh4evqNjPvXUU4FrJABgwrkv2A0AAOB2LF26VLt27dKVK1fkdrtVUlKisLAwbdq0acz7BgcHFR4eHqRWAgAmEkauAADjUkREhOLi4mSz2fTSSy8pOztbTU1NxgjU22+/rfj4eCUnJ0uS/H6/Fi1aJIvFoqlTp2r16tX6/fffJf01NW/37t1qbGw0RsQOHz58w3pX1dfXy+FwKCIiQg8++KBefvllo+zs2bNavny5oqOjFRsbqxUrVqi3t/fenCQAwD1FuAIAhASLxaLBwUFJksfjUWdnpw4ePKjm5mYNDAxoyZIlslqt8nq92rt3rw4dOmSEoPXr12vFihVaunSpzp07p3PnzikzM/OG9SRp586dKikp0erVq+X3+9XU1KSkpCRJ0sjIiJYvX65Lly7pyy+/1MGDB3XmzBnl5ube+xMEALjrmBYIABjXRkdH5fF4dODAAa1du1YXLlxQVFSUamtrjemAH3zwgS5fvqyGhgZFRUVJklwul5xOp9555x1Nnz5dFotFV65cUVxcnHHs3bt337DeW2+9pXXr1qm0tNSoN3fuXEl/hTy/36+uri7NnDlTktTQ0CCHwyGv12u8DwAQGhi5AgCMS83NzYqOjlZkZKSWLVum3NxclZeXS5JSUlLGrLM6deqUUlNTjYAkSY899phGRkbU2dl53c+4Ub3z58/rp59+0uLFi69bf+bMmUawkiS73a4pU6bo1KlTt/vVAQD/UYxcAQDGpSeeeEI7d+5UeHi44uPjdd99//tJuzYM3U0Wi+WefA4AYHxg5AoAMC5FRUUpKSlJs2bNGhOs/snDDz+s9vZ2DQwMGK8dPXpUZrPZ2PAiPDxcf/zxxy3Vi4mJ0ezZs+XxeK77ud3d3eru7jZeO3nypPr6+mS322/5OwMA/tsIVwCAkJeXl6fIyEgVFBTou+++0xdffKG1a9dq5cqVmj59uiRp9uzZ6ujoUGdnpy5evKihoaGbqldeXq7Kykrt2LFDp0+f1okTJ1RdXS1Jys7OVkpKivLy8nTixAm1trYqPz9fCxcuVEZGRtDOBwDg7iBcAQBC3uTJk3XgwAFdunRJc+fO1TPPPKPFixfL5XIZ7ykuLlZycrIyMjI0bdo0HT169KbqFRQUaPv27XrvvffkcDiUk5Oj06dPS5JMJpMaGxtltVqVlZWl7OxsJSYm6pNPPrnn5wAAcPeZRkdHR4PdCAAAAAAY7xi5AgAAAIAAIFwBAAAAQAAQrgAAAAAgAAhXAAAAABAAhCsAAAAACADCFQAAAAAEAOEKAAAAAAKAcAUAAAAAAUC4AgAAAIAAIFwBAAAAQAAQrgAAAAAgAP4EprMmNInTSLwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJsCAYAAAARCFkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJpUlEQVR4nOzdd3gU1f/28XvTKUkASYDQewklCEqVgIABkSKggigdFSkCUozSBVFRiiBF6cKXKl3pVQSUrvQivYSeUAMk5/mDJ/vLkgQSmCQE3q/r2gt2dmb2s5Oz5Z45c8ZmjDECAAAAADwRp+QuAAAAAACeBYQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCukWGvXrpXNZtPatWuTuxS7SZMmyWazaevWrYn6PDabTX379k3U57BCYtRZuXJlVa5c2dJ1Ps2aN2+utGnTJncZeI5EfY4dO3bMkvVFRkaqaNGiGjhwoCXrexJJ/flRuXJlFS1aNEmeK1euXGrevHmSPFdiOHbsmGw2myZNmmSf1rdvX9lstmSpp3nz5sqVK1eyPHdievB1Xbp0SWnSpNHvv/+efEU9YwhXSBCbzRavW3wCz1dffaX58+cnes2S9O+//6phw4bKmTOnPDw8lDVrVlWvXl0jRoxItpqSSlhYmPr166cSJUoobdq0SpUqlYoWLaoePXrozJkzSVrLxo0b1bdvX129ejVJnzepNW/ePF7vk5T8Q2jUqFGy2WwqU6ZMcpeSaCpXruzw98qQIYNeeuklTZgwQZGRkZY9z969e9W3b1/LwszTZvr06Tp58qTat29vn5ZUO6KSwpkzZ9S3b1/t3LkzuUuxzJ07dzR8+HCVLFlSXl5eSpcunfz9/fXBBx9o//79yV0eLPTCCy+odevW6tWrV3KX8sxwSe4CkLL88ssvDvenTJmiFStWxJheuHDhR67rq6++UsOGDVWvXj0rS4xh48aNqlKlinLkyKE2bdooc+bMOnnypDZv3qzhw4erQ4cOSV5TUvnvv/9UrVo1nThxQm+99ZY++OADubm56Z9//tH48eM1b948HTx4MNGe/9atW3Jx+b+PmY0bN6pfv35q3ry50qVLl2jPm9w+/PBDVatWzX7/6NGj6t27tz744AO98sor9ul58+ZNjvIsMW3aNOXKlUt///23Dh8+rHz58iV3SYkiW7ZsGjRokCTpwoULmjJlilq1aqWDBw/q66+/tuQ59u7dq379+qly5crP5J7ywYMHq1GjRvL29k7uUrR8+XLL13nmzBn169dPuXLlUkBAgOXrj68DBw7IycmafeYNGjTQkiVL1LhxY7Vp00Z3797V/v37tXjxYpUvX16FChWy5HkepWfPnvrss8+S5Lke9PPPP1u6E+Vp9tFHH+mHH37Q6tWr9eqrryZ3OSke4QoJ8t577znc37x5s1asWBFj+tNk4MCB8vb21pYtW2L8oD9//nzyFJUE7t27p/r16yskJERr165VxYoVHR4fOHCgvvnmm0StwcPDI1HXn9xu374tNze3GD9oypUrp3Llytnvb926Vb1791a5cuWe6vdKfB09elQbN27U3Llz9eGHH2ratGnq06ePJeuOa5smF29vb4e/2YcffqiCBQtq5MiR+vLLL+Xq6hpjmcjISN25c+eZb//xsWPHDu3atUvff/99cpciSXJzc3vkPE9bG4wvd3d3S9azZcsWLV68WAMHDtTnn3/u8NjIkSOTtOeBi4uLww66pBTbe/tZVbhwYRUtWlSTJk0iXFkgZX1yIEW4ceOGPv30U2XPnl3u7u4qWLCgvvvuOxlj7PPYbDbduHFDkydPjtFF6vjx4/r4449VsGBBpUqVSi+88ILeeuutx+4yc+TIEfn7+8d6pMTX1zfRa7py5YpefvllZcuWTQcOHJAkhYeHq0+fPsqXL5/c3d2VPXt2de/eXeHh4Q7LhoeHq3PnzvLx8ZGnp6fq1KmjU6dOxet1//rrr9q1a5e++OKLGMFKkry8vBzOgfjjjz/01ltvKUeOHPaaOnfurFu3bjksF3UO0H///aegoCClSZNGfn5+6t+/v8PfWHI856pv377q1q2bJCl37tz2bRy1DSdOnKhXX31Vvr6+cnd3V5EiRTR69Oh4vdbY2Gw2tW/fXtOmTVPBggXl4eGhUqVKaf369THmPX36tFq2bKlMmTLJ3d1d/v7+mjBhgsM8Uef4zZgxQz179lTWrFmVOnVqhYWFPXaNs2fPVqlSpZQqVSplzJhR7733nk6fPv3I5Xbu3CkfHx9VrlxZ169fT/BrmDVrlgYOHKhs2bLJw8NDVatW1eHDh+Nd97Rp05Q+fXrVqlVLDRs21LRp02Kd7+rVq+rcubNy5cold3d3ZcuWTU2bNtXFixcd6olrm8Zn+5w7d04tWrRQtmzZ5O7urixZsqhu3boO782tW7cqKChIGTNmVKpUqZQ7d261bNky3q83utSpU6ts2bK6ceOGLly4IMmxrfn7+8vd3V1Lly6VdD9c1KxZU15eXkqbNq2qVq2qzZs329c3adIkvfXWW5KkKlWqxNq1etSoUfb1+vn5qV27drH+wP3rr7/0+uuvK3369EqTJo2KFy+u4cOHO8yzevVqvfLKK0qTJo3SpUununXrat++fY983Y+7DefPny83NzdVqlTpkfPG5lHbL8o///yjwMBApUqVStmyZdOAAQM0ceLEGOeOPXjO1cPa4OXLl9W1a1cVK1ZMadOmlZeXl2rWrKldu3Y5LP/SSy9Jklq0aGH/+0U/b0i6f3SySpUqSp06tbJmzapvv/3W4fHo781+/fopa9as8vT0VMOGDRUaGqrw8HB16tRJvr6+Sps2rVq0aBHj+yK2c64e9R6MzZEjRyRJFSpUiPGYs7OzXnjhBYdpp0+fVqtWreTn5yd3d3flzp1bbdu21Z07dyQpXtsxLrGdcxX1fps/f76KFi1q/7yLes9Ft3btWpUuXVoeHh7Kmzevxo4dG+/zuGI752rGjBkqVaqUPD095eXlpWLFisV4j8VWQ2ynS8R2jll8Ps8kacmSJfb3saenp2rVqqU9e/bEeO6obeTh4aGiRYtq3rx5cdZZvXp1LVq0KMb3OBKOI1ewlDFGderU0Zo1a9SqVSsFBARo2bJl6tatm06fPq2hQ4dKut+9sHXr1nr55Zf1wQcfSPq/LlJbtmzRxo0b1ahRI2XLlk3Hjh3T6NGjVblyZe3du1epU6dOUE05c+bUpk2btHv37oeeWJwYNV28eFHVq1fX5cuXtW7dOuXNm1eRkZGqU6eONmzYoA8++ECFCxfWv//+q6FDh+rgwYMO53y1bt1aU6dO1bvvvqvy5ctr9erVqlWrVrxe98KFCyVJ77//frzmnz17tm7evKm2bdvqhRde0N9//60RI0bo1KlTmj17tsO8ERERqlGjhsqWLatvv/1WS5cuVZ8+fXTv3j31798/1vXXr19fBw8e1PTp0zV06FBlzJhRkuTj4yNJGj16tPz9/VWnTh25uLho0aJF+vjjjxUZGal27drF6zU8aN26dZo5c6Y6duwod3d3jRo1SjVq1NDff/9tbwshISEqW7as/Qvbx8dHS5YsUatWrRQWFqZOnTo5rPPLL7+Um5ubunbtqvDw8HjtCY/NpEmT1KJFC7300ksaNGiQQkJCNHz4cP3555/asWNHnN0mt2zZoqCgIJUuXVoLFixQqlSpEvwavv76azk5Oalr164KDQ3Vt99+qyZNmuivv/6KV+3Tpk1T/fr15ebmpsaNG2v06NHasmWL/UemJF2/fl2vvPKK9u3bp5YtW+rFF1/UxYsXtXDhQp06dcr+95di36bx3T4NGjTQnj171KFDB+XKlUvnz5/XihUrdOLECfv91157TT4+Pvrss8+ULl06HTt2THPnzk3Q3yu6//77T87Ozg5/o9WrV2vWrFlq3769MmbMqFy5cmnPnj165ZVX5OXlpe7du8vV1VVjx45V5cqVtW7dOpUpU0aVKlVSx44d9cMPP+jzzz+3d6mO+rdv377q16+fqlWrprZt2+rAgQP27f3nn3/a966vWLFCb7zxhrJkyaJPPvlEmTNn1r59+7R48WJ98sknkqSVK1eqZs2aypMnj/r27atbt25pxIgRqlChgrZv3x5nl8Qn2YYbN25U0aJFH+soQHy2n3T/x31UMA0ODlaaNGk0bty4BB3Jia0N7t27V/Pnz9dbb72l3LlzKyQkRGPHjlVgYKD27t0rPz8/FS5cWP3794/R7bd8+fL2dV+5ckU1atRQ/fr19fbbb2vOnDnq0aOHihUrppo1azrUMWjQIKVKlUqfffaZDh8+rBEjRsjV1VVOTk66cuWK+vbtq82bN2vSpEnKnTu3evfuHedrSsh7MLqcOXNKuv8+r1ChwkOPHJ05c0Yvv/yyrl69qg8++ECFChXS6dOnNWfOHN28eVNubm7677//HrkdE2rDhg2aO3euPv74Y3l6euqHH35QgwYNdOLECXv427Fjh2rUqKEsWbKoX79+ioiIUP/+/e3fOQm1YsUKNW7cWFWrVrX3+ti3b5/+/PNP+3vsST3q80y6/1ulWbNmCgoK0jfffKObN29q9OjRqlixonbs2GGfb/ny5WrQoIGKFCmiQYMG6dKlS/bgFptSpUpp6NCh2rNnT5INwvLMMsATaNeunYnejObPn28kmQEDBjjM17BhQ2Oz2czhw4ft09KkSWOaNWsWY503b96MMW3Tpk1GkpkyZYp92po1a4wks2bNmofWuHz5cuPs7GycnZ1NuXLlTPfu3c2yZcvMnTt3Ysz7pDVNnDjRSDJbtmwxZ8+eNf7+/iZPnjzm2LFj9nl++eUX4+TkZP744w+H9Y0ZM8ZIMn/++acxxpidO3caSebjjz92mO/dd981kkyfPn0e+rpLlixpvL29HzrPo17joEGDjM1mM8ePH7dPa9asmZFkOnToYJ8WGRlpatWqZdzc3MyFCxfs0x+sc/DgwUaSOXr0aLyePygoyOTJk8dhWmBgoAkMDHzk65FkJJmtW7fapx0/ftx4eHiYN9980z6tVatWJkuWLObixYsOyzdq1Mh4e3vb64pqb3ny5Im11ofZsmWLkWQmTpxojDHmzp07xtfX1xQtWtTcunXLPt/ixYuNJNO7d2/7tGbNmpk0adIYY4zZsGGD8fLyMrVq1TK3b99+7NdQuHBhEx4ebp9v+PDhRpL5999/H/latm7daiSZFStWGGPu/+2zZctmPvnkE4f5evfubSSZuXPnxlhHZGSkQz0PbtP4bp8rV64YSWbw4MFx1jtv3jz7ezKhAgMDTaFChcyFCxfMhQsXzL59+0zHjh2NJFO7dm37fJKMk5OT2bNnj8Py9erVM25ububIkSP2aWfOnDGenp6mUqVK9mmzZ8+O9bPs/Pnzxs3Nzbz22msmIiLCPn3kyJFGkpkwYYIxxph79+6Z3Llzm5w5c5orV644rCNqWxtjTEBAgPH19TWXLl2yT9u1a5dxcnIyTZs2tU+L+hyLep8+yTbMli2badCgQYzp0T8r4xLf7dehQwdjs9nMjh077NMuXbpkMmTIEOPz5sHPj4e9r2/fvu2w3Y0x5ujRo8bd3d3079/fPu3B93d0gYGBMb4nwsPDTebMmR22S1QdRYsWdfhuaty4sbHZbKZmzZoO6y1XrpzJmTOnw7ScOXM6fH/F5z0Ym8jISHvdmTJlMo0bNzY//vijw/dAlKZNmxonJ6dY/45RzxHf7Xj06NEY27FPnz4OvzGMuf9+c3Nzc/g9sWvXLiPJjBgxwj6tdu3aJnXq1Ob06dP2aYcOHTIuLi4x1hmbZs2aOWzjTz75xHh5eZl79+49ctno4vqt8uDrjc/n2bVr10y6dOlMmzZtHKafO3fOeHt7O0wPCAgwWbJkMVevXrVPW758uZEUo+0YY8zGjRuNJDNz5swEvT7ERLdAWOr333+Xs7OzOnbs6DD9008/lTFGS5YseeQ6UqVKZf//3bt3denSJeXLl0/p0qXT9u3bE1xT9erVtWnTJtWpU0e7du3St99+q6CgIGXNmtV+dMfqmk6dOqXAwEDdvXtX69evt+8JlO4fISpcuLAKFSqkixcv2m9R/ZzXrFkjSfZhUR/clg8ehYhLWFiYPD094zXvg6/xxo0bunjxosqXLy9jjHbs2BFj/ugjf0UdMblz545WrlwZ7+eM6/lDQ0N18eJFBQYG6r///lNoaOhjrbNcuXIqVaqU/X6OHDlUt25dLVu2TBERETLG6Ndff1Xt2rVljHH4ewQFBSk0NDTG37dZs2YOtT6OrVu36vz58/r4448dzsupVauWChUqpN9++y3GMmvWrFFQUJCqVq2quXPn2vfKP85raNGihcMRt6i97f/9998ja582bZoyZcqkKlWqSLr/t3/nnXc0Y8YMRURE2Of79ddfVaJECb355psx1vFgl5wHt2l8t0+qVKnk5uamtWvX6sqVK7HWG3V0afHixbp79+4jX9+D9u/fLx8fH/n4+Khw4cIaMWKEatWqFaPLZWBgoIoUKWK/HxERoeXLl6tevXrKkyePfXqWLFn07rvvasOGDY/sUrpy5UrduXNHnTp1cjj/p02bNvLy8rJvhx07dujo0aPq1KlTjCOeUdv67Nmz2rlzp5o3b64MGTLYHy9evLiqV6/+0GGYn2QbXrp0SenTp0/QMlLCtt/SpUtVrlw5h8EkMmTIoCZNmsT7+WJ7X7u7u9u3e0REhC5duqS0adOqYMGCCfouSps2rcN5e25ubnr55Zdjfb81bdrU4ShfmTJlZIyJ0QWzTJkyOnnypO7duxfn8ybkPfjgY8uWLdOAAQOUPn16TZ8+Xe3atVPOnDn1zjvv2LukRkZGav78+apdu7ZKly4d53NYtR2jq1atmsOAQMWLF5eXl5d9m0ZERGjlypWqV6+ew5GxfPnyxThaGF/p0qXTjRs3tGLFisda/lHi83m2YsUKXb16VY0bN3b4rHd2dlaZMmXsvx+i3u/NmjVzGEimevXqDp9T0UW9Tx/WZRTxQ7iCpY4fPy4/P78YP+qjurgcP378keu4deuWevfubT9nK2PGjPLx8dHVq1cf+0f2Sy+9pLlz5+rKlSv6+++/FRwcrGvXrqlhw4bau3ev5TW9//77On/+vNatW6esWbM6PHbo0CHt2bPH/oMt6lagQAFJ/zfIxvHjx+Xk5BRjRLmCBQvG6zV7eXnp2rVr8ZpXkk6cOGH/4ZU2bVr5+PgoMDBQkmK8RicnJ4cfPJLs9T/uuXF//vmnqlWrZj8XxMfHx34y9eP+3fPnzx9jWoECBXTz5k1duHBBFy5c0NWrV/XTTz/F+Hu0aNFCUsxBT3Lnzv1YtUQX9T6I7W9ZqFChGO+T27dvq1atWipZsqRmzZrlEIwe5zXkyJHD4X7Ul2pcX+hRIiIiNGPGDFWpUkVHjx7V4cOHdfjwYZUpU0YhISFatWqVfd4jR47Eu2vJg9s0vtvH3d1d33zzjZYsWaJMmTKpUqVK+vbbb3Xu3Dn7/IGBgWrQoIH69eunjBkzqm7dupo4cWKM81XikitXLq1YsUIrV67Uhg0bdO7cOS1evDhGl6oHX8OFCxd08+bNWF9D4cKFFRkZqZMnTz70uePaDm5ubsqTJ4/98ahzZB62vR+2TQsXLqyLFy/qxo0bsS77pNvQPMY5HAnZfsePH491tMqEjGAZ2/s6MjJSQ4cOVf78+R0+9//5558EfSZly5YtRphJnz59rO+3B9+bUT+Ms2fPHmN6ZGTkQ+tIyHvwQe7u7vriiy+0b98+nTlzRtOnT1fZsmXtXV+l+3+jsLCwRz6HVdsxuge3k+S4Tc+fP69bt249cbuI7uOPP1aBAgVUs2ZNZcuWTS1btoz1PK/HFZ/Ps0OHDkmSXn311Rif98uXL3f4/SDF/h0Y12+IqPdpcl1X7FnCOVd46nTo0EETJ05Up06dVK5cOXl7e8tms6lRo0ZPPCyqm5ubXnrpJb300ksqUKCAWrRoodmzZz9ypLOE1lS/fn1NmTJFw4cPtw/jHCUyMlLFihXTkCFDYn2uB79EH1ehQoW0Y8cOnTx58pHrjIiIsJ8b1qNHDxUqVEhp0qTR6dOn1bx580QfjvbIkSOqWrWqChUqpCFDhih79uxyc3PT77//rqFDhyba80et97333lOzZs1inad48eIO95/0qNXjcHd31+uvv64FCxZo6dKleuONN+yPPc5rcHZ2jnW+R/0IXr16tc6ePasZM2ZoxowZMR6fNm2aXnvttYeuIzZPsk07deqk2rVra/78+Vq2bJl69eqlQYMGafXq1SpZsqRsNpvmzJmjzZs3a9GiRVq2bJlatmyp77//Xps3b37kBZrTpEnjMKx+YryGp92TbMMXXnjhkaH9aRDb3++rr75Sr1691LJlS3355ZfKkCGDnJyc1KlTpwR9JiXk/RbXvI/7nrVClixZ1KhRIzVo0ED+/v6aNWtWjAE7Hsaq7RhdcmwPX19f7dy5U8uWLdOSJUu0ZMkSTZw4UU2bNtXkyZPjXC6usBL9SH+UR32eRW2vX375RZkzZ46x/JOMrBj1Po3rXDzEH+EKlsqZM6dWrlypa9euORy9irroYPTucXF94MyZM0fNmjVzGLr39u3blg//GtWN4ezZs5bX1KFDB+XLl0+9e/eWt7e3w3U68ubNq127dqlq1aoP3UOUM2dORUZG6siRIw57mqJGHHyU2rVra/r06Zo6daqCg4MfOu+///6rgwcPavLkyWratKl9elzdHyIjI/Xff//Zj1ZJsl8v62HX6Ynr9S5atEjh4eFauHChwx7JqC4OjytqL190Bw8eVOrUqe0nNXt6eioiIiJeP6CtEvU+OHDgQIxhbw8cOODwPpHub7dp06apbt26euutt7RkyRL7iGdRI0kmxWuYNm2afH199eOPP8Z4bO7cuZo3b57GjBmjVKlSKW/evNq9e/djPU9Ct0/evHn16aef6tNPP9WhQ4cUEBCg77//XlOnTrXPU7ZsWZUtW1YDBw7U//73PzVp0kQzZsxQ69atH6vGR/Hx8VHq1Kljfb/u379fTk5O9p0ecb0vom+H6EeK79y5o6NHj9r/3lFHt3fv3h1nG4i+rtjqyZgxo9KkSfPQ1/Q427BQoUI6evToQ9cbm4Rsv5w5c8Y62mVCRsCMzZw5c1SlShWNHz/eYfrVq1cdfoA+rXv6n+Q9GBtXV1cVL15chw4d0sWLF+Xr6ysvL69HPkd8t6OVfH195eHhYXm7cHNzU+3atVW7dm1FRkbq448/1tixY9WrV684j4hF9Qx48PdCXD15HvZ5FvVe9/X1fejnfdT7PbbvwLh+Q0S9T+NznVI8HN0CYanXX39dERERGjlypMP0oUOHymazOfR1TpMmTazhxNnZOcbepxEjRsS6lyc+1qxZE+verKhzDKIHFytr6tWrl7p27arg4GCHIcXffvttnT59Wj///HOMZW7dumXvmhO1rX744QeHeYYNGxbnc0bXsGFDFStWTAMHDtSmTZtiPH7t2jV98cUX9tcnOe71M8Y8dIjZ6H9jY4xGjhwpV1dXVa1aNc5lon68PbiNY3v+0NBQTZw4Mc51xcemTZsc+vSfPHlSCxYs0GuvvSZnZ2c5OzurQYMG+vXXX2P9gRA11LbVSpcuLV9fX40ZM8aha9WSJUu0b9++WEeEdHNz09y5c/XSSy+pdu3a+vvvvyUpyV7DrVu3NHfuXL3xxhtq2LBhjFv79u117do1+3mMDRo00K5du2Id+vdRe5fju31u3ryp27dvOyybN29eeXp62pe7cuVKjOeLOjcnvt3aHoezs7Nee+01LViwwKGrbEhIiP73v/+pYsWK8vLykhT3+6JatWpyc3PTDz/84PAaxo8fr9DQUPt2ePHFF5U7d24NGzYsxjqilsuSJYsCAgI0efJkh3l2796t5cuX6/XXX4/ztTzJNixXrpx2796d4G2dkO0XFBSkTZs2aefOnfb5Ll++HOclAhJSw4Ove/bs2TEuBxDX3y+5Pe578NChQzpx4kSM6VevXtWmTZuUPn16+fj4yMnJSfXq1dOiRYu0devWOJ8jvtvRSs7OzqpWrZrmz5+vM2fO2KcfPnw4Xud+x+bSpUsO952cnOy9Ah7WvnPmzClnZ+cYlwEZNWqUw/34fJ4FBQXJy8tLX331VaznP0Z93kd/v0fverlixYo4T4XYtm2bvL295e/vH+drQfxw5AqWql27tqpUqaIvvvhCx44dU4kSJbR8+XItWLBAnTp1cjh/qFSpUlq5cqWGDBkiPz8/5c6dW2XKlNEbb7yhX375Rd7e3ipSpIg2bdqklStXxri2Rnx16NBBN2/e1JtvvqlChQrpzp072rhxo2bOnKlcuXLZz0tJjJoGDx6s0NBQtWvXTp6ennrvvff0/vvva9asWfroo4+0Zs0aVahQQREREdq/f79mzZqlZcuWqXTp0goICFDjxo01atQohYaGqnz58lq1alW897q5urpq7ty5qlatmipVqqS3335bFSpUkKurq/bs2aP//e9/Sp8+vQYOHKhChQopb9686tq1q06fPi0vLy/9+uuvcXbn8fDw0NKlS9WsWTOVKVNGS5Ys0W+//abPP//8ocPcRg0u8cUXX6hRo0ZydXVV7dq19dprr9n3CH744Ye6fv26fv75Z/n6+jocWUyookWLKigoyGEodknq16+ffZ6vv/5aa9asUZkyZdSmTRsVKVJEly9f1vbt27Vy5Updvnz5sZ8/Lq6urvrmm2/UokULBQYGqnHjxvahxnPlyqXOnTvHulyqVKm0ePFivfrqq6pZs6bWrVunokWLJslrWLhwoa5du6Y6derE+njZsmXl4+OjadOm6Z133lG3bt00Z84cvfXWW2rZsqVKlSqly5cva+HChRozZoxKlCjxxNvn4MGDqlq1qt5++20VKVJELi4umjdvnkJCQtSoUSNJ0uTJkzVq1Ci9+eabyps3r65du6aff/5ZXl5eDw0UVhgwYIBWrFihihUr6uOPP5aLi4vGjh2r8PBwh+scBQQEyNnZWd98841CQ0Pl7u5uv+ZbcHCw+vXrpxo1aqhOnTo6cOCARo0apZdeesk+SIKTk5NGjx6t2rVrKyAgQC1atFCWLFm0f/9+7dmzR8uWLZN0//OoZs2aKleunFq1amUfit3b29t+PbrYPMk2rFu3rr788kutW7cu1i6jEyZMiPW8lU8++STe26979+6aOnWqqlevrg4dOtiHYs+RI4cuX7782EeW3njjDfXv318tWrRQ+fLl9e+//2ratGkxzjfNmzev0qVLpzFjxsjT01Np0qRRmTJlLDk/80k87ntw165devfdd1WzZk298sorypAhg06fPq3JkyfrzJkzGjZsmH2H2FdffaXly5crMDDQfmmRs2fPavbs2dqwYYPSpUsX7+1otb59+2r58uWqUKGC2rZta9/xW7RoUYcgHl+tW7fW5cuX9eqrrypbtmw6fvy4RowYoYCAgIce7fH29tZbb72lESNGyGazKW/evFq8eHGMc2Hj83nm5eWl0aNH6/3339eLL76oRo0aycfHRydOnNBvv/2mChUq2Hd8Dho0SLVq1VLFihXVsmVLXb58WSNGjJC/v7/9+ojRrVixQrVr135qj8SmKEkyJiGeWQ8OxW7M/aFCO3fubPz8/Iyrq6vJnz+/GTx4cIyhX/fv328qVapkUqVKZSTZh5C9cuWKadGihcmYMaNJmzatCQoKMvv3748xzGx8h2JfsmSJadmypSlUqJBJmzatcXNzM/ny5TMdOnQwISEhltYU2/DCERERpnHjxsbFxcXMnz/fGHN/qOlvvvnG+Pv7G3d3d5M+fXpTqlQp069fPxMaGmpf9tatW6Zjx47mhRdeMGnSpDG1a9c2J0+ejNdQ7FGuXLlievfubYoVK2ZSp05tPDw8TNGiRU1wcLA5e/asfb69e/eaatWqmbRp05qMGTOaNm3a2Ie3jT40btTQ4EeOHDGvvfaaSZ06tcmUKZPp06dPjOF2Y6vzyy+/NFmzZjVOTk4OwyQvXLjQFC9e3Hh4eJhcuXKZb775xkyYMOGRQynHRZJp166dmTp1qsmfP79xd3c3JUuWjLW9hISEmHbt2pns2bMbV1dXkzlzZlO1alXz008/2eeJam+zZ89+5HM/KK6hmmfOnGlKlixp3N3dTYYMGUyTJk3MqVOnHOaJPhR7lIsXL5oiRYqYzJkzm0OHDj3xa4htCOQH1a5d23h4eJgbN27EOU/z5s2Nq6urfUj4S5cumfbt25usWbMaNzc3ky1bNtOsWTP744/apo/aPhcvXjTt2rUzhQoVMmnSpDHe3t6mTJkyZtasWfZ5tm/fbho3bmxy5Mhh3N3dja+vr3njjTcchuiPS2BgoPH393/kfFFtLTbbt283QUFBJm3atCZ16tSmSpUqZuPGjTHm+/nnn02ePHmMs7NzjM+1kSNHmkKFChlXV1eTKVMm07Zt2xhDrhtzf6j+6tWrG09PT5MmTRpTvHhxh6GpjTFm5cqVpkKFCiZVqlTGy8vL1K5d2+zdu9dhngeHYn+SbWiMMcWLFzetWrWK9Tniup08eTJB22/Hjh3mlVdeMe7u7iZbtmxm0KBB5ocffjCSzLlz5+zzxTUUe2xt8Pbt2+bTTz81WbJkMalSpTIVKlQwmzZtivUzaMGCBaZIkSL2Yb6j3ktxtaEHh/mOq464hqyPGqI8+qUvHvw+MubR78HYhISEmK+//toEBgaaLFmyGBcXF5M+fXrz6quvmjlz5sSY//jx46Zp06bGx8fHuLu7mzx58ph27drZL/cQ3+2YkKHYY3u/xfb6V61aZUqWLGnc3NxM3rx5zbhx48ynn35qPDw84nz9UR78G82ZM8e89tprxtfX17i5uZkcOXKYDz/80OF7NC4XLlwwDRo0MKlTpzbp06c3H374odm9e7fD643P51mUNWvWmKCgIOPt7W08PDxM3rx5TfPmzWO8J3/99VdTuHBh4+7ubooUKWLmzp0b43UZY8y+ffuMJLNy5cpHvhY8ms0YLsUMIP6aN2+uOXPmxLrn62lis9nUrl27GF1UASStX375Re3atdOJEyfivDh2YujUqZPGjh2r69evxzkAAp4/9erV0549e2I9H+l51alTJ61fv17btm3jyJUFOOcKAAAkmiZNmihHjhyxDoRilVu3bjncv3Tpkn755RdVrFiRYPUce7BdHDp0SL///rt9QCDcf6+MGzdOAwYMIFhZhHOuAABAonFycrJ01LrYlCtXTpUrV1bhwoUVEhKi8ePHKywsTL169UrU58XTLU+ePGrevLn9unCjR4+Wm5ubunfvntylPTVeeOGFp74nSkpDuAIAACna66+/rjlz5uinn36SzWbTiy++qPHjx6tSpUrJXRqSUY0aNTR9+nSdO3dO7u7uKleunL766qtYL64LWIVzrgAAAADAApxzBQAAAAAWIFwBAAAAgAU45yoWkZGROnPmjDw9PRk5BQAAAHiOGWN07do1+fn5ycnp4cemCFexOHPmjLJnz57cZQAAAAB4Spw8eVLZsmV76DyEq1h4enpKur8Bvby8krkaAAAAAMklLCxM2bNnt2eEhyFcxSKqK6CXlxfhCgAAAEC8ThdiQAsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALuCR3AQAAANGV6jYluUtAEto2uGlylwBYhiNXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWSNZwtX79etWuXVt+fn6y2WyaP3++w+M2my3W2+DBg+NcZ9++fWPMX6hQoUR+JQAAAACed8karm7cuKESJUroxx9/jPXxs2fPOtwmTJggm82mBg0aPHS9/v7+Dstt2LAhMcoHAAAAADuX5HzymjVrqmbNmnE+njlzZof7CxYsUJUqVZQnT56HrtfFxSXGsgAAAACQmFLMOVchISH67bff1KpVq0fOe+jQIfn5+SlPnjxq0qSJTpw48dD5w8PDFRYW5nADAAAAgIRI1iNXCTF58mR5enqqfv36D52vTJkymjRpkgoWLKizZ8+qX79+euWVV7R79255enrGusygQYPUr1+/xCgbAAAAT6lS3aYkdwlIQtsGN03050gxR64mTJigJk2ayMPD46Hz1axZU2+99ZaKFy+uoKAg/f7777p69apmzZoV5zLBwcEKDQ21306ePGl1+QAAAACecSniyNUff/yhAwcOaObMmQleNl26dCpQoIAOHz4c5zzu7u5yd3d/khIBAAAAPOdSxJGr8ePHq1SpUipRokSCl71+/bqOHDmiLFmyJEJlAAAAAHBfsoar69eva+fOndq5c6ck6ejRo9q5c6fDABRhYWGaPXu2WrduHes6qlatqpEjR9rvd+3aVevWrdOxY8e0ceNGvfnmm3J2dlbjxo0T9bUAAAAAeL4la7fArVu3qkqVKvb7Xbp0kSQ1a9ZMkyZNkiTNmDFDxpg4w9GRI0d08eJF+/1Tp06pcePGunTpknx8fFSxYkVt3rxZPj4+ifdCAAAAADz3kjVcVa5cWcaYh87zwQcf6IMPPojz8WPHjjncnzFjhhWlAQAAAECCpIhzrgAAAADgaUe4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAskartavX6/atWvLz89PNptN8+fPd3i8efPmstlsDrcaNWo8cr0//vijcuXKJQ8PD5UpU0Z///13Ir0CAAAAALgvWcPVjRs3VKJECf34449xzlOjRg2dPXvWfps+ffpD1zlz5kx16dJFffr00fbt21WiRAkFBQXp/PnzVpcPAAAAAHYuyfnkNWvWVM2aNR86j7u7uzJnzhzvdQ4ZMkRt2rRRixYtJEljxozRb7/9pgkTJuizzz57onoBAAAAIC5P/TlXa9eula+vrwoWLKi2bdvq0qVLcc57584dbdu2TdWqVbNPc3JyUrVq1bRp06Y4lwsPD1dYWJjDDQAAAAAS4qkOVzVq1NCUKVO0atUqffPNN1q3bp1q1qypiIiIWOe/ePGiIiIilClTJofpmTJl0rlz5+J8nkGDBsnb29t+y549u6WvAwAAAMCzL1m7BT5Ko0aN7P8vVqyYihcvrrx582rt2rWqWrWqZc8THBysLl262O+HhYURsAAAAAAkyFN95OpBefLkUcaMGXX48OFYH8+YMaOcnZ0VEhLiMD0kJOSh5225u7vLy8vL4QYAAAAACZGiwtWpU6d06dIlZcmSJdbH3dzcVKpUKa1atco+LTIyUqtWrVK5cuWSqkwAAAAAz6FkDVfXr1/Xzp07tXPnTknS0aNHtXPnTp04cULXr19Xt27dtHnzZh07dkyrVq1S3bp1lS9fPgUFBdnXUbVqVY0cOdJ+v0uXLvr55581efJk7du3T23bttWNGzfsowcCAAAAQGJI1nOutm7dqipVqtjvR5331KxZM40ePVr//POPJk+erKtXr8rPz0+vvfaavvzyS7m7u9uXOXLkiC5evGi//8477+jChQvq3bu3zp07p4CAAC1dujTGIBcAAAAAYKVkDVeVK1eWMSbOx5ctW/bIdRw7dizGtPbt26t9+/ZPUhoAAAAAJEiKOucKAAAAAJ5WhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACyQrOFq/fr1ql27tvz8/GSz2TR//nz7Y3fv3lWPHj1UrFgxpUmTRn5+fmratKnOnDnz0HX27dtXNpvN4VaoUKFEfiUAAAAAnnfJGq5u3LihEiVK6Mcff4zx2M2bN7V9+3b16tVL27dv19y5c3XgwAHVqVPnkev19/fX2bNn7bcNGzYkRvkAAAAAYOeSkJmvXr2qefPm6Y8//tDx48d18+ZN+fj4qGTJkgoKClL58uUT9OQ1a9ZUzZo1Y33M29tbK1ascJg2cuRIvfzyyzpx4oRy5MgR53pdXFyUOXPmBNUCAAAAAE8iXkeuzpw5o9atWytLliwaMGCAbt26pYCAAFWtWlXZsmXTmjVrVL16dRUpUkQzZ85MtGJDQ0Nls9mULl26h8536NAh+fn5KU+ePGrSpIlOnDjx0PnDw8MVFhbmcAMAAACAhIjXkauSJUuqWbNm2rZtm4oUKRLrPLdu3dL8+fM1bNgwnTx5Ul27drW00Nu3b6tHjx5q3LixvLy84pyvTJkymjRpkgoWLKizZ8+qX79+euWVV7R79255enrGusygQYPUr18/S+sFAAAA8HyJV7jau3evXnjhhYfOkypVKjVu3FiNGzfWpUuXLCkuyt27d/X222/LGKPRo0c/dN7o3QyLFy+uMmXKKGfOnJo1a5ZatWoV6zLBwcHq0qWL/X5YWJiyZ89uTfEAAAAAngvxClePClZPOv/DRAWr48ePa/Xq1Q89ahWbdOnSqUCBAjp8+HCc87i7u8vd3f1JSwUAAADwHEvQgBaStHr1as2dO1fHjh2TzWZT7ty51bBhQ1WqVMny4qKC1aFDh7RmzZrHCm3Xr1/XkSNH9P7771teHwAAAABESdBQ7B999JGqVaum6dOn69KlS7pw4YKmTZumKlWqqEOHDgl+8uvXr2vnzp3auXOnJOno0aPauXOnTpw4obt376phw4baunWrpk2bpoiICJ07d07nzp3TnTt37OuoWrWqRo4cab/ftWtXrVu3TseOHdPGjRv15ptvytnZWY0bN05wfQAAAAAQX/E+cjVv3jxNnDhREyZMULNmzWSz2SRJkZGRmjRpktq2bavq1avH6zpUUbZu3aoqVarY70ed99SsWTP17dtXCxculCQFBAQ4LLdmzRpVrlxZknTkyBFdvHjR/tipU6fs5335+PioYsWK2rx5s3x8fOJdFwAAAAAkVLzD1cSJE9WlSxc1b97cYbqTk5NatmypAwcOaPz48QkKV5UrV5YxJs7HH/ZYlGPHjjncnzFjRryfHwAAAACsEu9wtX37dvXs2TPOx+vXr68GDRpYUhSA+CvVbUpyl4AktG1w0+QuAQAAxCHe51xdvHhR2bJli/PxbNmyWT4EOwAAAACkFPEOV3fu3JGrq2ucj7u4uDgMNAEAAAAAz5MEDcXeq1cvpU6dOtbHbt68aUlBAAAAAJASxTtcVapUSQcOHHjkPAAAAADwPIp3uFq7dm0ilgEAeNoxeMrzhcFTACDhEnQR4djcu3dP169ft6IWAAAAAEix4h2uFi1apEmTJjlMGzhwoNKmTat06dLptdde05UrV6yuDwAAAABShHiHqyFDhujGjRv2+xs3blTv3r3Vq1cvzZo1SydPntSXX36ZKEUCAAAAwNMu3uFqz549Kl++vP3+nDlzVL16dX3xxReqX7++vv/+ey1atChRigQAAACAp128w9W1a9f0wgsv2O9v2LBBVatWtd/39/fXmTNnrK0OAAAAAFKIeIerrFmzat++fZKk69eva9euXQ5Hsi5duhTnNbAAAAAA4FkX73D11ltvqVOnTvrll1/Upk0bZc6cWWXLlrU/vnXrVhUsWDBRigQAAACAp128r3PVu3dvnT59Wh07dlTmzJk1depUOTs72x+fPn26ateunShFAgAAAMDTLt7hKlWqVJoyJe4LSK5Zs8aSggAAAAAgJXriiwgDAAAAABJw5Cp9+vSy2Wwxpnt7e6tAgQLq2rWrqlevbmlxAAAAAJBSxDtcDRs2LNbpV69e1bZt2/TGG29ozpw5nHcFAAAA4LkU73DVrFmzhz4eEBCgQYMGEa4AAAAAPJcsO+fqjTfe0P79+61aHQAAAACkKJaFq/DwcLm5uVm1OgAAAABIUSwLV+PHj1dAQIBVqwMAAACAFCXe51x16dIl1umhoaHavn27Dh48qPXr11tWGAAAAACkJPEOVzt27Ih1upeXl6pXr665c+cqd+7clhUGAAAAAClJvMPVmjVrErMOAAAAAEjRLDvnCgAAAACeZ/EKVx999JFOnToVrxXOnDlT06ZNe6KiAAAAACCliVe3QB8fH/n7+6tChQqqXbu2SpcuLT8/P3l4eOjKlSvau3evNmzYoBkzZsjPz08//fRTYtcNAAAAAE+VeIWrL7/8Uu3bt9e4ceM0atQo7d271+FxT09PVatWTT/99JNq1KiRKIUCAAAAwNMs3gNaZMqUSV988YW++OILXblyRSdOnNCtW7eUMWNG5c2bVzabLTHrBAAAAICnWrzDVXTp06dX+vTpra4FAAAAAFIsRgsEAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxGu0wJIlS8Z7qPXt27c/UUEAAAAAkBLFK1zVq1cvkcsAAAAAgJQtXuGqT58+iV0HAAAAAKRonHMFAAAAABaI15Gr6CIiIjR06FDNmjVLJ06c0J07dxwev3z5smXFAQAAAEBKkeAjV/369dOQIUP0zjvvKDQ0VF26dFH9+vXl5OSkvn37JkKJAAAAAPD0S3C4mjZtmn7++Wd9+umncnFxUePGjTVu3Dj17t1bmzdvTowaAQAAAOCpl+Bwde7cORUrVkySlDZtWoWGhkqS3njjDf3222/WVgcAAAAAKUSCw1W2bNl09uxZSVLevHm1fPlySdKWLVvk7u5ubXUAAAAAkEIkOFy9+eabWrVqlSSpQ4cO6tWrl/Lnz6+mTZuqZcuWlhcIAAAAAClBgkcL/Prrr+3/f+edd5QzZ05t3LhR+fPnV+3atS0tDgAAAABSigSHq/Xr16t8+fJycbm/aNmyZVW2bFndu3dP69evV6VKlSwvEgAAAACedgnuFlilSpVYr2UVGhqqKlWqJGhd69evV+3ateXn5yebzab58+c7PG6MUe/evZUlSxalSpVK1apV06FDhx653h9//FG5cuWSh4eHypQpo7///jtBdQEAAABAQiU4XBljZLPZYky/dOmS0qRJk6B13bhxQyVKlNCPP/4Y6+PffvutfvjhB40ZM0Z//fWX0qRJo6CgIN2+fTvOdc6cOVNdunRRnz59tH37dpUoUUJBQUE6f/58gmoDAAAAgISId7fA+vXrS5JsNpuaN2/uMDJgRESE/vnnH5UvXz5BT16zZk3VrFkz1seMMRo2bJh69uypunXrSpKmTJmiTJkyaf78+WrUqFGsyw0ZMkRt2rRRixYtJEljxozRb7/9pgkTJuizzz5LUH0AAAAAEF/xPnLl7e0tb29vGWPk6elpv+/t7a3MmTPrgw8+0NSpUy0r7OjRozp37pyqVavmUEOZMmW0adOmWJe5c+eOtm3b5rCMk5OTqlWrFucykhQeHq6wsDCHGwAAAAAkRLyPXE2cOFGSlCtXLnXt2jXBXQAT6ty5c5KkTJkyOUzPlCmT/bEHXbx4UREREbEus3///jifa9CgQerXr98TVgwAAADgeZbgc6769OmT6MEqqQUHBys0NNR+O3nyZHKXBAAAACCFideRqxdffFGrVq1S+vTpVbJkyVgHtIiyfft2SwrLnDmzJCkkJERZsmSxTw8JCVFAQECsy2TMmFHOzs4KCQlxmB4SEmJfX2zc3d0dziEDAAAAgISKV7iqW7euPXzUq1cvMeuxy507tzJnzqxVq1bZw1RYWJj++usvtW3bNtZl3NzcVKpUKa1atcpeZ2RkpFatWqX27dsnSd0AAAAAnk/xCld9+vSJ9f9P6vr16zp8+LD9/tGjR7Vz505lyJBBOXLkUKdOnTRgwADlz59fuXPnVq9eveTn5+cQ8KpWrao333zTHp66dOmiZs2aqXTp0nr55Zc1bNgw3bhxwz56IAAAAAAkhngPaPGgrVu3at++fZKkIkWKqFSpUo+1jugXHu7SpYskqVmzZpo0aZK6d++uGzdu6IMPPtDVq1dVsWJFLV26VB4eHvZljhw5oosXL9rvv/POO7pw4YJ69+6tc+fOKSAgQEuXLo0xyAUAAAAAWCnB4erUqVNq3Lix/vzzT6VLl06SdPXqVZUvX14zZsxQtmzZ4r2uypUryxgT5+M2m039+/dX//7945zn2LFjMaa1b9+eboAAAAAAklSCRwts3bq17t69q3379uny5cu6fPmy9u3bp8jISLVu3ToxagQAAACAp16Cj1ytW7dOGzduVMGCBe3TChYsqBEjRuiVV16xtDgAAAAASCkSfOQqe/bsunv3bozpERER8vPzs6QoAAAAAEhpEhyuBg8erA4dOmjr1q32aVu3btUnn3yi7777ztLiAAAAACClSHC3wObNm+vmzZsqU6aMXFzuL37v3j25uLioZcuWatmypX3ey5cvW1cpAAAAADzFEhyuhg0blghlAAAAAEDKluBw1axZs8SoAwAAAABStMe+iLAk3b59W3fu3HGY5uXl9UQFAQAAAEBKlOABLW7cuKH27dvL19dXadKkUfr06R1uAAAAAPA8SnC46t69u1avXq3Ro0fL3d1d48aNU79+/eTn56cpU6YkRo0AAAAA8NRLcLfARYsWacqUKapcubJatGihV155Rfny5VPOnDk1bdo0NWnSJDHqBAAAAICnWoKPXF2+fFl58uSRdP/8qqjh1itWrKj169dbWx0AAAAApBAJDld58uTR0aNHJUmFChXSrFmzJN0/opUuXTpLiwMAAACAlCLB4apFixbatWuXJOmzzz7Tjz/+KA8PD3Xu3FndunWzvEAAAAAASAkSfM5V586d7f+vVq2a9u/fr23btilfvnwqXry4pcUBAAAAQErxRNe5kqScOXMqZ86cVtQCAAAAAClWvLsFrl69WkWKFFFYWFiMx0JDQ+Xv768//vjD0uIAAAAAIKWId7gaNmyY2rRpIy8vrxiPeXt768MPP9SQIUMsLQ4AAAAAUop4h6tdu3apRo0acT7+2muvadu2bZYUBQAAAAApTbzDVUhIiFxdXeN83MXFRRcuXLCkKAAAAABIaeIdrrJmzardu3fH+fg///yjLFmyWFIUAAAAAKQ08Q5Xr7/+unr16qXbt2/HeOzWrVvq06eP3njjDUuLAwAAAICUIt5Dsffs2VNz585VgQIF1L59exUsWFCStH//fv3444+KiIjQF198kWiFAgAAAMDTLN7hKlOmTNq4caPatm2r4OBgGWMkSTabTUFBQfrxxx+VKVOmRCsUAAAAAJ5mCbqIcM6cOfX777/rypUrOnz4sIwxyp8/v9KnT59Y9QEAAABAipCgcBUlffr0eumll6yuBQAAAABSrHgPaAEAAAAAiBvhCgAAAAAsQLgCAAAAAAsQrgAAAADAAvEa0GLhwoXxXmGdOnUeuxgAAAAASKniFa7q1asXr5XZbDZFREQ8ST0AAAAAkCLFK1xFRkYmdh0AAAAAkKJxzhUAAAAAWOCxLiJ848YNrVu3TidOnNCdO3ccHuvYsaMlhQEAAABASpLgcLVjxw69/vrrunnzpm7cuKEMGTLo4sWLSp06tXx9fQlXAAAAAJ5LCQ5XnTt3Vu3atTVmzBh5e3tr8+bNcnV11XvvvadPPvkkMWpMkUp1m5LcJSAJbRvcNLlLAAAAQDJL8DlXO3fu1KeffionJyc5OzsrPDxc2bNn17fffqvPP/88MWoEAAAAgKdegsOVq6urnJzuL+br66sTJ05Ikry9vXXy5ElrqwMAAACAFCLB3QJLliypLVu2KH/+/AoMDFTv3r118eJF/fLLLypatGhi1AgAAAAAT70EH7n66quvlCVLFknSwIEDlT59erVt21YXLlzQ2LFjLS8QAAAAAFKCBB+5Kl26tP3/vr6+Wrp0qaUFAQAAAEBKlOAjV6+++qquXr0aY3pYWJheffVVK2oCAAAAgBQnweFq7dq1MS4cLEm3b9/WH3/8YUlRAAAAAJDSxLtb4D///GP//969e3Xu3Dn7/YiICC1dulRZs2a1tjoAAAAASCHiHa4CAgJks9lks9li7f6XKlUqjRgxwtLiAAAAACCliHe4Onr0qIwxypMnj/7++2/5+PjYH3Nzc5Ovr6+cnZ0TpUgAAAAAeNrF+5yrnDlzKleuXIqMjFTp0qWVM2dO+y1LliyJFqxy5cplP2IW/dauXbtY5580aVKMeT08PBKlNgAAAACIkuCh2CXpyJEjGjZsmPbt2ydJKlKkiD755BPlzZvX0uIkacuWLYqIiLDf3717t6pXr6633norzmW8vLx04MAB+32bzWZ5XQAAAAAQXYLD1bJly1SnTh0FBASoQoUKkqQ///xT/v7+WrRokapXr25pgdG7H0rS119/rbx58yowMDDOZWw2mzJnzmxpHQAAAADwMAkOV5999pk6d+6sr7/+Osb0Hj16WB6uortz546mTp2qLl26PPRo1PXr15UzZ05FRkbqxRdf1FdffSV/f/845w8PD1d4eLj9flhYmKV1AwAAAHj2Jfg6V/v27VOrVq1iTG/ZsqX27t1rSVFxmT9/vq5evarmzZvHOU/BggU1YcIELViwQFOnTlVkZKTKly+vU6dOxbnMoEGD5O3tbb9lz549EaoHAAAA8CxLcLjy8fHRzp07Y0zfuXOnfH19ragpTuPHj1fNmjXl5+cX5zzlypVT06ZNFRAQoMDAQM2dO1c+Pj4aO3ZsnMsEBwcrNDTUfjt58mRilA8AAADgGRbvboH9+/dX165d1aZNG33wwQf677//VL58eUn3z7n65ptv1KVLl0Qr9Pjx41q5cqXmzp2boOVcXV1VsmRJHT58OM553N3d5e7u/qQlAgAAAHiOxTtc9evXTx999JF69eolT09Pff/99woODpYk+fn5qW/fvurYsWOiFTpx4kT5+vqqVq1aCVouIiJC//77r15//fVEqgwAAAAAEhCujDGS7o/E17lzZ3Xu3FnXrl2TJHl6eiZOdf9fZGSkJk6cqGbNmsnFxbHkpk2bKmvWrBo0aJCk+0fYypYtq3z58unq1asaPHiwjh8/rtatWydqjQAAAACebwkaLfDBEfoSO1RFWblypU6cOKGWLVvGeOzEiRNycvq/U8euXLmiNm3a6Ny5c0qfPr1KlSqljRs3qkiRIklSKwAAAIDnU4LCVYECBR55Qd7Lly8/UUGxee211+xHzh60du1ah/tDhw7V0KFDLa8BAAAAAB4mQeGqX79+8vb2TqxaAAAAACDFSlC4atSoUaIPtw4AAAAAKVG8r3P1qO6AAAAAAPA8i3e4iuucJwAAAABAAroFRkZGJmYdAAAAAJCixfvIFQAAAAAgboQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwwFMdrvr27SubzeZwK1So0EOXmT17tgoVKiQPDw8VK1ZMv//+exJVCwAAAOB59lSHK0ny9/fX2bNn7bcNGzbEOe/GjRvVuHFjtWrVSjt27FC9evVUr1497d69OwkrBgAAAPA8eurDlYuLizJnzmy/ZcyYMc55hw8frho1aqhbt24qXLiwvvzyS7344osaOXJkElYMAAAA4Hn01IerQ4cOyc/PT3ny5FGTJk104sSJOOfdtGmTqlWr5jAtKChImzZteuhzhIeHKywszOEGAAAAAAnxVIerMmXKaNKkSVq6dKlGjx6to0eP6pVXXtG1a9dinf/cuXPKlCmTw7RMmTLp3LlzD32eQYMGydvb237Lnj27Za8BAAAAwPPhqQ5XNWvW1FtvvaXixYsrKChIv//+u65evapZs2ZZ+jzBwcEKDQ21306ePGnp+gEAAAA8+1ySu4CESJcunQoUKKDDhw/H+njmzJkVEhLiMC0kJESZM2d+6Hrd3d3l7u5uWZ0AAAAAnj9P9ZGrB12/fl1HjhxRlixZYn28XLlyWrVqlcO0FStWqFy5cklRHgAAAIDn2FMdrrp27ap169bp2LFj2rhxo9588005OzurcePGkqSmTZsqODjYPv8nn3yipUuX6vvvv9f+/fvVt29fbd26Ve3bt0+ulwAAAADgOfFUdws8deqUGjdurEuXLsnHx0cVK1bU5s2b5ePjI0k6ceKEnJz+Lx+WL19e//vf/9SzZ099/vnnyp8/v+bPn6+iRYsm10sAAAAA8Jx4qsPVjBkzHvr42rVrY0x766239NZbbyVSRQAAAAAQu6e6WyAAAAAApBSEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALPNXhatCgQXrppZfk6ekpX19f1atXTwcOHHjoMpMmTZLNZnO4eXh4JFHFAAAAAJ5XT3W4Wrdundq1a6fNmzdrxYoVunv3rl577TXduHHjoct5eXnp7Nmz9tvx48eTqGIAAAAAzyuX5C7gYZYuXepwf9KkSfL19dW2bdtUqVKlOJez2WzKnDlzYpcHAAAAAHZP9ZGrB4WGhkqSMmTI8ND5rl+/rpw5cyp79uyqW7eu9uzZ89D5w8PDFRYW5nADAAAAgIRIMeEqMjJSnTp1UoUKFVS0aNE45ytYsKAmTJigBQsWaOrUqYqMjFT58uV16tSpOJcZNGiQvL297bfs2bMnxksAAAAA8AxLMeGqXbt22r17t2bMmPHQ+cqVK6emTZsqICBAgYGBmjt3rnx8fDR27Ng4lwkODlZoaKj9dvLkSavLBwAAAPCMe6rPuYrSvn17LV68WOvXr1e2bNkStKyrq6tKliypw4cPxzmPu7u73N3dn7RMAAAAAM+xp/rIlTFG7du317x587R69Wrlzp07weuIiIjQv//+qyxZsiRChQAAAABw31N95Kpdu3b63//+pwULFsjT01Pnzp2TJHl7eytVqlSSpKZNmypr1qwaNGiQJKl///4qW7as8uXLp6tXr2rw4ME6fvy4WrdunWyvAwAAAMCz76kOV6NHj5YkVa5c2WH6xIkT1bx5c0nSiRMn5OT0fwfgrly5ojZt2ujcuXNKnz69SpUqpY0bN6pIkSJJVTYAAACA59BTHa6MMY+cZ+3atQ73hw4dqqFDhyZSRQAAAAAQu6f6nCsAAAAASCkIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWCBFhKsff/xRuXLlkoeHh8qUKaO///77ofPPnj1bhQoVkoeHh4oVK6bff/89iSoFAAAA8Lx66sPVzJkz1aVLF/Xp00fbt29XiRIlFBQUpPPnz8c6/8aNG9W4cWO1atVKO3bsUL169VSvXj3t3r07iSsHAAAA8Dx56sPVkCFD1KZNG7Vo0UJFihTRmDFjlDp1ak2YMCHW+YcPH64aNWqoW7duKly4sL788ku9+OKLGjlyZBJXDgAAAOB54pLcBTzMnTt3tG3bNgUHB9unOTk5qVq1atq0aVOsy2zatEldunRxmBYUFKT58+fH+Tzh4eEKDw+33w8NDZUkhYWFPXbtEeG3HntZpDxP0laeFG3t+UJbQ1KhrSGp0NaQVB63rUUtZ4x55LxPdbi6ePGiIiIilClTJofpmTJl0v79+2Nd5ty5c7HOf+7cuTifZ9CgQerXr1+M6dmzZ3+MqvE88h7xUXKXgOcEbQ1JhbaGpEJbQ1J50rZ27do1eXt7P3SepzpcJZXg4GCHo12RkZG6fPmyXnjhBdlstmSsLGUJCwtT9uzZdfLkSXl5eSV3OXiG0daQVGhrSCq0NSQV2lrCGWN07do1+fn5PXLepzpcZcyYUc7OzgoJCXGYHhISosyZM8e6TObMmRM0vyS5u7vL3d3dYVq6dOker2jIy8uLNyuSBG0NSYW2hqRCW0NSoa0lzKOOWEV5qge0cHNzU6lSpbRq1Sr7tMjISK1atUrlypWLdZly5co5zC9JK1asiHN+AAAAALDCU33kSpK6dOmiZs2aqXTp0nr55Zc1bNgw3bhxQy1atJAkNW3aVFmzZtWgQYMkSZ988okCAwP1/fffq1atWpoxY4a2bt2qn376KTlfBgAAAIBn3FMfrt555x1duHBBvXv31rlz5xQQEKClS5faB604ceKEnJz+7wBc+fLl9b///U89e/bU559/rvz582v+/PkqWrRocr2E54a7u7v69OkTo4slYDXaGpIKbQ1JhbaGpEJbS1w2E58xBQEAAAAAD/VUn3MFAAAAACkF4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAAAOIiMjk7uEFIlwBQAAAMDu66+/Vvv27XX37t3kLiXFIVwhxYm6egBXEQAAwBp8pyK6bNmyacyYMerVqxcBK4EIV0hxrly5ovDwcF27dk0SXwhIfLQxAM+yvXv3ymazSZImTJigrVu3JnNFSE7GGL333nuaPXu2hgwZop49e+r27dvJXVaKQbhCivLLL7+obt26evHFF/XGG29o/vz59i8EwEq//fabFi5cKEmy2WwELCQKzmlAcvvnn39Uq1YtDR06VN26ddPHH3+sDBkyJHdZSCbRv+sCAwP1zTffaPDgwfruu+90586dZKws5XBJ7gKA+Jo7d64++OADfffdd7p586aOHj2q+vXrKzg4WF26dNELL7yQ3CXiGTFnzhy9/fbbypo1q+7du6f69evbAxZhHlaJjIyUk9P9fZwLFizQ4cOH5evrq1KlSqlIkSLJXB2eFxkyZFDLli01YMAARUREaO/evcqTJ4/u3bsnFxd+Jj5vor7jfv31V3366aeqWrWqcuTIod69e+vatWsaMGCAXF1dk7nKpxvvGqQYv//+u9599121a9fOPq18+fJq2rSp7t69q/79+8vDwyMZK8SzYMeOHfruu+/UunVrRUREqGfPnjLGqEGDBgQsWMYYYw9WPXr00JQpU+Tv76+zZ88qZ86c+uCDD1SvXr3kLRLPhWzZsilr1qy6du2a/Pz8tGDBAnXu3FkuLi6KiIiQs7NzcpeIJHbgwAG1bt1agwYNUsuWLRUaGqr58+fr448/liR9+eWXcnNzS+Yqn16EK6QIxhidPXtWfn5+kv6vK817770nFxcXNWnSRAULFlSrVq348Ysn4uzsrJw5c+qTTz6RJA0dOlS9evWSJAIWLBPVfn744QfNmDFD8+bNU9myZTVs2DB99tln9nNL33nnHUmizcFSUUdNo9pVpUqV9Mcff2jZsmUaM2aMbt++reDgYILVcyosLEwZMmRQUFCQ3Nzc5OPjozZt2igiIkIff/yx0qVLp06dOilVqlTJXepTiXOu8FSL6vsb9eE/e/Zs7d271/6lYIxRo0aN1KdPH/Xu3VvHjx/nBwgeS1RgL168uL777jv5+/vL399f7du3V7ly5dSrVy/NmTNH0v32eOvWreQsF8+A69eva+/everatavKli2r+fPnq2/fvurUqZM8PDz01Vdfad68eZLE5xosE7076u7du7VlyxalTp1aZcqUUbt27dSwYUNNnjxZ3377rX2ZQYMGadeuXclVMpKYh4eHjh49qv/++0/S/30/vv766/L19dUXX3yhr7/+OjlLfKrZDGdpIwW4d++erl+/rrfffltubm4aPny48ubNa+8T/ueff6pBgwZaunSpAgICkrtcpGBRbSp6d5hdu3bphx9+0KZNmzRw4EDVqVNHr776qrp3765atWolc8VIyQ4ePKg0adIoNDRUtWvXVocOHdSpUydNnz5dbdq0UdasWTV8+HDVqFEjuUvFMyD6EdAvvvhCs2fPVmRkpO7evav69eurW7ducnJy0o8//qjp06erQoUKunjxonbv3q3//vuPI1nPoKg28WAX0HfffVcnTpzQkCFD9PLLL0u6v0Ooc+fOKl++vMqVK6dChQolV9lPNY5c4ak3ceJE1apVS+nSpVOrVq0UFhamTz/9VAcOHLCfbJstWzalS5eOoULxRCZNmqSaNWvq3r17cnZ2th85LVGihDp27KgKFSro888/V6FChXTkyBG99tpryVwxUoqIiIhYp+fJk0dZs2bVH3/8oSxZsqhVq1aS7ndPDQwMVKtWrWhnsExUsBoyZIjGjx+vsWPH6vDhw3r11Vc1ZcoUHT9+XJkzZ1a7du306aef6vTp0/Ly8tLhw4fl7OzM6JbPmKhgtWrVKvXo0UNdunTR3r17JUkff/yxvL291bFjRy1evFi7du3SgAEDtHbtWr355psEq4cgXOGpZozR3bt3denSJZ09e1bvvPOOmjdvrhs3buj111/XlClTNGvWLH300Ufy9va2710BEsoYozt37ig0NFSnTp2yT4sesBo3bqxjx47Jx8dHx44dk6urq+7du5ecZeMpd+bMGUmy7xH+4Ycf1K5dO7Vq1Upnz5617yAyxujixYvaunWr7t69q2nTpqlcuXL2IwlxhTMgIYwxunfvnv744w8FBwerSpUqWrRokebOnauBAweqXLlyCg8PV6ZMmdS2bVutXLlS//vf/+yfdVHdCfFssNlsWr58uYKCgnTs2DFNmzZN77zzjiZPnqyKFSuqZ8+eKlSokOrWrauGDRtq6tSpmjVrltKlS5fcpT/V6BaIp0psJ22HhoaqRIkSeuONNzRy5EhJ0ubNmzVt2jTNnDlTuXLlko+Pj+bPny9XV1dGN0K8PKyt1a1bV8OHD3d47OrVq2rYsKHOnj2rXbt2ycXFhaGK8VDBwcEaM2aM/vrrLxUoUEB9+/bV8OHDVbNmTW3dulW3bt3StGnTVKlSJW3btk2ffvqp/vvvP7m4uChNmjTavn27XF1dGcwClomMjNSdO3dUtWpV/fjjj7p27Zpef/11fffdd/rwww8VHh6un376SaVLl1bZsmXt7Y42+GyJ+nueP39e/fr1U4kSJfTBBx9Iut8dcP/+/Wrfvr2aNm0qFxcXHThwQMYYpU+fXpkyZUrm6lMAA6QAs2bNMkWKFDEbN250mH7u3Dlz/fp1ExkZaYwx5u7du8lRHp4hUW3tr7/+cpj+77//mrffftvcuXPHGENbw6NduHDBlC9f3hQqVMjs3r3btGjRwvz999/GGGMiIiJMnTp1jK+vr1mzZo0xxpgdO3aYmTNnmtGjR9vbF+0MTyIiIiLW6Y0bNza5c+c2adKkMZMnT7ZPDwkJMYGBgWbMmDFJVSKSyV9//WUqVKhgSpUqZVavXm2ffufOHfPuu++agIAA89NPP5lr164lY5UpE8d38dT56quv1LhxY/3222/2aSVKlJCbm5u2bNkiSfauWL6+vkqTJo1sNpsiIyM5ioAEeVhb27x5s6T/GyWpaNGimjlzpr17DG0Nj5IxY0YtXrxYXl5eqlmzpnbt2qW0adNKkpycnLRgwQKVK1dOb7/9ttatW6eAgAC9/fbb+uijj+yDqtDO8Liijwr4zz//aN++fQoNDZV0/9pqvr6+ypMnj5o2bSpjjK5cuaLmzZvr3r17at26dXKWjiRQqFAh2Ww2bd++XTt37rR3gXd1ddWUKVNUvHhxDRo0yD5KLuKPcIWnTkBAgI4fP66+ffuqYsWK2rhxowoUKKBOnTqpd+/eOnHihP0HR/RuCvQFR0LFp61FDfsfHT94EV/p06fXkiVLVKxYMe3YsUMXLlyQ9H+hff78+apYsaKqVKmiHTt2OCxL92Y8iajvxO7du6t+/foqWbKkPvroIy1ZssQ+SM/du3eVLVs2BQYGqkaNGgoJCdGaNWvk7OzMeX7PmAe/x7y8vPT777/r1Vdf1S+//KJFixbZ/+bOzs4aP368qlevrsDAwOQoN0XjnCs8lW7cuKFdu3bp66+/1sGDB5UtWzY1bNhQ06ZNU+3atfXpp5/ywwOWoK3BStGPFkR35coVvf7667p8+bIWLlyoggULOpzH8tlnn2ngwIG0NTyx6G3w999/1yeffKLRo0fr0qVLGjdunCIiItSpUyfVqVNHp0+f1oQJE+Ts7KwsWbKoadOmcnZ25uj8Mybqs+bvv//Wpk2bdPv2bQUEBCgoKEjXrl1TnTp1dOvWLX3++eeqVasWn0NPiHCFp86DP04WLVqkdevW6ccff1R4eLhatGih8ePHJ2OFeFbQ1mCl6O1p0aJFOn36tHLlyqV8+fIpX758Cg0NVfXq1RUWFqYFCxbECFiSGJAHllm+fLkWLlyoPHnyqEuXLpLudw/s06ePrl69qo8//lhvvfVWjOVog8+mX3/9VR9//LFKliwpb29vzZ49WwMHDlRwcLA9YN29e1effPKJ6tevTxt4AoQrPLUe/OG7Y8cOLVu2TF27dmWPGixFW4OVevTooVGjRilPnjw6ceKEihUrppYtW6p58+YKDQ1VUFCQrl+/rpkzZ8rf3z+5y8Uz6NixY6pVq5aOHj2qjz76SEOGDLE/FhWwbty4oUaNGqlly5bJWCkSS/QdN3v37lX16tXVs2dPtW3bVidPnlTu3LnVpUsXDRo0SM7OzgoLC1OlSpXk4+OjefPm2c8PRcJxkgqS3IN5Pq58H/3HrjFGJUuW1GeffWYfAht4FNoakkL0c1O2bNmilStXatmyZdq1a5dWrFihggULasSIEZoxY4a8vb21ZMkS3b59WwMHDkzGqvEsefCzLVeuXBozZoxKliyp9evXa8WKFfbHihcvrv79++v27dvauXNnEleKxLZo0SJJsg/0JUkXLlxQoUKF1LZtWx09elTly5dXmzZt9O2338rZ2Vn79++Xl5eXNmzYoHHjxhGsnhDhCkkm6sM/ak/Kf//953D/YR6ch6MJeBjaGpLC3r17Jf3fwBPffPONxowZo8KFC6ts2bKSpNKlS6tTp07KnTu35s+fr7t37yp9+vTasWOHfvnll2SrHc+OyMhI++fWuXPndPPmTUVEROiVV17RgAED5O7urjFjxmj16tX2ZYoVK6aJEydq2LBhyVQ1EsORI0dUt25dvffee5L+b8fhrVu3dP78ef3999+qUqWKXn/9dft1Qzds2KB+/frp+PHjSps2rXLmzJls9T8rCFdIMtH3ogwaNEg9e/aM13LR98jRixXxQVtDYuvcubOaN2+u9evX26ddu3ZNEydO1MaNG3X69Gn7dH9/fzVo0EC//vqrTp48KUny9PRkRDZYIuoHdL9+/VStWjVVrVpVXbt21a1bt1SlShX169dP586d048//qg1a9bYl8ubN6+cnJzsn5VI+XLnzq2FCxdq6dKlatasmX16vnz55OPjo9dee02vvPKKxo4da98ptGDBAoWGhsrT0zO5yn7mEK6Q6D7//HP7HpKoL4HLly+rcOHCkvTQD/bofYYXLVrk8MUAPIi2hqTSpk0bhYeH65tvvtHatWslSQMGDNDw4cN17NgxTZo0SZcuXbLPnzdvXuXLly9GN1NOGsfjiv55NnXqVI0cOVJdunTRiy++qE2bNqlu3bq6efOmqlWrpn79+unChQvq27evtm/f7rAeLmPy7HByclLNmjU1efJkzZs3T02bNpV0P1zVqFFD7u7uypo1q/bu3at9+/ape/fuGj9+vL799ltlyJAhmat/dvCOQqI6deqU/v33X82YMUMTJ060Tz927Jj9R0ZcH+zRf+yOGTNGdevWpYsW4kRbQ1KJiIhQkSJFNHv2bJ04cULffvutvctVhw4dNGDAAPXp00eDBg3SunXrtGfPHvXp00eenp7Kly9fMlePZ0H0QXgWL16sM2fO6IcfflDLli31ww8/qFu3brpy5Yrq1KljD1jdu3dXkSJFFBAQkLzFI1FE9bYICwtTrVq1NH36dC1cuFBNmjSRdP96Z61atdKaNWtUokQJvf/++1q6dKlWr16tokWLJmfpzx4DJLK9e/eaZs2amfLly5tx48YZY4ypW7eu6devnzHGmIiIiBjL3L171/7/MWPGmHTp0pk5c+YkTcFIsWhrSCr37t0zxhhz4MABU7RoUVOzZk2zatUq++NfffWVsdlsxmazmWbNmpn69eubO3fuGGNib4dAfNSsWdPs2rXLfn/Lli2mQIECxsvLy8ybN88+/c6dO+bXX381L730knnttdfM9evXHdZDG3x2REZG2v+/cuVKU6NGDXP37l1z584ds3jxYuPt7W3effdd+zzHjx83a9euNfv37zfnz59PjpKfeRy5QqKJ6rJQuHBh9ejRQ3nz5tW4ceM0bdo05cqVS5kyZdKRI0d0/PhxhYSE6Ny5c9q0aZOk/xtEYOzYserevbvGjRunBg0aJNtrwdONtoakEL0bVlR3vgIFCtjPpRo8eLD9CFZwcLBGjBghSSpVqpQmTJggV1dXRURE0A0Lj+X48eMqXry4ChUqZJ+WN29etW/fXhkyZNC4cePs011dXVW7dm0FBwdr//79+vzzzyX939EN2mDKN2TIEC1YsMDhHOO///5badOmlYuLi1xdXfX6669r2rRp+u233+xHsHLkyKHAwEAVLFhQPj4+yfkSnl3Jne7wbIq+VywkJMQYc38P7/vvv2/KlCljbDab8fLyMvnz5zeZMmUyvr6+xtfX19SpU8e+F2bUqFHG29ubowh4KNoakkL0drZv3z6zadMmExYWZm7dumWMMWb//v2maNGipkaNGg5HsL788ktjs9nMsGHDzJUrV5K6bDyjvv/+e7NmzRpjjDFhYWFm1KhRplixYqZ58+YO8925c8esXbvWfqQVz4YrV66YRo0amTRp0pilS5fap3fs2NE0adLEYd6IiAizePFikzFjRlOvXr2kLvW5RLiC5aL/COnfv7+pX7++2bZtmzHGmD179pj333/flC1b1nTs2NGEhoaakJAQs2vXLnPw4EH7F8B///1ncuXKZWbPnp0srwEpA20NSSF6t5svvvjCFChQwLzwwgumRIkSZujQoebcuXPGmPuhq1ixYqZWrVrm999/ty/z7bffGpvNZkaNGuWwLuBxXLx40dSqVcukS5fO/Pnnn8YYY65evWpGjhxpAgICTIsWLWJdjoD1bDl06JBp06aNSZcunVm0aJExxpjOnTub1q1bG2OMfcePMfe7v8+dO9fkyJHDnD59OlnqfZ4QrpBogoODTaZMmczUqVPNqVOn7NP37t1rmjZtasqWLWsmT54cY7moL4CzZ88mWa1I2WhrSApffvmlyZIli1myZIkxxpg6deqYnDlzmi+++MLehvbv3298fX1Nly5dHH7MDh061OzduzdZ6kbKFlsg//fff817771nMmbMaDZs2GCM+b+AVapUKVO3bt0krhJJJfpOxY0bN5oePXqYdOnSmT/++MMMHz7cdOvWzdy+fdtcvXrVPt+JEyeMMSbGuXdIHIQrJIqtW7eaPHnymJUrVzpMj/pQ2Ldvn2nevLnJnz+/fY9LFPbsIiFoa0gKe/bsMRUrVjQLFy40xhizfPly4+npaapVq2Zy5MhhevXqZQ9Yx48ftwer6AOmAAkV/Yd0ZGSkw/1///3XNG7cOEbA+vrrr03z5s0ZtOIZFBkZaf/eWrFihQkICDCTJ082H374ofH29jY+Pj4mb968Jnfu3CZLliwmf/78JmfOnKZw4cLm8uXLyVz984OxhpEoLl26JGOMSpQoYZ9mjJGTk5Pu3r2rQoUKqWvXrsqbN69q1qzpsGzUkNhAfNDWkBT8/PzUsWNHvfrqq/rjjz/0/vvv67vvvtMHH3ygoKAgTZkyRVeuXFGfPn2UI0cOSfeHbGdIfzyu6MOtjxkzRuvXr5fNZtPLL7+sTz75REWLFtUXX3whY4zq16+vefPmqXz58mrfvr1Sp05tH+iAwSueDeb/D0Zis9k0Y8YMvfvuu5KkNGnSaMCAAfLw8NC4cePUuHFjdezYUceOHdPdu3dls9lUoEABpU+fPjnLf67wqY9E4e7urjNnzujYsWPKmDGjzP2jpLLZbFq1apXSpUunsmXLyt/fX9L9HyFcTBOPg7aGpJAuXTrVqFFDadKk0eTJk1W/fn21atVKkpQrVy6dPHlSkZGReuGFF+zL0M7wJKJC0WeffaZffvlFDRs2lKenp3r06KELFy5owIAB8vf3V8+ePeXs7KyKFStq165dKlasmKT/28mEZ4fNZtOcOXP07rvvau7cuZo5c6b27NmjBg0aqE2bNrp7964mT56shg0bqmrVqsld7nOLdx2eSPShiaPLmTOnypYtqyFDhuiff/6RzWazH0n49ttvtWjRIof5+RGCR6GtIbl5enpKki5fvqwbN27YL04dGhqq77//XiNHjpTNZrPvYQae1PTp0zVnzhz9+uuvGj58uEqXLq2IiAh99dVXatu2rSTJ399fXbt2Ve/evVWkSBH7shyZf7bYbDbNmzdPb7/9tsaPH6969erp+vXrOnPmjKT77aBLly565513FBgYqOXLlydzxc8vm+FbAI8peneDJUuW6Pr16woPD9d7770nSZo0aZJ+/vlnpUqVSk2aNJGzs7N++eUXnT9/Xtu2baO7DOKNtoanSbdu3bRs2TLly5dPZ8+eVWhoqP799185OzvTDQuWiYiI0NixY3X79m116dJFv/32m9577z0NGDBAqVKlUuvWrRUcHKyBAwc6LHfv3j0+855RS5Ys0ZUrV+xdAjt27KirV69qypQp9nkWL16sbdu2qVGjRipYsGBylfpcI1zhsUR1u5LuXyxz+vTpSp8+vS5cuKBixYrpl19+UcaMGbVgwQItWLBAs2fPVtGiRZUlSxbNnDnTfjFNjiLgUWhreFpEb4uff/65QkJC5OTkpNGjR8vFxYV2hicSvX1FCQsL04ULF5Q2bVoFBQWpSZMm6tatm3bv3q3AwEBduXJFX331lT777LNkqhrJIaqtfPXVV1q4cKH+/PNPOTs7q3///vr999+1ePFiZcyYMbnLfH4l6fAZeOYMHjzYZM6c2WzZssUYY8xPP/1kbDabqVy5sv3aL8bcv7jrtWvX7KPcMIIWEoq2hqdBXNcKop3hSTx4MfQH29nmzZtNwYIFzbFjx4wxxhw+fNi0bNnSrFmzhutXPYeivt9GjhxpChYsaIwxpm/fvsbFxcV+rUckH/ouIEEiIiLs/w8JCdHu3bs1YsQIlS5dWgsWLFC3bt3Uv39/HT9+XE2aNNHJkyclSb6+vkqbNq39fAS6LOBRaGtICiaOzhtxTY86MvXgOYC0MzyJqK6kffv2Vd26dfXSSy9p6tSpCgkJkXT/fL+DBw9q2rRp2rdvnzp06KALFy4oMDBQzs7O9vP/8HwpWrSoMmTIoPbt22vQoEHavHmzXnzxxeQuC8mb7ZBSHThwwBhjzNy5c8358+fNli1bTK5cuczIkSONMcYMGzbM2Gw2ExAQYM6fP5+cpSKFo60hsUQ/WrBnzx6zb98+c+TIkVgfjy769dEOHDhgwsLCEq9IPDcmTZpksmTJYn766SdTr1494+/vb7p3726OHz9ujLl/9N7FxcXky5fPlC5d2ty5c8cYw/X6nmebN282NpvNuLi4mO3btyd3Ofj/OHKFeJk3b5769OkjSerUqZN69Oihe/fu6c0335SPj4/++OMPFSlSxH6Spaenp1q1aiV/f39lyJAhOUtHCkNbQ1Iw0Yap7t27t959911VrlxZLVq00IgRIyTdP5rw4BEqE+28mBEjRuidd97RlStXkrZ4PBMebFvh4eHq3bu32rRpo3nz5qlJkyZasWKFRowYoZCQEHXt2lX79u3T1KlT9ddff8nV1VX37t1jVMDnWEBAgPr376/du3erZMmSyV0O/j/6MeCRwsPDdfjwYX399ddat26dtm3bpk2bNjl0gzl48KCOHz8ub29vXbt2TQsWLFDlypXVuXNnSVxbCPFDW0NSifpB2q9fP40ZM0b/+9//lDVrVn3zzTf65JNPdOPGDX322Wf2gOXk5OQQrMaOHavevXtr9OjR9osGA/EVPdxPmzZNISEh2rFjh4KCguzzBAcHS5Jmz54tm82mtm3bKl++fMqXL5+k++GM7qjPN3d3dwUHB/Od97RJ3gNnSClu375typcvb2w2m2nXrp19etSJtPv27TMvvPCCyZkzpylQoIApWrQoJ3jjsdDWkJiid6HaunWrefnll83atWuNMcYsXbrUeHp6mjfffNOkSZPGfPvtt/Z5o7exMWPGGC8vL/Prr78mXeF4ZkTvbtqtWzfj5eVlihYtapydnU3ZsmXN0aNHHeb/+uuvTdasWc2IESOSuFIAj4NdHohT9Ou13L17V6+++qpefvllTZ48WT4+PurTp4+cnZ11584dFSpUSJs3b9bMmTOVOnVqdejQgaGJEW+0NSSF6O1s//79Kl68uOrVq6eXXnpJq1evVvPmzfXdd9/p7bffVsOGDdWjRw/7UNdRRwjGjh2r7t27a8KECapfv35yvhykUFFt8ODBg7p48aJWr16tgIAAjRs3TlOmTFHPnj01cOBA5cyZU5LUo0cP+fn52btCA3i6cZ0rxCr6j5DZs2cra9asevHFFxUZGalRo0ZpwIAB6ty5s/3cGEnau3evw9Xh+bGL+KCtISmYB66XtnnzZi1YsEAeHh5yc3NTq1atlDZtWg0ePFhubm5q166d/vnnH3l7e2vRokWy2WyaPXu2mjZtqmnTphGs8ERmzpypzz//XFmyZNGiRYuUPn16SffD+9SpU5UzZ0599dVXMbqc8lkHPP0Y0AIxmGh9wT/77DN17NhRBw4c0K1bt5Q6dWq1aNFCPXv21LBhw9SzZ0/duHFDr7/+ugYPHuywHr4A8Ci0NSSVqGD1999/a8OGDfr666/l5eUlNzc3hYeHa+fOnQoPD5ebm5tu3ryp8+fPq127dlq8eLF92YCAAC1atIhghScWGRmp7Nmza+/evbp165Z9+ocffqj3339fp06d0kcffWQfij0Kn3XA048jV4jTN998oyFDhmjx4sUKCAiQq6ur/bHw8HD99NNP6tatm7Jnz65UqVJp27ZtDvMA8UVbQ1IYNWqUNm7cqDt37mj69Olydna2Hzn95ptvNGLECFWvXl2HDh3SzZs3tWXLFjk7O8sY47AjALDC4sWL1bdvX6VKlUrTpk1zOEo1dOhQHTp0SCNHjqTdASkM4QqxCg8P1zvvvKNy5cqpR48eOnHihPbu3auxY8eqcOHCatKkifz9/XXo0CHt2bNHtWvXtl/IkNGLkBC0NSSVb7/9Vp9//rmyZ8+uFStW2Eddk6QjR45ozpw5Wr16tbJmzaqxY8fK1dWVbliwXPQuqvPnz9eIESMUGRmpKVOmKHv27DHmi951GsDTj3CFGIwxun79uqpXr65ixYqpQoUKmjdvnq5fvy5Jun37tooUKaKRI0fK3d3dvhw/QpBQtDUkllWrVqlKlSpycnJSv379lDlzZn344YcaNWqUevXqpdatW6tDhw7Kli1bnOsgwCOxRA9Y8+bN08iRI2Wz2TRu3DjlypUr1vkApAzsCnnOGWNiXMhQun9h1k6dOmnt2rX67LPPVLJkSfXr10+rVq1SuXLlFBoa6vBjV6IvOB6OtoakcvbsWbVv315ly5ZVx44dNWjQIJUtW1aS9PHHH+uzzz7TtGnTNH78eJ05c8a+XPT2aYwhWCHR2Gw2Re3bfvPNN9WxY0edP39e33//fYz5AKQsfHM8x0JDQ+Xt7W3/8B45cqQOHTqkiIgI9enTR40aNVLFihVls9mUNWtW+3J79uxR7ty5k6tspEC0NSSlTJkyafLkyQoKCtLu3bu1YcMGlShRQrdu3VKqVKnUrVs3GWPs57M0b95c2bNnd+h6xY9aJLaogGWz2VS3bl2lT59eFStWTO6yADwhjlw9p4KDg5U9e3adP3/efr9v3746duyYVq5cKX9/f+3YsUPZsmVT1qxZFRoaqmXLlql27do6efKkfvjhB0kSvUrxKLQ1JJWoI09OTk5ycXFRhgwZ5Ofnp86dO+v27dtKlSqVbt++LUnq3r27OnTooL59+2rFihXJWTaeIXF9TsU1PfoRrEqVKnFuFfAM4F38nGratKmKFSumV155RSdPnrT/oF2wYIHWr1+v8uXLKygoSNu3b5ck/ffff/r6669ls9m0Y8cO+0Vb2buLR6GtISlEP+l/9+7dypw5s7Zt26YpU6bo2rVrevXVVxUeHi4PDw/7j9lu3bpp9uzZatasWXKWjmdEZGSk/XNq79692r9/v/777z9Jsg9M8SgHDx7UtWvXErVOAImLAS2eY4cPH1aTJk104sQJ5ciRQ1OnTlX+/PklSVevXlWLFi20ceNGLVmyRC+++KIOHTqkvHnzysnJiRO9kSC0NSSm6MGqV69eWrJkiQYOHKjq1asrMjJSa9euVdeuXZU2bVqtXLlSHh4eatmypQIDA+3BikFS8CSiDzzRu3dvLVy4UOfOnVPBggXVsGFDdejQQZJijPwXfbkRI0ZowoQJWrBgQYyLBwNIQQyeKxEREQ73Dx06ZN544w3j6upq/v33X4d5rly5YurXr29sNpvZv39/nOsAYkNbQ1L74osvTObMmc3ixYvNpUuX7NMjIiLM2rVrTbFixUzmzJlNpUqVTI4cOczdu3eTsVo8i/r27Wt8fHzMihUrzN69e02zZs2MzWYzgwYNss8T9bkWGRlpnzZmzBiTLl06M3369CSvGYC12B38HIm+x2zTpk3KmjWr8uXLp++//15XrlxRvXr1tHHjRvn6+soYo3Tp0unnn39WgQIFHK4HQ59wPAptDUltz549mjVrliZNmqSgoCCFhYXp0KFD+uOPP1SoUCEFBgZqwYIFmjBhgiIjI7Vq1Sp7l1OOWOFxmWhHnrZt26bff/9ds2fPVmBgoJYtW6a5c+eqXr16GjBggJydndWtW7cYR+THjh2r7t27a+LEiapfv35yvhwAVkjmcIckEv0IQHBwsClWrJiZM2eOuXHjhjHGmIMHD5qyZcuavHnzmnPnzsVYxhjDXl7EC20NyWHnzp2mYMGC5s8//zTr1q0z7dq1M/7+/sbPz8+UKFHCLFy4MMYy9+7dS4ZK8ayI/rm1b98+c+fOHfPVV1+ZGzdumFWrVpnMmTObsWPHmitXrpiqVasam81mgoODHdYxZswY4+XlZebMmZPU5QNIJOwWfk5EHQHo06ePJkyYoO+//15BQUFKnTq1JCl//vyaMWOGXnjhBVWqVElnzpyJcdSA814QH7Q1JLbYBgYoWLCgnJyc1Lp1a1WrVk2SNGjQIG3atEn37t3TuXPnYizDESs8LmOM/XMrODhYbdu21a1bt/Tpp58qderUmjZtmt5++201b95c6dKlU8GCBVWhQgX9888/9gFVZs+erU6dOmnixIlq0KBBcr4cABbiF8xz5L///tOvv/6qsWPHqnr16rp48aIOHz6s5cuXK1euXHr77bc1Z84cValSRZ07d9bMmTOTu2SkULQ1JJboXU63bNliH6Ht5Zdf1o4dO7R48WL5+PioYsWK9vm8vLziNVIbEF9RXQH//vtvbdiwQd999528vLwkSeHh4dq5c6deeuklubm56ebNmzp//rzatWunRo0a2dcREBCgRYsW2XcGAHg2EK6eIy4uLnJzc1NoaKhWrlyp6dOna/v27QoPD9fNmzd15coVffjhh1q7dq2yZMmS3OUiBaOtITFEP1rQo0cPTZ8+XTabTSEhIWrcuLF69eplPwJw48YNXb16VW3atNHt27fVunXr5Cwdz6BRo0Zp48aNypIli0qXLi3pfvh3d3fX22+/rREjRqhFixY6dOiQbt68qbfeekvS/XZsjFH+/Pnto6YCeHbQLfAZFdte2syZMytz5swaNmyYgoKC5OXlpa+//lobN25U/vz5dfnyZUlStmzZ5OzsrIiIiKQuGykQbQ1JJepowciRIzVhwgTNmDFDy5cv1+LFi7V06VL16NFDx48flySNGzdOdevW1fXr1/XXX3/RzmC569eva8aMGdqyZYuOHj0q6f+6RUcNv37mzBkVKFDAoQ3abDYG6wGeYRy5egZF7zazZ88eubm5yRijAgUKaO7cufrrr7+UNm1alSpVyr7MrVu3Ypx/wPkIeBTaGpLDli1b1KBBA5UvX17GGBUsWFBLlixRpUqVVLhwYfXv31/NmjWTl5eXmjZtKmdnZ66XhieyatUqValSRU5OTurXr58yZ86s7t27K23atOrVq5d+/vlndejQQdmyZZMk5c2bVz169FCPHj3s66ANAs8HLiL8jDHRhoXt27ev5syZo5s3b8rNzU3BwcH2C2ZK9/e6RfUDP3v2rLZu3coHP+KNtoakEL2dSdLdu3dVs2ZNZcuWTZMmTVJkZKTu3bsnNzc3DRkyRGPGjNGmTZv0wgsv2JdhuHU8ibNnz+rVV1+Vp6enypYtq59++kl//fWXSpQoIUkaPHiwhg8frjZt2qhNmzby8/OT5Ljz6cF2DODZxXHpZ0z0H7ujRo3S0KFDtWzZMpUuXVotWrTQ2LFj7fNOmTJFTZs21Z07d7Rlyxb7NV+A+KCtIbFFDVYh3R8k5fz583J1dVXTpk01Z84crVq1Sk5OTnJ1dZUkubu7K2PGjPL09HRYD8EKTyJTpkyaPHmyDh06pHHjxmnDhg0qUaKEbt26JUnq1q2bOnbsqPHjx2v8+PE6efKkJMfr9BGsgOcH4eoZtG3bNq1bt04zZsxQ9erVdfDgQf3222+qVauW2rZtq59//lmS1KpVK3Xp0kXLly+Xq6ur7t27x48QJAhtDYkp6sfp559/rjp16qhIkSL2rlgtW7ZUu3bttHTpUkVGRio0NFSLFy9W1qxZ7WELeBJR55M6OTnJxcVFGTJkkJ+fnzp37qzbt28rVapUun37tiSpe/fu6tChg/r27asVK1YkZ9kAkhndAp8BD3Y3OHXqlKZNm6ZOnTrpzz//1HvvvafevXvr/fff15tvvqmVK1fqm2++Ubdu3ezL0G0G8UFbQ1KI3p1q9uzZ6ty5s0aOHKl//vlHS5cuVY4cOVS2bFmdPn1aQ4cOVZ48eeTs7Cx3d3dt2bJFrq6udMPCE4neBnfv3q0MGTIoderU2rt3rz7++GOlTp1aa9askbu7u0Nbmzt3rurWrctnHPAcI1ylcNF/qB45ckRp06ZVpkyZ7F8MzZs3V+rUqTV8+HC5urrqo48+0rZt2+Th4aH169fz4wPxRltDUlu/fr1+/fVXlShRQi1btpQkLVy4UCNGjFD69OnVpk0b+fr62gdOeeeddxi8Ak8serDq1auXlixZooEDB6p69eqKjIzU2rVr1bVrV6VNm1YrV66Uh4eHWrZsqcDAQPu5puxEAp5fdAtMoUaPHq2dO3faP7yDg4NVt25d+fv7q3v37tq2bZskadeuXUqTJo1cXV1169YtXbhwQX379tUff/whm80msjUehbaG5HDu3Dm1bNlSkyZNUlhYmH16nTp11LFjR126dEmjRo1SeHi4PvjgA7377rv2oa4JVngSUcGqZ8+eGjdunPr166eXXnrJ3j3w/7V3/zFR1w8cx193xo+TH/NmJuH0hLFRd2NAojYyXMqmblzWVlJjQhjoGjkonc5WC7TmcrGJ3JIV4KQ/Kq0cyG44vWWlNrnlAVc6ZpNNVoKaEcWmQNAfzc9X+mb+Or04no8/733vz73vs/c+d6/P+8dn0aJFqqqqUn9/vxISErRw4UJ5PB7l5eUZxyBYARMXI1fjUFdXl7KysrRs2TJt2LDBmKZwddqM2+1WfHy8Xn/9dR05ckTr169XYWGh2traNDQ0JK/Xq0mTJjFtBjdEX0MwdXR06Nlnn5XNZlNlZaVSUlKMMrfbrY0bNyonJ0dbt24NYisRir7//ns9/fTTqq6u1pIlS9Tf36/e3l59/fXXeuihh5SZmamuri7V19drZGREFRUVxkY9BCtgYiNcjVNtbW0qKirS448/LrPZLLvdrhdffFGS1NzcrMrKSlmtVj333HO6ePGimpqaNGPGDNXU1CgsLIwfANw0+hqCqb29XYWFhcrIyFBpaakcDodRduzYMc2fP5/+hYBrb29Xbm6u6uvrNTw8rD179ujw4cP65ZdfNG3aNG3ZskVOp3NMHa51ACSmBY5baWlpev/993XkyBHt2rVLv/32m1GWk5OjV199Vf39/dqzZ49SU1PV0tKiuro6dmrDLaOvIZhSU1NVV1enb7/9VlVVVTp58qRRlpmZaUwFBG7X1V0Br5WcnCyz2ayioiJlZ2dLkrZu3apvvvlGw8PD6unp+b86XOsASISrce2RRx5RfX29rFar3G63/H6/UeZ0OvXKK6+os7NT+/fvN14fHR1lPQJuGX0NwZSenq7a2lq1tbXpzTffVFdX15hy/tTidl27eYXX69Xx48fV2tqqyMhI+Xw+bdmyRYcOHdKOHTvkdDo1a9YsxcbG/mMgAwCJaYEhgWkzuFfoawim1tZW1dTUqLa2dswDWoHbce1a0I0bN+qjjz6SyWRSb2+vnn/+eb3xxhtKTEyUJA0MDKivr0/FxcXq6ekx1pMCwN8RrkKEz+dTUVGR5syZo7KyMtnt9jHlzAVHoNDXEExX/xBfO+IA3AmXy6WKigo1NjZq6tSp6u7u1sqVK7VgwQK9++67stlsqqqq0ocffqjJkyfL4/GwnhTAdRGuQojP59OaNWtks9m0bds2JSQkBLtJCFH0NQQTu08ikAoKCmSxWFRTU2P0rba2NmVlZamsrEybN29WX1+f9u3bp/z8fJ6lBuBfcdsvhKSnp8vlcikmJkY2my3YzUEIo68hmAhWuF1/v588NDSkH3/8UZcvXzbKBwcHlZaWpvLycn388cf6+eefNWXKFBUWFvIsNQA3RLgKMfPmzVNdXZ3MZjMLbnFX0dcAjCcjIyNGMD9z5ozOnz+vsLAw5efn69NPP5XH45HZbFZYWJgkKSIiQvfff79iYmLGHIepgAD+DeEqBJlMJo2OjrIeAXcdfQ3AeHH1OvXaa6/pySeflN1u14YNGxQdHa1Vq1appKRELS0tGhkZ0a+//qrm5mbNmDHDCFsAcDMY1w5RTJvBvUJfA/Bfdu3mJ3v37lVDQ4NcLpc6OjrU0tKis2fP6tFHH5XT6VROTo4SExM1adIkRUREyOv1GjeRuNYBuBlsaAEAAELeV199pc8++0ypqalatWqVJKmpqUnV1dWyWq0qLi7WAw88oOPHjys6Olq5ublsXgHglhGuAABASOvp6dGCBQt04cIFVVRUqKyszCjbv3+/tm/frtjYWG3atEnz5s0zythuHcCtYqEEAAAIaXFxcfr8888VFxcnt9stv99vlDmdTq1bt04//PCD9u3bN6YewQrArWLkCgAATAjt7e0qLCxURkaGSktL5XA4jLJjx45p/vz5BCoAd4RwBQAAJgyfz6eioiLNmTNHZWVlstvtY8qZCgjgThCuAADAhOLz+bRmzRrZbDZt27ZNCQkJwW4SgBDBmisAADChpKeny+VyKSYmRjabLdjNARBCGLkCAAAT0tXnV137LCwAuBOEKwAAMGHxgGAAgcRtGgAAMGERrAAEEuEKAAAAAAKAcAUAAAAAAUC4AgAAAIAAIFwBAAAAQAAQrgAAAAAgAAhXAAAEUXl5udLS0oLdDABAABCuAADjzgsvvCCTySSTyaTw8HAlJSVp8+bNGh4evqNjPvXUU4FrJABgwrkv2A0AAOB2LF26VLt27dKVK1fkdrtVUlKisLAwbdq0acz7BgcHFR4eHqRWAgAmEkauAADjUkREhOLi4mSz2fTSSy8pOztbTU1NxgjU22+/rfj4eCUnJ0uS/H6/Fi1aJIvFoqlTp2r16tX6/fffJf01NW/37t1qbGw0RsQOHz58w3pX1dfXy+FwKCIiQg8++KBefvllo+zs2bNavny5oqOjFRsbqxUrVqi3t/fenCQAwD1FuAIAhASLxaLBwUFJksfjUWdnpw4ePKjm5mYNDAxoyZIlslqt8nq92rt3rw4dOmSEoPXr12vFihVaunSpzp07p3PnzikzM/OG9SRp586dKikp0erVq+X3+9XU1KSkpCRJ0sjIiJYvX65Lly7pyy+/1MGDB3XmzBnl5ube+xMEALjrmBYIABjXRkdH5fF4dODAAa1du1YXLlxQVFSUamtrjemAH3zwgS5fvqyGhgZFRUVJklwul5xOp9555x1Nnz5dFotFV65cUVxcnHHs3bt337DeW2+9pXXr1qm0tNSoN3fuXEl/hTy/36+uri7NnDlTktTQ0CCHwyGv12u8DwAQGhi5AgCMS83NzYqOjlZkZKSWLVum3NxclZeXS5JSUlLGrLM6deqUUlNTjYAkSY899phGRkbU2dl53c+4Ub3z58/rp59+0uLFi69bf+bMmUawkiS73a4pU6bo1KlTt/vVAQD/UYxcAQDGpSeeeEI7d+5UeHi44uPjdd99//tJuzYM3U0Wi+WefA4AYHxg5AoAMC5FRUUpKSlJs2bNGhOs/snDDz+s9vZ2DQwMGK8dPXpUZrPZ2PAiPDxcf/zxxy3Vi4mJ0ezZs+XxeK77ud3d3eru7jZeO3nypPr6+mS322/5OwMA/tsIVwCAkJeXl6fIyEgVFBTou+++0xdffKG1a9dq5cqVmj59uiRp9uzZ6ujoUGdnpy5evKihoaGbqldeXq7Kykrt2LFDp0+f1okTJ1RdXS1Jys7OVkpKivLy8nTixAm1trYqPz9fCxcuVEZGRtDOBwDg7iBcAQBC3uTJk3XgwAFdunRJc+fO1TPPPKPFixfL5XIZ7ykuLlZycrIyMjI0bdo0HT169KbqFRQUaPv27XrvvffkcDiUk5Oj06dPS5JMJpMaGxtltVqVlZWl7OxsJSYm6pNPPrnn5wAAcPeZRkdHR4PdCAAAAAAY7xi5AgAAAIAAIFwBAAAAQAAQrgAAAAAgAAhXAAAAABAAhCsAAAAACADCFQAAAAAEAOEKAAAAAAKAcAUAAAAAAUC4AgAAAIAAIFwBAAAAQAAQrgAAAAAgAP4EprMmNInTSLwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -824,13 +875,13 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "c66e6f79-aeb8-41e0-aa01-a17ee535d50f", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJsCAYAAAARCFkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF6UlEQVR4nOzddXyV5f/H8fdZktuIESNGg+QQQUA6pFNCRGkMGqSmkqIo3SUtSEqLSJeEtJICktK1kYNt1+8PfjvfjW24wb2C1/PxOA84d53PObtOvO/7uq/bZowxAgAAAAC8FIe4LgAAAAAAXgWEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQr4AVs3rxZNptNmzdvjutSXhlZsmRRixYt4rqM/xQTdbZo0UJZsmSxdJtIuMqVK6dy5cpZtr0//vhDLi4uOnfunGXbfBFnz56VzWbTzJkzY/Xxhg0bFuOP9Sp8J/Tv3182my3MtLj8XLbZbOrfv3+cPHZMevZ5TZo0SZkzZ1ZAQEDcFQVLEa6QYNhstijdovLl9u2332rZsmUxXvPMmTPD1ZcmTRqVL19ev/76a4w//qvq0aNHGjlypN5++225u7srUaJEypUrlzp06KC///47Vms5evSo+vfvr7Nnz8bq4xYrVkw2m00TJ06M1ceNLSE/jENujo6Oypw5s+rVq6eDBw9a+lg//fSTRo0aZek245Mvv/xSTZo0kbe3t31auXLllD9//jisyjqrV69+5X6Enz17Vi1btlT27NmVKFEipUuXTmXKlFG/fv3iujRYrEWLFnr8+LEmT54c16XAIk5xXQAQVT/++GOY+7Nnz9a6devCTX/jjTf+c1vffvutGjRooLp161pZYqQGDhyorFmzyhijq1evaubMmapevbpWrlypmjVrxkoNr4obN26oatWq2rdvn2rWrKkPPvhAyZIl04kTJzR//nxNmTJFjx8/jrHHP3HihBwc/rdf6ujRoxowYIDKlSsXa0efTp48qT179ihLliyaO3euPvvss1h53LjQpEkTVa9eXUFBQTp27JgmTpyoX3/9Vbt27ZKPj48lj/HTTz/p8OHD6tKliyXbi08OHjyo9evXa8eOHXFdiry9vfXw4UM5Oztbut3Vq1dr/PjxcRqwypQpo4cPH8rFxeWlt3Xq1CkVLVpUiRMnVqtWrZQlSxZdvnxZ+/fv1/fff68BAwZYUHHUPPt5F5sePnwoJ6dX/2dqokSJ1Lx5c40YMUIdO3YMd/QQCc+r32rxyvjwww/D3N+1a5fWrVsXbnp8VK1aNb311lv2+61bt1batGk1b948S8JVcHCwHj9+rESJEoWbd//+fSVNmvSlHyO+aNGihQ4cOKDFixfrvffeCzPv66+/1pdffhmjj+/q6hqj24+KOXPmKE2aNBo+fLgaNGigs2fPWhbs4lt7efPNN8O8x9955x3Vrl1bEydOjHRPb3x7DnFpxowZypw5s4oXLx7Xpchms0X4GfWshPj3c3BwiNJzi4qRI0fq3r17OnjwYJijjZJ07do1Sx4jquLy886q1zMhaNSokYYMGaJNmzapQoUKcV0OXhLdAvFKuX//vj7//HNlypRJrq6uyp07t4YNGyZjjH0Zm82m+/fva9asWfYuRyF9ys+dO6d27dopd+7cSpw4sVKlSqWGDRta3uXLw8NDiRMnDrdXLir1hzyHDh06aO7cucqXL59cXV21Zs0aezfELVu2qF27dkqTJo0yZsxoX2/ChAn25b28vNS+fXvduXPHPn/MmDFydHQMM2348OGy2Wzq1q2bfVpQUJCSJ0+uXr162acFBwdr1KhRypcvnxIlSqS0adPqk08+0e3bt8PUbozRoEGDlDFjRiVJkkTly5fXkSNHovS67d69W7/88otat24dLlhJT38IhD6/4s8//1SLFi2ULVs2e9eaVq1a6ebNm2HWCznX4Pjx42rUqJHc3NyUKlUqde7cWY8ePQqzbOhzEGbOnKmGDRtKksqXLx+ua+ry5ctVo0YNeXl5ydXVVdmzZ9fXX3+toKCgKD3fyPz0009q0KCBatasKXd3d/30008RLrd7925Vr15dKVKkUNKkSVWwYEGNHj3aPr9FixZKliyZTp8+rerVqyt58uRq2rSppKi3xXXr1qlUqVLy8PBQsmTJlDt3bn3xxRdhlhk7dqzy5cunJEmSKEWKFHrrrbcirfm/hPzwOHPmjCS9dJsvV66cfvnlF507d87+9wsdVK9du2bfGZIoUSIVKlRIs2bNCldXcHCwRo8erQIFCihRokTy9PRU1apVtXfvXvsygYGB+vrrr5U9e3a5uroqS5Ys+uKLL6J0rsWLvobLli1ThQoVXnhv+H+9fiHGjx+vbNmyKXHixCpWrJi2bdsW7tyxiM65el4b3LZtmxo2bKjMmTPL1dVVmTJlUteuXfXw4cMw648fP15S2K7jz5oyZYr9dS9atKj27NkTZn5IHefPn1fNmjWVLFkyZciQwb7tv/76SxUqVFDSpEnl7e0d7rWP7Jyr/3oPRuT06dPKmDFjuGAlSWnSpAk37ddff1XZsmWVPHlyubm5qWjRomHqi8rrGJlnz7kKeb/9/vvv6tatmzw9PZU0aVLVq1dP169fD7NucHCw+vfvLy8vL/tn/dGjR6N8Htez5ybdvXtXXbp0UZYsWeTq6qo0adKocuXK2r9//3O3E9k5rRGdYxaVz7OAgAD169dPOXLksL+ePXv2DPc+DggIUNeuXeXp6ankyZOrdu3aunjxYoQ1FilSRClTptTy5cuf+1yQMHDkCq8MY4xq166tTZs2qXXr1vLx8dFvv/2mHj166N9//9XIkSMlPe1e2KZNGxUrVkwff/yxJCl79uySpD179mjHjh16//33lTFjRp09e1YTJ05UuXLldPToUSVJkuSFavPz89ONGzdkjNG1a9c0duxY3bt3L8we+ajWH2Ljxo1auHChOnTooNSpUytLliz2c1HatWsnT09P9e3bV/fv35f09ItkwIABqlSpkj777DOdOHFCEydO1J49e/T777/L2dlZpUuXVnBwsLZv324/orZt2zY5ODho27Zt9sc+cOCA7t27pzJlytinffLJJ5o5c6ZatmypTp066cyZMxo3bpwOHDhg374k9e3bV4MGDVL16tVVvXp17d+/X++++26UuvKtWLFCkvTRRx9F6XVft26d/vnnH7Vs2VLp0qXTkSNHNGXKFB05ckS7du0K98XaqFEjZcmSRYMHD9auXbs0ZswY3b59W7Nnz45w+2XKlFGnTp00ZswYffHFF/YuqSH/zpw5U8mSJVO3bt2ULFkybdy4UX379pW/v7+GDh0apefwrN27d+vUqVOaMWOGXFxcVL9+fc2dOzfcD4B169apZs2aSp8+vTp37qx06dLp2LFjWrVqlTp37mxfLjAwUFWqVFGpUqU0bNgwJUmSJMpt8ciRI6pZs6YKFiyogQMHytXVVadOndLvv/9u3/4PP/ygTp06qUGDBvaw+ueff2r37t364IMPov38T58+LUlKlSpVmOkv2ua//PJL+fn56eLFi/bnlSxZMklPuyWVK1dOp06dUocOHZQ1a1YtWrRILVq00J07d8K8jq1bt9bMmTNVrVo1tWnTRoGBgdq2bZt27dplP2rdpk0bzZo1Sw0aNNDnn3+u3bt3a/DgwTp27JiWLl0a6XN+0dfw33//1fnz5/Xmm29G+3WO6usnSRMnTlSHDh1UunRpde3aVWfPnlXdunWVIkWKMEE3MhG1QUlatGiRHjx4oM8++0ypUqXSH3/8obFjx+rixYtatGiRpKefO5cuXYqwi3iIn376SXfv3tUnn3wim82mIUOGqH79+vrnn3/CdFEMCgpStWrVVKZMGQ0ZMkRz585Vhw4dlDRpUn355Zdq2rSp6tevr0mTJqlZs2YqUaKEsmbNGunziup78Fne3t5av369Nm7c+J9HMWbOnKlWrVopX7588vX1lYeHhw4cOKA1a9bY20ZUXsfo6tixo1KkSKF+/frp7NmzGjVqlDp06KAFCxbYl/H19dWQIUNUq1YtValSRYcOHVKVKlXC7bCKqk8//VSLFy9Whw4dlDdvXt28eVPbt2/XsWPHXriNhxaVz7Pg4GDVrl1b27dv18cff6w33nhDf/31l0aOHKm///47zLncbdq00Zw5c/TBBx+oZMmS2rhxo2rUqBHp47/55pthHgsJmAESqPbt25vQTXjZsmVGkhk0aFCY5Ro0aGBsNps5deqUfVrSpElN8+bNw23zwYMH4abt3LnTSDKzZ8+2T9u0aZORZDZt2vTcGmfMmGEkhbu5urqamTNnhlk2OvVLMg4ODubIkSMRPl6pUqVMYGCgffq1a9eMi4uLeffdd01QUJB9+rhx44wkM336dGOMMUFBQcbNzc307NnTGGNMcHCwSZUqlWnYsKFxdHQ0d+/eNcYYM2LECOPg4GBu375tjDFm27ZtRpKZO3dumHrWrFkTZnpIHTVq1DDBwcH25b744gsjKcK/SWj16tUzkuyP+18i+nvOmzfPSDJbt261T+vXr5+RZGrXrh1m2Xbt2hlJ5tChQ/Zp3t7eYepctGhRpG0hosf/5JNPTJIkScyjR4/s05o3b268vb2j9Jw6dOhgMmXKZH/91q5daySZAwcO2JcJDAw0WbNmNd7e3uFeq9Cve/PmzY0k07t37zDLRLUtjhw50kgy169fj7TeOnXqmHz58kXpuYV25swZI8kMGDDAXL9+3Vy5csVs3rzZFC5c2EgyP//8szHm5du8McbUqFEjwtd/1KhRRpKZM2eOfdrjx49NiRIlTLJkyYy/v78xxpiNGzcaSaZTp07hthHyeh88eNBIMm3atAkzv3v37kaS2bhxo31a2bJlTdmyZe33X/Q1XL9+vZFkVq5cGW5e2bJln7vNqL5+AQEBJlWqVKZo0aLmyZMn9uVmzpxpJIV5HiF/0xkzZtinRdYGjYn4/TN48GBjs9nMuXPn7NOe/S549vFSpUplbt26ZZ++fPnycK9LSB3ffvutfdrt27dN4sSJjc1mM/Pnz7dPP378uJFk+vXrZ5/27HdCVN+DETl8+LBJnDixkWR8fHxM586dzbJly8z9+/fDLHfnzh2TPHly8/bbb5uHDx9G+hhRfR1DPgdDe/bzLuT9VqlSpTCP0bVrV+Po6Gju3LljjDHmypUrxsnJydStWzfM9vr37x+lz3pjTLjX2N3d3bRv3/4/13tWZJ+vzz7fqHye/fjjj8bBwcFs27YtzPRJkyYZSeb33383xvzv/d6uXbswy33wwQfhnleIjz/+2CROnDgazwzxFd0C8cpYvXq1HB0d1alTpzDTP//8cxljojQ6X+LEie3/f/LkiW7evKkcOXLIw8PjP7sePM/48eO1bt06rVu3TnPmzFH58uXVpk0bLVmy5IXrL1u2rPLmzRvh47Vt21aOjo72++vXr9fjx4/VpUuXMCcnt23bVm5ubvrll18kPT1voGTJktq6dask6dixY7p586Z69+4tY4x27twp6enRrPz588vDw0PS0z2j7u7uqly5sm7cuGG/FSlSRMmSJdOmTZvC1PHsSbtRHUjA399fkpQ8efIoLR/67/no0SPduHHDfu5JRH/P9u3bh7nfsWNHSU//Ni8i9OPfvXtXN27cUOnSpfXgwQMdP3482tsLDAzUggUL1LhxY/vrV6FCBaVJk0Zz5861L3fgwAGdOXNGXbp0sf+NQkTUZerZATGi2hZDtr18+XIFBwdHWLOHh4cuXrwYrhtWVPXr10+enp5Kly6dypUrp9OnT+v7779X/fr1wyz3om3+eVavXq106dKpSZMm9mnOzs7q1KmT7t27py1btkiSfv75Z9lstghHcgt5vUPaUOjutdLT11TSc+t50dcwpPtrihQporWeFPXXb+/evbp586batm0bpptz06ZNo/W4EQ3KEvr9c//+fd24cUMlS5aUMUYHDhyI8rYbN24cppbSpUtLkv75559wy7Zp08b+fw8PD+XOnVtJkyZVo0aN7NNz584tDw+PCNcPEd33YGj58uXTwYMH9eGHH+rs2bMaPXq06tatq7Rp0+qHH36wL7du3TrdvXtXvXv3Dnd+UujHsOp1DO3jjz8O8xilS5dWUFCQfbj/DRs2KDAwUO3atQuzXshn6ovw8PDQ7t27denSpRfexn9tX3r+59miRYv0xhtvKE+ePGG+60KOMIZ814W835/9DH3ed12KFCn08OFDPXjw4CWfCeIa4QqvjHPnzsnLyyvcD++QLlpRucbLw4cP1bdvX/t5JqlTp5anp6fu3LkjPz+/F66tWLFiqlSpkipVqqSmTZvql19+Ud68edWhQwd7d7jo1v+87ijPzgtZN3fu3GGmu7i4KFu2bGG2Xbp0ae3bt08PHz7Utm3blD59er355psqVKiQvWvg9u3b7T9QpKej1/n5+SlNmjTy9PQMc7t37579JOyQx8mZM2eYOjw9PaP0Q8zNzU3S06ASFbdu3VLnzp2VNm1aJU6cWJ6envbXJqK/57N1Zc+eXQ4ODi98zt2RI0dUr149ubu7y83NTZ6envauoC/SntauXavr16+rWLFiOnXqlE6dOqUzZ86ofPnymjdvnv0HQUjXuagMte3k5BSu61ZU22Ljxo31zjvvqE2bNkqbNq3ef/99LVy4MMwPk169eilZsmQqVqyYcubMqfbt20er68vHH3+sdevWacOGDdq3b5+uXbumnj17hlvuZdp8ZM6dO6ecOXOGGy3t2dfh9OnT8vLyUsqUKZ+7LQcHB+XIkSPM9HTp0snDw+O59bzsa2ieOU8uKqL6+oX8++zzcnJyivIgKxG1QUk6f/68WrRooZQpUypZsmTy9PRU2bJlJUXv/ZM5c+Yw90M+a549HzTkXLnQ3N3dlTFjxnCByN3dPdz6oUXnPRiRXLly6ccff9SNGzf0559/6ttvv5WTk5M+/vhjrV+/PlqPYdXrGNp/vaaRtYuUKVO+UNiXpCFDhujw4cPKlCmTihUrpv79+z834EZXVD7PTp48qSNHjoT7nsuVK5ckhfmuc3BwsJ9yEOLZ91NoIe9TRgtM+DjnCgilY8eOmjFjhrp06aISJUrI3d1dNptN77//fqR7sl6Eg4ODypcvr9GjR+vkyZPKly9ftLcRem9kdOb9l1KlSunJkyfauXOntm3bZg9RpUuX1rZt23T8+HFdv349TLgKDg4Od/QktGd/sLyoPHnySHp6cnnox49Mo0aNtGPHDvXo0UM+Pj5KliyZgoODVbVq1Sj9PV/mS+7OnTsqW7as3NzcNHDgQPv1avbv369evXq9UHsKeX1D70UPbcuWLSpfvny0tunq6vrCQy0nTpxYW7du1aZNm/TLL79ozZo1WrBggSpUqKC1a9fK0dFRb7zxhk6cOKFVq1ZpzZo1+vnnnzVhwgT17ds3SkNK58yZU5UqVYpSLQnBi7SpF30NQ85Le14IiA8iaoNBQUGqXLmybt26pV69eilPnjxKmjSp/v33X7Vo0SJa75/QRzRDezZ0RrZcVNePCY6OjipQoIAKFCigEiVKqHz58po7d26U3hOSta/js3VFJCZfk0aNGql06dJaunSp1q5dq6FDh+r777/XkiVLVK1atUjXi+w99+zAQlH5PAsODlaBAgU0YsSICLeZKVOmF35+t2/fVpIkSRLMZxkix5ErvDK8vb116dKlcEc1QrpfhR55KbIP28WLF6t58+b2Ia4rV66sUqVKRTg61ssKDAyUJN27dy/a9UdXyLonTpwIM/3x48c6c+ZMmG0XK1ZMLi4u2rZtW5hwVaZMGe3evVsbNmyw3w+RPXt23bx5U++88479CF3oW6FChcLUcfLkyTB1XL9+PUo/AGvVqiXp6VDk/+X27dvasGGDevfurQEDBqhevXqqXLmysmXLFuk6z9Z16tQpBQcHP3cPfGRtafPmzbp586Zmzpypzp07q2bNmqpUqdIL77W9f/++li9frsaNG2vRokXhbunTp7eHr5C9pYcPH36hx4pOW3RwcFDFihU1YsQIHT16VN988402btxo7x4jSUmTJlXjxo01Y8YMnT9/XjVq1NA333zzwie2R/U5SFFr85H9Db29vXXy5MlwP0CffR2yZ8+uS5cu6datW8+tJzg4OFwbu3r1qu7cufOf7+8XeQ1DdkaEjKwYHVF9/UL+PXXqVJjlAgMDX2qU1b/++kt///23hg8frl69eqlOnTqqVKmSvLy8wi0bH/f0v+x7MCIhA6Ncvnw5yo8RndfRSpG1i5s3b75U2E+fPr3atWunZcuW6cyZM0qVKpW++eab566TIkWKCL/DIzpa/F+fZ9mzZ9etW7dUsWLFCL/rQo5MhbzfQ44uhnj2/RTamTNnonSdTsR/hCu8MkIuNDpu3Lgw00eOHCmbzRZmz1bSpEkj/LB1dHQMt+dt7NixLz109rOePHmitWvXysXFxf5hGp36o6tSpUpycXHRmDFjwjy/adOmyc/PL8wIRokSJVLRokU1b948nT9/PsyRq4cPH2rMmDHKnj270qdPb1+nUaNGCgoK0tdffx3usQMDA+2vdaVKleTs7KyxY8eGqWPUqFFReh4lSpRQ1apVNXXq1DCjMoV4/PixunfvLul/e1af/Xs+77FChl0OMXbsWEl67msfcj2eZ9tTRI//+PFjTZgwIdJtPc/SpUt1//59tW/fXg0aNAh3q1mzpn7++WcFBATozTffVNasWTVq1KhwdUVlz3JU22JEYSLkwr4hwxI/O+y9i4uL8ubNK2OMnjx5EtWnH23RafNJkyaNsHtU9erVdeXKlTAjoAUGBmrs2LFKliyZvWvVe++9J2NMhEeRQh67evXqksK3v5A94M8bRexFX8MMGTIoU6ZMYYaDj6qovn5vvfWWUqVKpR9++MG+w0h6epT1ZX5ER/T+McZEOIx5ZO/BuPQy78Ft27ZF+HcNOY8n5Af8u+++q+TJk2vw4MHhQnbIY0TndbRSxYoV5eTkpIkTJ4aZ/uxnSlQFBQWFe4+mSZNGXl5e/3kpg+zZs8vPz09//vmnfdrly5fDjdAZlc+zRo0a6d9//w1z7luIhw8f2kcqDfmMHDNmTJhlnvf9s3//fpUsWfK5zwUJA90C8cqoVauWypcvry+//FJnz55VoUKFtHbtWi1fvlxdunQJ0/e5SJEiWr9+vUaMGCEvLy9lzZpVb7/9tmrWrKkff/xR7u7uyps3r3bu3Kn169eHG/Y5un799Vf73u5r167pp59+0smTJ9W7d2/7eUTRqT+6PD095evrqwEDBqhq1aqqXbu2Tpw4oQkTJqho0aLhLsRcunRpfffdd3J3d1eBAgUkPf0iy507t06cOBHuGiVly5bVJ598osGDB+vgwYN699135ezsrJMnT2rRokUaPXq0GjRoIE9PT3Xv3l2DBw9WzZo1Vb16dR04cEC//vqrUqdOHaXnMnv2bL377ruqX7++atWqpYoVKypp0qQ6efKk5s+fr8uXL2vYsGFyc3OzD6n85MkTZciQQWvXrn3uXvwzZ86odu3aqlq1qnbu3GkfRjfkyFtEfHx85OjoqO+//15+fn5ydXVVhQoVVLJkSaVIkULNmzdXp06dZLPZ9OOPP75wt5m5c+cqVapUkX751q5dWz/88IN++eUX1a9fXxMnTlStWrXk4+Ojli1bKn369Dp+/LiOHDmi33777bmPFdW2OHDgQG3dulU1atSQt7e3rl27pgkTJihjxowqVaqUpKc/ANOlS6d33nlHadOm1bFjxzRu3DjVqFEjygOTvIjotPkiRYpowYIF6tatm4oWLapkyZKpVq1a+vjjjzV58mS1aNFC+/btU5YsWbR48WL9/vvvGjVqlL3+8uXL66OPPtKYMWN08uRJe7fTbdu2qXz58urQoYMKFSqk5s2ba8qUKfYuo3/88YdmzZqlunXrPrc758u8hnXq1NHSpUtljAl3hOf69esaNGhQuHWyZs2qpk2bRun1c3FxUf/+/dWxY0dVqFBBjRo10tmzZzVz5kxlz579hY8q5cmTR9mzZ1f37t3177//ys3NTT///HOEga1IkSKSng4eUKVKFTk6Our9999/oce1ioODwwu/B7///nvt27dP9evXV8GCBSU9/eE9e/ZspUyZ0j4ogpubm0aOHKk2bdqoaNGi+uCDD5QiRQodOnRIDx480KxZs6L1Olopbdq06ty5s4YPH27/TD106JD9sz667eLu3bvKmDGjGjRooEKFCilZsmRav3699uzZo+HDhz933ffff1+9evVSvXr11KlTJz148EATJ05Urly5wgxsFJXPs48++kgLFy7Up59+qk2bNumdd95RUFCQjh8/roULF+q3337TW2+9JR8fHzVp0kQTJkyQn5+fSpYsqQ0bNoQ7khdi3759unXrlurUqROt1wXxVCyMSAjEiIiG3717967p2rWr8fLyMs7OziZnzpxm6NCh4Ya+PX78uClTpox9uNuQYWFv375tWrZsaVKnTm2SJUtmqlSpYo4fPx5uONqXGYo9UaJExsfHx0ycODFcXVGtX1KEQ9KGPN6ePXsirGfcuHEmT548xtnZ2aRNm9Z89tlnEQ5r/ssvvxhJplq1amGmt2nTxkgy06ZNi3D7U6ZMMUWKFDGJEyc2yZMnNwUKFDA9e/Y0ly5dsi8TFBRkBgwYYNKnT28SJ05sypUrZw4fPhzuNX6eBw8emGHDhpmiRYuaZMmSGRcXF5MzZ07TsWPHMEPWX7x40dSrV894eHgYd3d307BhQ3Pp0qVwQ+GGDMl79OhR06BBA5M8eXKTIkUK06FDh3BDHEdU5w8//GCyZctmHB0dw7SL33//3RQvXtwkTpzYeHl5mZ49e5rffvstXNv5r6HYr169apycnMxHH3303NckSZIkpl69evZp27dvN5UrVzbJkyc3SZMmNQULFjRjx44N87hJkyaNcHtRaYsbNmwwderUMV5eXsbFxcV4eXmZJk2amL///tu+zOTJk02ZMmVMqlSpjKurq8mePbvp0aOH8fPzi/S5GPO/YbSHDh363OWsaPP37t0zH3zwgfHw8DCSwvwtrl69av9McHFxMQUKFAgzlHiIwMBAM3ToUJMnTx7j4uJiPD09TbVq1cy+ffvsyzx58sQMGDDAZM2a1Tg7O5tMmTIZX1/fMMPyGxN+KPYXfQ2NMWb//v1GUriho8uWLRvhZSIkmYoVK0br9TPGmDFjxhhvb2/j6upqihUrZn7//XdTpEgRU7VqVfsykQ3FHlkbPHr0qKlUqZJJliyZSZ06tWnbtq05dOhQuG0EBgaajh07Gk9PT2Oz2ezfC89rQ89+BkRWR2RD1nt7e5saNWrY70f2nfBf78GI/P7776Z9+/Ymf/78xt3d3Tg7O5vMmTObFi1amNOnT4dbfsWKFaZkyZImceLExs3NzRQrVszMmzfPPj+qr2N0hmJ/9v0W0fMPDAw0ffr0MenSpTOJEyc2FSpUMMeOHTOpUqUyn3766XNfA2PC/o0CAgJMjx49TKFCheyvZaFChcyECRP+czvGPL1kRf78+Y2Li4vJnTu3mTNnTrjnG5XPM2OeXo7h+++/N/ny5TOurq4mRYoUpkiRImbAgAFh3pMPHz40nTp1MqlSpTJJkyY1tWrVMhcuXIhwKPZevXqZzJkz/+cw/UgYbMbEwhmZABCPhVws9fr161E+ggYkFBUrVpSXl1ekF9mNCcHBwfL09FT9+vUj7EKF19OdO3eUIkUKDRo0SF9++WVclxMvBAQEKEuWLOrdu/dzLy6NhINzrgAAeIV9++23WrBgQZSGn38Rjx49Ctfddfbs2bp165bKlSsXI4+J+O/hw4fhpoWcc0S7+J8ZM2bI2dlZn376aVyXAotwzhUAAK+wt99+2349vZiwa9cude3aVQ0bNlSqVKm0f/9+TZs2Tfnz51fDhg1j7HERvy1YsEAzZ85U9erVlSxZMm3fvl3z5s3Tu+++q3feeSeuy4s3Pv30U4LVK4ZwBQAAXliWLFmUKVMmjRkzRrdu3VLKlCnVrFkzfffdd3JxcYnr8hBHChYsKCcnJw0ZMkT+/v72QS4iGkQFeJVwzhUAAAAAWIBzrgAAAADAAoQrAAAAALAA51xFIDg4WJcuXVLy5Mlf+AKIAAAAABI+Y4zu3r0rLy8vOTg8/9gU4SoCly5dUqZMmeK6DAAAAADxxIULF5QxY8bnLkO4ikDy5MklPX0B3dzc4rgaAAAAAHHF399fmTJlsmeE5yFcRSCkK6CbmxvhCgAAAECUThdiQAsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALBAnIarrVu3qlatWvLy8pLNZtOyZcvCzLfZbBHehg4dGuk2+/fvH275PHnyxPAzAQAAAPC6i9Nwdf/+fRUqVEjjx4+PcP7ly5fD3KZPny6bzab33nvvudvNly9fmPW2b98eE+UDAAAAgJ1TXD54tWrVVK1atUjnp0uXLsz95cuXq3z58sqWLdtzt+vk5BRuXQAAkDAU6TE7rktALNo3tFlclwBYJsGcc3X16lX98ssvat269X8ue/LkSXl5eSlbtmxq2rSpzp8//9zlAwIC5O/vH+YGAAAAANGRYMLVrFmzlDx5ctWvX/+5y7399tuaOXOm1qxZo4kTJ+rMmTMqXbq07t69G+k6gwcPlru7u/2WKVMmq8sHAAAA8IpLMOFq+vTpatq0qRIlSvTc5apVq6aGDRuqYMGCqlKlilavXq07d+5o4cKFka7j6+srPz8/++3ChQtWlw8AAADgFRen51xF1bZt23TixAktWLAg2ut6eHgoV65cOnXqVKTLuLq6ytXV9WVKBAAAAPCaSxBHrqZNm6YiRYqoUKFC0V733r17On36tNKnTx8DlQEAAADAU3Earu7du6eDBw/q4MGDkqQzZ87o4MGDYQag8Pf316JFi9SmTZsIt1GxYkWNGzfOfr979+7asmWLzp49qx07dqhevXpydHRUkyZNYvS5AAAAAHi9xWm3wL1796p8+fL2+926dZMkNW/eXDNnzpQkzZ8/X8aYSMPR6dOndePGDfv9ixcvqkmTJrp586Y8PT1VqlQp7dq1S56enjH3RAAAAAC89mzGGBPXRcQ3/v7+cnd3l5+fn9zc3OK6HAAAXitc5+r1wnWuEN9FJxskiHOuAAAAACC+I1wBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYwCmuCwAAAADiQpEes+O6BMSifUObxfhjcOQKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAvEabjaunWratWqJS8vL9lsNi1btizM/BYtWshms4W5Va1a9T+3O378eGXJkkWJEiXS22+/rT/++COGngEAAAAAPBWn4er+/fsqVKiQxo8fH+kyVatW1eXLl+23efPmPXebCxYsULdu3dSvXz/t379fhQoVUpUqVXTt2jWrywcAAAAAO6e4fPBq1aqpWrVqz13G1dVV6dKli/I2R4wYobZt26ply5aSpEmTJumXX37R9OnT1bt375eqFwAAAAAiE+/Pudq8ebPSpEmj3Llz67PPPtPNmzcjXfbx48fat2+fKlWqZJ/m4OCgSpUqaefOnZGuFxAQIH9//zA3AAAAAIiOeB2uqlatqtmzZ2vDhg36/vvvtWXLFlWrVk1BQUERLn/jxg0FBQUpbdq0YaanTZtWV65cifRxBg8eLHd3d/stU6ZMlj4PAAAAAK++OO0W+F/ef/99+/8LFCigggULKnv27Nq8ebMqVqxo2eP4+vqqW7du9vv+/v4ELAAAAADREq+PXD0rW7ZsSp06tU6dOhXh/NSpU8vR0VFXr14NM/3q1avPPW/L1dVVbm5uYW4AAAAAEB0JKlxdvHhRN2/eVPr06SOc7+LioiJFimjDhg32acHBwdqwYYNKlCgRW2UCAAAAeA3Fabi6d++eDh48qIMHD0qSzpw5o4MHD+r8+fO6d++eevTooV27duns2bPasGGD6tSpoxw5cqhKlSr2bVSsWFHjxo2z3+/WrZt++OEHzZo1S8eOHdNnn32m+/fv20cPBAAAAICYEKfnXO3du1fly5e33w8576l58+aaOHGi/vzzT82aNUt37tyRl5eX3n33XX399ddydXW1r3P69GnduHHDfr9x48a6fv26+vbtqytXrsjHx0dr1qwJN8gFAAAAAFgpTsNVuXLlZIyJdP5vv/32n9s4e/ZsuGkdOnRQhw4dXqY0AAAAAIiWBHXOFQAAAADEV4QrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxGm42rp1q2rVqiUvLy/ZbDYtW7bMPu/Jkyfq1auXChQooKRJk8rLy0vNmjXTpUuXnrvN/v37y2azhbnlyZMnhp8JAAAAgNddnIar+/fvq1ChQho/fny4eQ8ePND+/fvVp08f7d+/X0uWLNGJEydUu3bt/9xuvnz5dPnyZftt+/btMVE+AAAAANg5xeWDV6tWTdWqVYtwnru7u9atWxdm2rhx41SsWDGdP39emTNnjnS7Tk5OSpcunaW1AgAAAMDzJKhzrvz8/GSz2eTh4fHc5U6ePCkvLy9ly5ZNTZs21fnz55+7fEBAgPz9/cPcAAAAACA6Eky4evTokXr16qUmTZrIzc0t0uXefvttzZw5U2vWrNHEiRN15swZlS5dWnfv3o10ncGDB8vd3d1+y5QpU0w8BQAAAACvsAQRrp48eaJGjRrJGKOJEyc+d9lq1aqpYcOGKliwoKpUqaLVq1frzp07WrhwYaTr+Pr6ys/Pz367cOGC1U8BAAAAwCsuTs+5ioqQYHXu3Dlt3LjxuUetIuLh4aFcuXLp1KlTkS7j6uoqV1fXly0VAAAAwGssXh+5CglWJ0+e1Pr165UqVapob+PevXs6ffq00qdPHwMVAgAAAMBTcRqu7t27p4MHD+rgwYOSpDNnzujgwYM6f/68njx5ogYNGmjv3r2aO3eugoKCdOXKFV25ckWPHz+2b6NixYoaN26c/X737t21ZcsWnT17Vjt27FC9evXk6OioJk2axPbTAwAAAPAaidNugXv37lX58uXt97t16yZJat68ufr3768VK1ZIknx8fMKst2nTJpUrV06SdPr0ad24ccM+7+LFi2rSpIlu3rwpT09PlSpVSrt27ZKnp2fMPhkAAAAAr7U4DVflypWTMSbS+c+bF+Ls2bNh7s+fP/9lywIAAACAaIvX51wBAAAAQEJBuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALOMV1AQBeTpEes+O6BMSifUObxXUJAAAgEhy5AgAAAAALROvI1Z07d7R06VJt27ZN586d04MHD+Tp6anChQurSpUqKlmyZEzVCQAAAADxWpSOXF26dElt2rRR+vTpNWjQID18+FA+Pj6qWLGiMmbMqE2bNqly5crKmzevFixYENM1AwAAAEC8E6UjV4ULF1bz5s21b98+5c2bN8JlHj58qGXLlmnUqFG6cOGCunfvbmmhAAAAABCfRSlcHT16VKlSpXruMokTJ1aTJk3UpEkT3bx505LiAAAAACChiFK3wP8KVi+7PAAAAAAkdNEein3jxo1asmSJzp49K5vNpqxZs6pBgwYqU6ZMTNQHAAAAAAlCtIZi//TTT1WpUiXNmzdPN2/e1PXr1zV37lyVL19eHTt2jKkaAQAAACDei3K4Wrp0qWbMmKHp06frxo0b2rlzp3bt2qXr16/rhx9+0JQpU7RixYqYrBUAAAAA4q0oh6sZM2aoW7duatGihWw22/824OCgVq1aqUuXLpo2bVqMFAkAAAAA8V2Uw9X+/ftVr169SOfXr19f+/bts6QoAAAAAEhoohyubty4oYwZM0Y6P2PGjAzBDgAAAOC1FeVw9fjxYzk7O0c638nJSY8fP7akKAAAAABIaKI1FHufPn2UJEmSCOc9ePDAkoIAAAAAICGKcrgqU6aMTpw48Z/LAAAAAMDrKMrhavPmzTFYBgAAAAAkbNG6iHBEAgMDde/ePStqAQAAAIAEK8rhauXKlZo5c2aYad98842SJUsmDw8Pvfvuu7p9+7bV9QEAAABAghDlcDVixAjdv3/ffn/Hjh3q27ev+vTpo4ULF+rChQv6+uuvY6RIAAAAAIjvohyujhw5opIlS9rvL168WJUrV9aXX36p+vXra/jw4Vq5cmWMFAkAAAAA8V2Uw9Xdu3eVKlUq+/3t27erYsWK9vv58uXTpUuXrK0OAAAAABKIKIerDBky6NixY5Kke/fu6dChQ2GOZN28eTPSa2ABAAAAwKsuyuGqYcOG6tKli3788Ue1bdtW6dKlU/Hixe3z9+7dq9y5c8dIkQAAAAAQ30X5Old9+/bVv//+q06dOildunSaM2eOHB0d7fPnzZunWrVqxUiRAAAAABDfRTlcJU6cWLNnz450/qZNmywpCAAAAAASope+iDAAAAAAIBpHrlKkSCGbzRZuuru7u3LlyqXu3burcuXKlhYHAAAAAAlFlMPVqFGjIpx+584d7du3TzVr1tTixYs57woAAADAaynK4ap58+bPne/j46PBgwcTrgAAAAC8liw756pmzZo6fvy4VZsDAAAAgATFsnAVEBAgFxcXqzYHAAAAAAmKZeFq2rRp8vHxsWpzAAAAAJCgRPmcq27dukU43c/PT/v379fff/+trVu3WlYYAAAAACQkUQ5XBw4ciHC6m5ubKleurCVLlihr1qyWFQYAAAAACUmUw9WmTZtisg4AAAAASNAsO+cKAAAAAF5nUQpXn376qS5evBilDS5YsEBz5859qaIAAAAAIKGJUrdAT09P5cuXT++8845q1aqlt956S15eXkqUKJFu376to0ePavv27Zo/f768vLw0ZcqUmK4bAAAAAOKVKIWrr7/+Wh06dNDUqVM1YcIEHT16NMz85MmTq1KlSpoyZYqqVq0aI4UCAAAAQHwW5QEt0qZNqy+//FJffvmlbt++rfPnz+vhw4dKnTq1smfPLpvNFpN1AgAAAEC8FuVwFVqKFCmUIkWKl37wrVu3aujQodq3b58uX76spUuXqm7duvb5xhj169dPP/zwg+7cuaN33nlHEydOVM6cOZ+73fHjx2vo0KG6cuWKChUqpLFjx6pYsWIvXS8AvM6K9Jgd1yUgFu0b2iyuSwCABCdORwu8f/++ChUqpPHjx0c4f8iQIRozZowmTZqk3bt3K2nSpKpSpYoePXoU6TYXLFigbt26qV+/ftq/f78KFSqkKlWq6Nq1azH1NAAAAAAgbsNVtWrVNGjQINWrVy/cPGOMRo0apa+++kp16tRRwYIFNXv2bF26dEnLli2LdJsjRoxQ27Zt1bJlS+XNm1eTJk1SkiRJNH369Bh8JgAAAABed/H2OldnzpzRlStXVKlSJfs0d3d3vf3229q5c2eE6zx+/Fj79u0Ls46Dg4MqVaoU6TqSFBAQIH9//zA3AAAAAIiOeBuurly5IunpQBqhpU2b1j7vWTdu3FBQUFC01pGkwYMHy93d3X7LlCnTS1YPAAAA4HUTb8NVbPL19ZWfn5/9duHChbguCQAAAEACE6XRAgsXLhzlodb379//UgWFSJcunSTp6tWrSp8+vX361atX5ePjE+E6qVOnlqOjo65evRpm+tWrV+3bi4irq6tcXV1fvmgAAAAAr60ohavQw6PHlqxZsypdunTasGGDPUz5+/tr9+7d+uyzzyJcx8XFRUWKFNGGDRvsNQcHB2vDhg3q0KFDLFUOAAAA4HUUpXDVr1+/GHnwe/fu6dSpU/b7Z86c0cGDB5UyZUplzpxZXbp00aBBg5QzZ05lzZpVffr0kZeXV5iwV7FiRdWrV88enrp166bmzZvrrbfeUrFixTRq1Cjdv39fLVu2jJHnAAAAAADSC15E2Cp79+5V+fLl7fe7desmSWrevLlmzpypnj176v79+/r44491584dlSpVSmvWrFGiRIns65w+fVo3btyw32/cuLGuX7+uvn376sqVK/Lx8dGaNWvCDXIBAAAAAFaKdrgKCgrSyJEjtXDhQp0/f16PHz8OM//WrVtR3la5cuVkjIl0vs1m08CBAzVw4MBIlzl79my4aR06dKAbIAAAAIBYFe3RAgcMGKARI0aocePG8vPzU7du3VS/fn05ODiof//+MVAiAAAAAMR/0Q5Xc+fO1Q8//KDPP/9cTk5OatKkiaZOnaq+fftq165dMVEjAAAAAMR70Q5XV65cUYECBSRJyZIlk5+fnySpZs2a+uWXX6ytDgAAAAASiGiHq4wZM+ry5cuSpOzZs2vt2rWSpD179nCtKAAAAACvrWiHq3r16mnDhg2SpI4dO6pPnz7KmTOnmjVrplatWlleIAAAAAAkBNEeLfC7776z/79x48by9vbWjh07lDNnTtWqVcvS4gAAAAAgoYh2uNq6datKliwpJ6enqxYvXlzFixdXYGCgtm7dqjJlylheJAAAAADEd9HuFli+fPkIr2Xl5+cX5oLAAAAAAPA6iXa4MsbIZrOFm37z5k0lTZrUkqIAAAAAIKGJcrfA+vXrS5JsNptatGgRZmTAoKAg/fnnnypZsqT1FQIAAABAAhDlcOXu7i7p6ZGr5MmTK3HixPZ5Li4uKl68uNq2bWt9hQAAAACQAEQ5XM2YMUOSlCVLFnXv3p0ugAAAAAAQSrRHC+zXr19M1AEAAAAACVqUwtWbb76pDRs2KEWKFCpcuHCEA1qE2L9/v2XFAQAAAEBCEaVwVadOHfsAFnXr1o3JegAAAAAgQYpSuArdFZBugQAAAAAQXrTPuQqxd+9eHTt2TJKUN29eFSlSxLKiAAAAACChiXa4unjxopo0aaLff/9dHh4ekqQ7d+6oZMmSmj9/vjJmzGh1jQAAAAAQ7zlEd4U2bdroyZMnOnbsmG7duqVbt27p2LFjCg4OVps2bWKiRgAAAACI96J95GrLli3asWOHcufObZ+WO3dujR07VqVLl7a0OAAAAABIKKJ95CpTpkx68uRJuOlBQUHy8vKypCgAAAAASGiiHa6GDh2qjh07au/evfZpe/fuVefOnTVs2DBLiwMAAACAhCLa3QJbtGihBw8e6O2335aT09PVAwMD5eTkpFatWqlVq1b2ZW/dumVdpQAAAAAQj0U7XI0aNSoGygAAAACAhC3a4ap58+YxUQcAAAAAJGgvfBFhSXr06JEeP34cZpqbm9tLFQQAAAAACVG0B7S4f/++OnTooDRp0ihp0qRKkSJFmBsAAAAAvI6iHa569uypjRs3auLEiXJ1ddXUqVM1YMAAeXl5afbs2TFRIwAAAADEe9HuFrhy5UrNnj1b5cqVU8uWLVW6dGnlyJFD3t7emjt3rpo2bRoTdQIAAABAvBbtI1e3bt1StmzZJD09vypkuPVSpUpp69at1lYHAAAAAAlEtMNVtmzZdObMGUlSnjx5tHDhQklPj2h5eHhYWhwAAAAAJBTRDlctW7bUoUOHJEm9e/fW+PHjlShRInXt2lU9evSwvEAAAAAASAiifc5V165d7f+vVKmSjh8/rn379ilHjhwqWLCgpcUBAAAAQELxUte5kiRvb295e3tbUQsAAAAAJFhR7ha4ceNG5c2bV/7+/uHm+fn5KV++fNq2bZulxQEAAABAQhHlcDVq1Ci1bdtWbm5u4ea5u7vrk08+0YgRIywtDgAAAAASiiiHq0OHDqlq1aqRzn/33Xe1b98+S4oCAAAAgIQmyuHq6tWrcnZ2jnS+k5OTrl+/bklRAAAAAJDQRDlcZciQQYcPH450/p9//qn06dNbUhQAAAAAJDRRDlfVq1dXnz599OjRo3DzHj58qH79+qlmzZqWFgcAAAAACUWUh2L/6quvtGTJEuXKlUsdOnRQ7ty5JUnHjx/X+PHjFRQUpC+//DLGCgUAAACA+CzK4Spt2rTasWOHPvvsM/n6+soYI0my2WyqUqWKxo8fr7Rp08ZYoQAAAAAQn0XrIsLe3t5avXq1bt++rVOnTskYo5w5cypFihQxVR8AAAAAJAjRClchUqRIoaJFi1pdCwAAAAAkWFEe0AIAAAAAEDnCFQAAAABYgHAFAAAAABYgXAEAAACABaI0oMWKFSuivMHatWu/cDEAAAAAkFBFKVzVrVs3Shuz2WwKCgp6mXoAAAAAIEGKUrgKDg6O6ToAAAAAIEHjnCsAAAAAsMALXUT4/v372rJli86fP6/Hjx+HmdepUydLCguRJUsWnTt3Ltz0du3aafz48eGmz5w5Uy1btgwzzdXVVY8ePbK0LgAAAAAILdrh6sCBA6pevboePHig+/fvK2XKlLpx44aSJEmiNGnSWB6u9uzZE+Y8rsOHD6ty5cpq2LBhpOu4ubnpxIkT9vs2m83SmgAAAADgWdHuFti1a1fVqlVLt2/fVuLEibVr1y6dO3dORYoU0bBhwywv0NPTU+nSpbPfVq1apezZs6ts2bKRrmOz2cKskzZtWsvrAgAAAIDQon3k6uDBg5o8ebIcHBzk6OiogIAAZcuWTUOGDFHz5s1Vv379mKhTkvT48WPNmTNH3bp1e+7RqHv37snb21vBwcF688039e233ypfvnyRLh8QEKCAgAD7fX9//5eutUiP2S+9DSQc+4Y2i+sSAAAAEMeifeTK2dlZDg5PV0uTJo3Onz8vSXJ3d9eFCxesre4Zy5Yt0507d9SiRYtIl8mdO7emT5+u5cuXa86cOQoODlbJkiV18eLFSNcZPHiw3N3d7bdMmTLFQPUAAAAAXmXRDleFCxfWnj17JElly5ZV3759NXfuXHXp0kX58+e3vMDQpk2bpmrVqsnLyyvSZUqUKKFmzZrJx8dHZcuW1ZIlS+Tp6anJkydHuo6vr6/8/Pzst5gOiQAAAABePdEOV99++63Sp08vSfrmm2+UIkUKffbZZ7p+/fpzA8zLOnfunNavX682bdpEaz1nZ2cVLlxYp06dinQZV1dXubm5hbkBAAAAQHRE+5yrt956y/7/NGnSaM2aNZYWFJkZM2YoTZo0qlGjRrTWCwoK0l9//aXq1avHUGUAAAAA8AJHripUqKA7d+6Em+7v768KFSpYUVM4wcHBmjFjhpo3by4np7B5sFmzZvL19bXfHzhwoNauXat//vlH+/fv14cffqhz585F+4gXAAAAAERHtI9cbd68OdyFgyXp0aNH2rZtmyVFPWv9+vU6f/68WrVqFW7e+fPn7QNsSNLt27fVtm1bXblyRSlSpFCRIkW0Y8cO5c2bN0ZqAwAAAAApGuHqzz//tP//6NGjunLliv1+UFCQ1qxZowwZMlhb3f979913ZYyJcN7mzZvD3B85cqRGjhwZI3UAAAAAQGSiHK58fHxks9lks9ki7P6XOHFijR071tLiAAAAACChiHK4OnPmjIwxypYtm/744w95enra57m4uChNmjRydHSMkSIBAAAAIL6Lcrjy9vaW9HRwCQAAAABAWNEe0EKSTp8+rVGjRunYsWOSpLx586pz587Knj27pcUBAAAAQEIR7aHYf/vtN+XNm1d//PGHChYsqIIFC2r37t3Kly+f1q1bFxM1AgAAAEC8F+0jV71791bXrl313XffhZveq1cvVa5c2bLiAAAAACChiPaRq2PHjql169bhprdq1UpHjx61pCgAAAAASGiiHa48PT118ODBcNMPHjyoNGnSWFETAAAAACQ4Ue4WOHDgQHXv3l1t27bVxx9/rH/++UclS5aUJP3+++/6/vvv1a1btxgrFAAAAADisyiHqwEDBujTTz9Vnz59lDx5cg0fPly+vr6SJC8vL/Xv31+dOnWKsUIBAAAAID6LcrgyxkiSbDabunbtqq5du+ru3buSpOTJk8dMdQAAAACQQERrtECbzRbmPqEKAAAAAJ6KVrjKlStXuID1rFu3br1UQQAAAACQEEUrXA0YMEDu7u4xVQsAAAAAJFjRClfvv/8+w60DAAAAQASifJ2r/+oOCAAAAACvsyiHq5DRAgEAAAAA4UW5W2BwcHBM1gEAAAAACVqUj1wBAAAAACJHuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxOtw1b9/f9lstjC3PHnyPHedRYsWKU+ePEqUKJEKFCig1atXx1K1AAAAAF5n8TpcSVK+fPl0+fJl+2379u2RLrtjxw41adJErVu31oEDB1S3bl3VrVtXhw8fjsWKAQAAALyO4n24cnJyUrp06ey31KlTR7rs6NGjVbVqVfXo0UNvvPGGvv76a7355psaN25cLFYMAAAA4HUU78PVyZMn5eXlpWzZsqlp06Y6f/58pMvu3LlTlSpVCjOtSpUq2rlz53MfIyAgQP7+/mFuAAAAABAd8Tpcvf3225o5c6bWrFmjiRMn6syZMypdurTu3r0b4fJXrlxR2rRpw0xLmzatrly58tzHGTx4sNzd3e23TJkyWfYcAAAAALwe4nW4qlatmho2bKiCBQuqSpUqWr16te7cuaOFCxda+ji+vr7y8/Oz3y5cuGDp9gEAAAC8+pziuoDo8PDwUK5cuXTq1KkI56dLl05Xr14NM+3q1atKly7dc7fr6uoqV1dXy+oEAAAA8PqJ10eunnXv3j2dPn1a6dOnj3B+iRIltGHDhjDT1q1bpxIlSsRGeQAAAABeY/E6XHXv3l1btmzR2bNntWPHDtWrV0+Ojo5q0qSJJKlZs2by9fW1L9+5c2etWbNGw4cP1/Hjx9W/f3/t3btXHTp0iKunAAAAAOA1Ea+7BV68eFFNmjTRzZs35enpqVKlSmnXrl3y9PSUJJ0/f14ODv/LhyVLltRPP/2kr776Sl988YVy5sypZcuWKX/+/HH1FAAAAAC8JuJ1uJo/f/5z52/evDnctIYNG6phw4YxVBEAAAAARCxedwsEAAAAgISCcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAF4nW4Gjx4sIoWLarkyZMrTZo0qlu3rk6cOPHcdWbOnCmbzRbmlihRoliqGAAAAMDrKl6Hqy1btqh9+/batWuX1q1bpydPnujdd9/V/fv3n7uem5ubLl++bL+dO3culioGAAAA8LpyiusCnmfNmjVh7s+cOVNp0qTRvn37VKZMmUjXs9lsSpcuXUyXBwAAAAB28frI1bP8/PwkSSlTpnzucvfu3ZO3t7cyZcqkOnXq6MiRI89dPiAgQP7+/mFuAAAAABAdCSZcBQcHq0uXLnrnnXeUP3/+SJfLnTu3pk+fruXLl2vOnDkKDg5WyZIldfHixUjXGTx4sNzd3e23TJkyxcRTAAAAAPAKSzDhqn379jp8+LDmz5//3OVKlCihZs2aycfHR2XLltWSJUvk6empyZMnR7qOr6+v/Pz87LcLFy5YXT4AAACAV1y8PucqRIcOHbRq1Spt3bpVGTNmjNa6zs7OKly4sE6dOhXpMq6urnJ1dX3ZMgEAAAC8xuL1kStjjDp06KClS5dq48aNypo1a7S3ERQUpL/++kvp06ePgQoBAAAA4Kl4feSqffv2+umnn7R8+XIlT55cV65ckSS5u7srceLEkqRmzZopQ4YMGjx4sCRp4MCBKl68uHLkyKE7d+5o6NChOnfunNq0aRNnzwMAAADAqy9eh6uJEydKksqVKxdm+owZM9SiRQtJ0vnz5+Xg8L8DcLdv31bbtm115coVpUiRQkWKFNGOHTuUN2/e2CobAAAAwGsoXocrY8x/LrN58+Yw90eOHKmRI0fGUEUAAAAAELF4fc4VAAAAACQUhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAskiHA1fvx4ZcmSRYkSJdLbb7+tP/7447nLL1q0SHny5FGiRIlUoEABrV69OpYqBQAAAPC6ivfhasGCBerWrZv69eun/fv3q1ChQqpSpYquXbsW4fI7duxQkyZN1Lp1ax04cEB169ZV3bp1dfjw4ViuHAAAAMDrJN6HqxEjRqht27Zq2bKl8ubNq0mTJilJkiSaPn16hMuPHj1aVatWVY8ePfTGG2/o66+/1ptvvqlx48bFcuUAAAAAXidOcV3A8zx+/Fj79u2Tr6+vfZqDg4MqVaqknTt3RrjOzp071a1btzDTqlSpomXLlkX6OAEBAQoICLDf9/PzkyT5+/u/cO1BAQ9feF0kPC/TVl4Wbe31QltDbKGtIbbQ1hBbXrSthaxnjPnPZeN1uLpx44aCgoKUNm3aMNPTpk2r48ePR7jOlStXIlz+ypUrkT7O4MGDNWDAgHDTM2XK9AJV43XkPvbTuC4BrwnaGmILbQ2xhbaG2PKybe3u3btyd3d/7jLxOlzFFl9f3zBHu4KDg3Xr1i2lSpVKNpstDitLWPz9/ZUpUyZduHBBbm5ucV0OXmG0NcQW2hpiC20NsYW2Fn3GGN29e1deXl7/uWy8DlepU6eWo6Ojrl69Gmb61atXlS5dugjXSZcuXbSWlyRXV1e5urqGmebh4fFiRUNubm68WREraGuILbQ1xBbaGmILbS16/uuIVYh4PaCFi4uLihQpog0bNtinBQcHa8OGDSpRokSE65QoUSLM8pK0bt26SJcHAAAAACvE6yNXktStWzc1b95cb731looVK6ZRo0bp/v37atmypSSpWbNmypAhgwYPHixJ6ty5s8qWLavhw4erRo0amj9/vvbu3aspU6bE5dMAAAAA8IqL9+GqcePGun79uvr27asrV67Ix8dHa9assQ9acf78eTk4/O8AXMmSJfXTTz/pq6++0hdffKGcOXNq2bJlyp8/f1w9hdeGq6ur+vXrF66LJWA12hpiC20NsYW2hthCW4tZNhOVMQUBAAAAAM8Vr8+5AgAAAICEgnAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAACAMIKDg+O6hASJcAUAAADA7rvvvlOHDh305MmTuC4lwSFcIcEJuXoAVxEAAMAafKcitIwZM2rSpEnq06cPASuaCFdIcG7fvq2AgADdvXtXEl8IiHm0MQCvsqNHj8pms0mSpk+frr1798ZxRYhLxhh9+OGHWrRokUaMGKGvvvpKjx49iuuyEgzCFRKUH3/8UXXq1NGbb76pmjVratmyZfYvBMBKv/zyi1asWCFJstlsBCzECM5pQFz7888/VaNGDY0cOVI9evRQu3btlDJlyrguC3Ek9Hdd2bJl9f3332vo0KEaNmyYHj9+HIeVJRxOcV0AEFVLlizRxx9/rGHDhunBgwc6c+aM6tevL19fX3Xr1k2pUqWK6xLxili8eLEaNWqkDBkyKDAwUPXr17cHLMI8rBIcHCwHh6f7OJcvX65Tp04pTZo0KlKkiPLmzRvH1eF1kTJlSrVq1UqDBg1SUFCQjh49qmzZsikwMFBOTvxMfN2EfMf9/PPP+vzzz1WxYkVlzpxZffv21d27dzVo0CA5OzvHcZXxG+8aJBirV6/WBx98oPbt29unlSxZUs2aNdOTJ080cOBAJUqUKA4rxKvgwIEDGjZsmNq0aaOgoCB99dVXMsbovffeI2DBMsYYe7Dq1auXZs+erXz58uny5cvy9vbWxx9/rLp168ZtkXgtZMyYURkyZNDdu3fl5eWl5cuXq2vXrnJyclJQUJAcHR3jukTEshMnTqhNmzYaPHiwWrVqJT8/Py1btkzt2rWTJH399ddycXGJ4yrjL8IVEgRjjC5fviwvLy9J/+tK8+GHH8rJyUlNmzZV7ty51bp1a3784qU4OjrK29tbnTt3liSNHDlSffr0kSQCFiwT0n7GjBmj+fPna+nSpSpevLhGjRql3r17288tbdy4sSTR5mCpkKOmIe2qTJky2rZtm3777TdNmjRJjx49kq+vL8HqNeXv76+UKVOqSpUqcnFxkaenp9q2baugoCC1a9dOHh4e6tKlixInThzXpcZLnHOFeC2k72/Ih/+iRYt09OhR+5eCMUbvv/+++vXrp759++rcuXP8AMELCQnsBQsW1LBhw5QvXz7ly5dPHTp0UIkSJdSnTx8tXrxY0tP2+PDhw7gsF6+Ae/fu6ejRo+revbuKFy+uZcuWqX///urSpYsSJUqkb7/9VkuXLpUkPtdgmdDdUQ8fPqw9e/YoSZIkevvtt9W+fXs1aNBAs2bN0pAhQ+zrDB48WIcOHYqrkhHLEiVKpDNnzuiff/6R9L/vx+rVqytNmjT68ssv9d1338VlifGazXCWNhKAwMBA3bt3T40aNZKLi4tGjx6t7Nmz2/uE//7773rvvfe0Zs0a+fj4xHW5SMBC2lTo7jCHDh3SmDFjtHPnTn3zzTeqXbu2KlSooJ49e6pGjRpxXDESsr///ltJkyaVn5+fatWqpY4dO6pLly6aN2+e2rZtqwwZMmj06NGqWrVqXJeKV0DoI6BffvmlFi1apODgYD158kT169dXjx495ODgoPHjx2vevHl65513dOPGDR0+fFj//PMPR7JeQSFt4tkuoB988IHOnz+vESNGqFixYpKe7hDq2rWrSpYsqRIlSihPnjxxVXa8xpErxHszZsxQjRo15OHhodatW8vf31+ff/65Tpw4YT/ZNmPGjPLw8GCoULyUmTNnqlq1agoMDJSjo6P9yGmhQoXUqVMnvfPOO/riiy+UJ08enT59Wu+++24cV4yEIigoKMLp2bJlU4YMGbRt2zalT59erVu3lvS0e2rZsmXVunVr2hksExKsRowYoWnTpmny5Mk6deqUKlSooNmzZ+vcuXNKly6d2rdvr88//1z//vuv3NzcdOrUKTk6OjK65SsmJFht2LBBvXr1Urdu3XT06FFJUrt27eTu7q5OnTpp1apVOnTokAYNGqTNmzerXr16BKvnIFwhXjPG6MmTJ7p586YuX76sxo0bq0WLFrp//76qV6+u2bNna+HChfr000/l7u5u37sCRJcxRo8fP5afn58uXrxonxY6YDVp0kRnz56Vp6enzp49K2dnZwUGBsZl2YjnLl26JEn2PcJjxoxR+/bt1bp1a12+fNm+g8gYoxs3bmjv3r168uSJ5s6dqxIlStiPJEQWzoDoMMYoMDBQ27Ztk6+vr8qXL6+VK1dqyZIl+uabb1SiRAkFBAQobdq0+uyzz7R+/Xr99NNP9s+6kO6EeDXYbDatXbtWVapU0dmzZzV37lw1btxYs2bNUqlSpfTVV18pT548qlOnjho0aKA5c+Zo4cKF8vDwiOvS4zW6BSJeieikbT8/PxUqVEg1a9bUuHHjJEm7du3S3LlztWDBAmXJkkWenp5atmyZnJ2dGd0IUfK8tlanTh2NHj06zLw7d+6oQYMGunz5sg4dOiQnJyeGKsZz+fr6atKkSdq9e7dy5cql/v37a/To0apWrZr27t2rhw8fau7cuSpTpoz27dunzz//XP/884+cnJyUNGlS7d+/X87OzgxmAcsEBwfr8ePHqlixosaPH6+7d++qevXqGjZsmD755BMFBARoypQpeuutt1S8eHF7u6MNvlpC/p7Xrl3TgAEDVKhQIX388ceSnnYHPH78uDp06KBmzZrJyclJJ06ckDFGKVKkUNq0aeO4+gTAAAnAwoULTd68ec2OHTvCTL9y5Yq5d++eCQ4ONsYY8+TJk7goD6+QkLa2e/fuMNP/+usv06hRI/P48WNjDG0N/+369eumZMmSJk+ePObw4cOmZcuW5o8//jDGGBMUFGRq165t0qRJYzZt2mSMMebAgQNmwYIFZuLEifb2RTvDywgKCopwepMmTUzWrFlN0qRJzaxZs+zTr169asqWLWsmTZoUWyUijuzevdu88847pkiRImbjxo326Y8fPzYffPCB8fHxMVOmTDF3796NwyoTJo7vIt759ttv1aRJE/3yyy/2aYUKFZKLi4v27NkjSfauWGnSpFHSpElls9kUHBzMUQREy/Pa2q5duyT9b5Sk/Pnza8GCBfbuMbQ1/JfUqVNr1apVcnNzU7Vq1XTo0CElS5ZMkuTg4KDly5erRIkSatSokbZs2SIfHx81atRIn376qX1QFdoZXlToUQH//PNPHTt2TH5+fpKeXlstTZo0ypYtm5o1ayZjjG7fvq0WLVooMDBQbdq0icvSEQvy5Mkjm82m/fv36+DBg/Yu8M7Ozpo9e7YKFiyowYMH20fJRdQRrhDv+Pj46Ny5c+rfv79KlSqlHTt2KFeuXOrSpYv69u2r8+fP239whO6mQF9wRFdU2lrIsP+h8YMXUZUiRQr9+uuvKlCggA4cOKDr169L+l9oX7ZsmUqVKqXy5cvrwIEDYdalezNeRsh3Ys+ePVW/fn0VLlxYn376qX799Vf7ID1PnjxRxowZVbZsWVWtWlVXr17Vpk2b5OjoyHl+r5hnv8fc3Ny0evVqVahQQT/++KNWrlxp/5s7Ojpq2rRpqly5ssqWLRsX5SZonHOFeOn+/fs6dOiQvvvuO/3999/KmDGjGjRooLlz56pWrVr6/PPP+eEBS9DWYKXQRwtCu337tqpXr65bt25pxYoVyp07d5jzWHr37q1vvvmGtoaXFroNrl69Wp07d9bEiRN18+ZNTZ06VUFBQerSpYtq166tf//9V9OnT5ejo6PSp0+vZs2aydHRkaPzr5iQz5o//vhDO3fu1KNHj+Tj46MqVaro7t27ql27th4+fKgvvvhCNWrU4HPoJRGuEO88++Nk5cqV2rJli8aPH6+AgAC1bNlS06ZNi8MK8aqgrcFKodvTypUr9e+//ypLlizKkSOHcuTIIT8/P1WuXFn+/v5avnx5uIAliQF5YJm1a9dqxYoVypYtm7p16ybpaffAfv366c6dO2rXrp0aNmwYbj3a4Kvp559/Vrt27VS4cGG5u7tr0aJF+uabb+Tr62sPWE+ePFHnzp1Vv3592sBLIFwh3nr2h++BAwf022+/qXv37uxRg6Voa7BSr169NGHCBGXLlk3nz59XgQIF1KpVK7Vo0UJ+fn6qUqWK7t27pwULFihfvnxxXS5eQWfPnlWNGjV05swZffrppxoxYoR9XkjAun//vt5//321atUqDitFTAm94+bo0aOqXLmyvvrqK3322We6cOGCsmbNqm7dumnw4MFydHSUv7+/ypQpI09PTy1dutR+fiiij5NUEOuezfOR5fvQP3aNMSpcuLB69+5tHwIb+C+0NcSG0Oem7NmzR+vXr9dvv/2mQ4cOad26dcqdO7fGjh2r+fPny93dXb/++qsePXqkb775Jg6rxqvk2c+2LFmyaNKkSSpcuLC2bt2qdevW2ecVLFhQAwcO1KNHj3Tw4MFYrhQxbeXKlZJkH+hLkq5fv648efLos88+05kzZ1SyZEm1bdtWQ4YMkaOjo44fPy43Nzdt375dU6dOJVi9JMIVYk3Ih3/InpR//vknzP3neXYZjibgeWhriA1Hjx6V9L+BJ77//ntNmjRJb7zxhooXLy5Jeuutt9SlSxdlzZpVy5Yt05MnT5QiRQodOHBAP/74Y5zVjldHcHCw/XPrypUrevDggYKCglS6dGkNGjRIrq6umjRpkjZu3Ghfp0CBApoxY4ZGjRoVR1UjJpw+fVp16tTRhx9+KOl/Ow4fPnyoa9eu6Y8//lD58uVVvXp1+3VDt2/frgEDBujcuXNKliyZvL2946z+VwXhCrEm9F6UwYMH66uvvorSeqH3yNGLFVFBW0NM69q1q1q0aKGtW7fap929e1czZszQjh079O+//9qn58uXT++9955+/vlnXbhwQZKUPHlyRmSDJUJ+QA8YMECVKlVSxYoV1b17dz18+FDly5fXgAEDdOXKFY0fP16bNm2yr5c9e3Y5ODjYPyuR8GXNmlUrVqzQmjVr1Lx5c/v0HDlyyNPTU++++65Kly6tyZMn23cKLV++XH5+fkqePHlclf3KIVwhxn3xxRf2PSQhXwK3bt3SG2+8IUnP/WAP3Wd45cqVYb4YgGfR1hBb2rZtq4CAAH3//ffavHmzJGnQoEEaPXq0zp49q5kzZ+rmzZv25bNnz64cOXKE62bKSeN4UaE/z+bMmaNx48apW7duevPNN7Vz507VqVNHDx48UKVKlTRgwABdv35d/fv31/79+8Nsh8uYvDocHBxUrVo1zZo1S0uXLlWzZs0kPQ1XVatWlaurqzJkyKCjR4/q2LFj6tmzp6ZNm6YhQ4YoZcqUcVz9q4N3FGLUxYsX9ddff2n+/PmaMWOGffrZs2ftPzIi+2AP/WN30qRJqlOnDl20ECnaGmJLUFCQ8ubNq0WLFun8+fMaMmSIvctVx44dNWjQIPXr10+DBw/Wli1bdOTIEfXr10/JkydXjhw54rh6vApCD8KzatUqXbp0SWPGjFGrVq00ZswY9ejRQ7dv31bt2rXtAatnz57KmzevfHx84rZ4xIiQ3hb+/v6qUaOG5s2bpxUrVqhp06aSnl7vrHXr1tq0aZMKFSqkjz76SGvWrNHGjRuVP3/+uCz91WOAGHb06FHTvHlzU7JkSTN16lRjjDF16tQxAwYMMMYYExQUFG6dJ0+e2P8/adIk4+HhYRYvXhw7BSPBoq0htgQGBhpjjDlx4oTJnz+/qVatmtmwYYN9/rfffmtsNpux2WymefPmpn79+ubx48fGmIjbIRAV1apVM4cOHbLf37Nnj8mVK5dxc3MzS5cutU9//Pix+fnnn03RokXNu+++a+7duxdmO7TBV0dwcLD9/+vXrzdVq1Y1T548MY8fPzarVq0y7u7u5oMPPrAvc+7cObN582Zz/Phxc+3atbgo+ZXHkSvEmJAuC2+88YZ69eql7Nmza+rUqZo7d66yZMmitGnT6vTp0zp37pyuXr2qK1euaOfOnZL+N4jA5MmT1bNnT02dOlXvvfdenD0XxG+0NcSG0N2wQrrz5cqVy34u1dChQ+1HsHx9fTV27FhJUpEiRTR9+nQ5OzsrKCiIblh4IefOnVPBggWVJ08e+7Ts2bOrQ4cOSpkypaZOnWqf7uzsrFq1asnX11fHjx/XF198Iel/RzdogwnfiBEjtHz58jDnGP/xxx9KliyZnJyc5OzsrOrVq2vu3Ln65Zdf7EewMmfOrLJlyyp37tzy9PSMy6fw6orrdIdXU+i9YlevXjXGPN3D+9FHH5m3337b2Gw24+bmZnLmzGnSpk1r0qRJY9KkSWNq165t3wszYcIE4+7uzlEEPBdtDbEhdDs7duyY2blzp/H39zcPHz40xhhz/Phxkz9/flO1atUwR7C+/vprY7PZzKhRo8zt27dju2y8ooYPH242bdpkjDHG39/fTJgwwRQoUMC0aNEizHKPHz82mzdvth9pxavh9u3b5v333zdJkyY1a9assU/v1KmTadq0aZhlg4KCzKpVq0zq1KlN3bp1Y7vU1xLhCpYL/SNk4MCBpn79+mbfvn3GGGOOHDliPvroI1O8eHHTqVMn4+fnZ65evWoOHTpk/v77b/sXwD///GOyZMliFi1aFCfPAQkDbQ2xIXS3my+//NLkypXLpEqVyhQqVMiMHDnSXLlyxRjzNHQVKFDA1KhRw6xevdq+zpAhQ4zNZjMTJkwIsy3gRdy4ccPUqFHDeHh4mN9//90YY8ydO3fMuHHjjI+Pj2nZsmWE6xGwXi0nT540bdu2NR4eHmblypXGGGO6du1q2rRpY4wx9h0/xjzt/r5kyRKTOXNm8++//8ZJva8TwhVijK+vr0mbNq2ZM2eOuXjxon360aNHTbNmzUzx4sXNrFmzwq0X8gVw+fLlWKsVCRttDbHh66+/NunTpze//vqrMcaY2rVrG29vb/Pll1/a29Dx48dNmjRpTLdu3cL8mB05cqQ5evRonNSNhC2iQP7XX3+ZDz/80KROndps377dGPO/gFWkSBFTp06dWK4SsSX0TsUdO3aYXr16GQ8PD7Nt2zYzevRo06NHD/Po0SNz584d+3Lnz583xphw594hZhCuECP27t1rsmXLZtavXx9mesiHwrFjx0yLFi1Mzpw57XtcQrBnF9FBW0NsOHLkiClVqpRZsWKFMcaYtWvXmuTJk5tKlSqZzJkzmz59+tgD1rlz5+zBKvSAKUB0hf4hHRwcHOb+X3/9ZZo0aRIuYH333XemRYsWDFrxCgoODrZ/b61bt874+PiYWbNmmU8++cS4u7sbT09Pkz17dpM1a1aTPn16kzNnTuPt7W3eeOMNc+vWrTiu/vXBWMOIETdv3pQxRoUKFbJPM8bIwcFBT548UZ48edS9e3dlz55d1apVC7NuyJDYQFTQ1hAbvLy81KlTJ1WoUEHbtm3TRx99pGHDhunjjz9WlSpVNHv2bN2+fVv9+vVT5syZJT0dsp0h/fGiQg+3PmnSJG3dulU2m03FihVT586dlT9/fn355Zcyxqh+/fpaunSpSpYsqQ4dOihJkiT2gQ4YvOLVYP5/MBKbzab58+frgw8+kCQlTZpUgwYNUqJEiTR16lQ1adJEnTp10tmzZ/XkyRPZbDblypVLKVKkiMvyXyt86iNGuLq66tKlSzp79qxSp04t8/QoqWw2mzZs2CAPDw8VL15c+fLlk/T0RwgX08SLoK0hNnh4eKhq1apKmjSpZs2apfr166t169aSpCxZsujChQsKDg5WqlSp7OvQzvAyQkJR79699eOPP6pBgwZKnjy5evXqpevXr2vQoEHKly+fvvrqKzk6OqpUqVI6dOiQChQoIOl/O5nw6rDZbFq8eLE++OADLVmyRAsWLNCRI0f03nvvqW3btnry5IlmzZqlBg0aqGLFinFd7muLdx1eSuihiUPz9vZW8eLFNWLECP3555+y2Wz2IwlDhgzRypUrwyzPjxD8F9oa4lry5MklSbdu3dL9+/ftF6f28/PT8OHDNW7cONlsNvseZuBlzZs3T4sXL9bPP/+s0aNH66233lJQUJC+/fZbffbZZ5KkfPnyqXv37urbt6/y5s1rX5cj868Wm82mpUuXqlGjRpo2bZrq1q2re/fu6dKlS5KetoNu3bqpcePGKlu2rNauXRvHFb++bIZvAbyg0N0Nfv31V927d08BAQH68MMPJUkzZ87UDz/8oMSJE6tp06ZydHTUjz/+qGvXrmnfvn10l0GU0dYQn/To0UO//fabcuTIocuXL8vPz09//fWXHB0d6YYFywQFBWny5Ml69OiRunXrpl9++UUffvihBg0apMSJE6tNmzby9fXVN998E2a9wMBAPvNeUb/++qtu375t7xLYqVMn3blzR7Nnz7Yvs2rVKu3bt0/vv/++cufOHVelvtYIV3ghId2upKcXy5w3b55SpEih69evq0CBAvrxxx+VOnVqLV++XMuXL9eiRYuUP39+pU+fXgsWLLBfTJOjCPgvtDXEF6Hb4hdffKGrV6/KwcFBEydOlJOTE+0MLyV0+wrh7++v69evK1myZKpSpYqaNm2qHj166PDhwypbtqxu376tb7/9Vr17946jqhEXQtrKt99+qxUrVuj333+Xo6OjBg4cqNWrV2vVqlVKnTp1XJf5+orV4TPwyhk6dKhJly6d2bNnjzHGmClTphibzWbKlStnv/aLMU8v7nr37l37KDeMoIXooq0hPojsWkG0M7yMZy+G/mw727Vrl8mdO7c5e/asMcaYU6dOmVatWplNmzZx/arXUMj327hx40zu3LmNMcb079/fODk52a/1iLhD3wVES1BQkP3/V69e1eHDhzV27Fi99dZbWr58uXr06KGBAwfq3Llzatq0qS5cuCBJSpMmjZIlS2Y/H4EuC/gvtDXEBhNJ543IpoccmXr2HEDaGV5GSFfS/v37q06dOipatKjmzJmjq1evSnp6vt/ff/+tuXPn6tixY+rYsaOuX7+usmXLytHR0X7+H14v+fPnV8qUKdWhQwcNHjxYu3bt0ptvvhnXZSFusx0SqhMnThhjjFmyZIm5du2a2bNnj8mSJYsZN26cMcaYUaNGGZvNZnx8fMy1a9fislQkcLQ1xJTQRwuOHDlijh07Zk6fPh3h/NBCXx/txIkTxt/fP+aKxGtj5syZJn369GbKlCmmbt26Jl++fKZnz57m3LlzxpinR++dnJxMjhw5zFtvvWUeP35sjOF6fa+zXbt2GZvNZpycnMz+/fvjuhz8P45cIUqWLl2qfv36SZK6dOmiXr16KTAwUPXq1ZOnp6e2bdumvHnz2k+yTJ48uVq3bq18+fIpZcqUcVk6EhjaGmKDCTVMdd++ffXBBx+oXLlyatmypcaOHSvp6dGEZ49QmVDnxYwdO1aNGzfW7du3Y7d4vBKebVsBAQHq27ev2rZtq6VLl6pp06Zat26dxo4dq6tXr6p79+46duyY5syZo927d8vZ2VmBgYGMCvga8/Hx0cCBA3X48GEVLlw4rsvB/6MfA/5TQECATp06pe+++05btmzRvn37tHPnzjDdYP7++2+dO3dO7u7uunv3rpYvX65y5cqpa9eukri2EKKGtobYEvKDdMCAAZo0aZJ++uknZciQQd9//706d+6s+/fvq3fv3vaA5eDgECZYTZ48WX379tXEiRPtFw0Goip0uJ87d66uXr2qAwcOqEqVKvZlfH19JUmLFi2SzWbTZ599phw5cihHjhySnoYzuqO+3lxdXeXr68t3XnwTtwfOkFA8evTIlCxZ0thsNtO+fXv79JATaY8dO2ZSpUplvL29Ta5cuUz+/Pk5wRsvhLaGmBS6C9XevXtNsWLFzObNm40xxqxZs8YkT57c1KtXzyRNmtQMGTLEvmzoNjZp0iTj5uZmfv7559grHK+M0N1Ne/ToYdzc3Ez+/PmNo6OjKV68uDlz5kyY5b/77juTIUMGM3bs2FiuFMCLYJcHIhX6ei1PnjxRhQoVVKxYMc2aNUuenp7q16+fHB0d9fjxY+XJk0e7du3SggULlCRJEnXs2JGhiRFltDXEhtDt7Pjx4ypYsKDq1q2rokWLauPGjWrRooWGDRumRo0aqUGDBurVq5d9qOuQIwSTJ09Wz549NX36dNWvXz8unw4SqJA2+Pfff+vGjRvauHGjfHx8NHXqVM2ePVtfffWVvvnmG3l7e0uSevXqJS8vL3tXaADxG9e5QoRC/whZtGiRMmTIoDfffFPBwcGaMGGCBg0apK5du9rPjZGko0ePhrk6PD92ERW0NcQG88z10nbt2qXly5crUaJEcnFxUevWrZUsWTINHTpULi4uat++vf7880+5u7tr5cqVstlsWrRokZo1a6a5c+cSrPBSFixYoC+++ELp06fXypUrlSJFCklPw/ucOXPk7e2tb7/9NlyXUz7rgPiPAS0QjgnVF7x3797q1KmTTpw4oYcPHypJkiRq2bKlvvrqK40aNUpfffWV7t+/r+rVq2vo0KFhtsMXAP4LbQ2xJSRY/fHHH9q+fbu+++47ubm5ycXFRQEBATp48KACAgLk4uKiBw8e6Nq1a2rfvr1WrVplX9fHx0crV64kWOGlBQcHK1OmTDp69KgePnxon/7JJ5/oo48+0sWLF/Xpp5/ah2IPwWcdEP9x5AqR+v777zVixAitWrVKPj4+cnZ2ts8LCAjQlClT1KNHD2XKlEmJEyfWvn37wiwDRBVtDbFhwoQJ2rFjhx4/fqx58+bJ0dHRfuT0+++/19ixY1W5cmWdPHlSDx480J49e+To6ChjTJgdAYAVVq1apf79+ytx4sSaO3dumKNUI0eO1MmTJzVu3DjaHZDAEK4QoYCAADVu3FglSpRQr169dP78eR09elSTJ0/WG2+8oaZNmypfvnw6efKkjhw5olq1atkvZMjoRYgO2hpiy5AhQ/TFF18oU6ZMWrdunX3UNUk6ffq0Fi9erI0bNypDhgyaPHmynJ2d6YYFy4Xuorps2TKNHTtWwcHBmj17tjJlyhRuudBdpwHEf4QrhGOM0b1791S5cmUVKFBA77zzjpYuXap79+5Jkh49eqS8efNq3LhxcnV1ta/HjxBEF20NMWXDhg0qX768HBwcNGDAAKVLl06ffPKJJkyYoD59+qhNmzbq2LGjMmbMGOk2CPCIKaED1tKlSzVu3DjZbDZNnTpVWbJkiXA5AAkDu0Jec8aYcBcylJ5emLVLly7avHmzevfurcKFC2vAgAHasGGDSpQoIT8/vzA/diX6guP5aGuILZcvX1aHDh1UvHhxderUSYMHD1bx4sUlSe3atVPv3r01d+5cTZs2TZcuXbKvF7p9GmMIVogxNptNIfu269Wrp06dOunatWsaPnx4uOUAJCx8c7zG/Pz85O7ubv/wHjdunE6ePKmgoCD169dP77//vkqVKiWbzaYMGTLY1zty5IiyZs0aV2UjAaKtITalTZtWs2bNUpUqVXT48GFt375dhQoV0sOHD5U4cWL16NFDxhj7+SwtWrRQpkyZwnS94kctYlpIwLLZbKpTp45SpEihUqVKxXVZAF4SR65eU76+vsqUKZOuXbtmv9+/f3+dPXtW69evV758+XTgwAFlzJhRGTJkkJ+fn3777TfVqlVLFy5c0JgxYyRJ9CrFf6GtIbaEHHlycHCQk5OTUqZMKS8vL3Xt2lWPHj1S4sSJ9ejRI0lSz5491bFjR/Xv31/r1q2Ly7LxConscyqy6aGPYJUpU4Zzq4BXAO/i11SzZs1UoEABlS5dWhcuXLD/oF2+fLm2bt2qkiVLqkqVKtq/f78k6Z9//tF3330nm82mAwcO2C/ayt5d/BfaGmJD6JP+Dx8+rHTp0mnfvn2aPXu27t69qwoVKiggIECJEiWy/5jt0aOHFi1apObNm8dl6XhFBAcH2z+njh49quPHj+uff/6RJPvAFP/l77//1t27d2O0TgAxiwEtXmOnTp1S06ZNdf78eWXOnFlz5sxRzpw5JUl37txRy5YttWPHDv3666968803dfLkSWXPnl0ODg6c6I1ooa0hJoUOVn369NGvv/6qb775RpUrV1ZwcLA2b96s7t27K1myZFq/fr0SJUqkVq1aqWzZsvZgxSApeBmhB57o27evVqxYoStXrih37txq0KCBOnbsKEnhRv4Lvd7YsWM1ffp0LV++PNzFgwEkIAavlaCgoDD3T548aWrWrGmcnZ3NX3/9FWaZ27dvm/r16xubzWaOHz8e6TaAiNDWENu+/PJLky5dOrNq1Spz8+ZN+/SgoCCzefNmU6BAAZMuXTpTpkwZkzlzZvPkyZM4rBavov79+xtPT0+zbt06c/ToUdO8eXNjs9nM4MGD7cuEfK4FBwfbp02aNMl4eHiYefPmxXrNAKzF7uDXSOg9Zjt37lSGDBmUI0cODR8+XLdv31bdunW1Y8cOpUmTRsYYeXh46IcfflCuXLnCXA+GPuH4L7Q1xLYjR45o4cKFmjlzpqpUqSJ/f3+dPHlS27ZtU548eVS2bFktX75c06dPV3BwsDZs2GDvcsoRK7woE+rI0759+7R69WotWrRIZcuW1W+//aYlS5aobt26GjRokBwdHdWjR49wR+QnT56snj17asaMGapfv35cPh0AVojjcIdYEvoIgK+vrylQoIBZvHixuX//vjHGmL///tsUL17cZM+e3Vy5ciXcOsYY9vIiSmhriAsHDx40uXPnNr///rvZsmWLad++vcmXL5/x8vIyhQoVMitWrAi3TmBgYBxUildF6M+tY8eOmcePH5tvv/3W3L9/32zYsMGkS5fOTJ482dy+fdtUrFjR2Gw24+vrG2YbkyZNMm5ubmbx4sWxXT6AGMJu4ddEyBGAfv36afr06Ro+fLiqVKmiJEmSSJJy5syp+fPnK1WqVCpTpowuXboU7qgB570gKmhriGkRDQyQO3duOTg4qE2bNqpUqZIkafDgwdq5c6cCAwN15cqVcOtwxAovyhhj/9zy9fXVZ599pocPH+rzzz9XkiRJNHfuXDVq1EgtWrSQh4eHcufOrXfeeUd//vmnfUCVRYsWqUuXLpoxY4bee++9uHw6ACzEL5jXyD///KOff/5ZkydPVuXKlXXjxg2dOnVKa9euVZYsWdSoUSMtXrxY5cuXV9euXbVgwYK4LhkJFG0NMSV0l9M9e/bYR2grVqyYDhw4oFWrVsnT01OlSpWyL+fm5halkdqAqArpCvjHH39o+/btGjZsmNzc3CRJAQEBOnjwoIoWLSoXFxc9ePBA165dU/v27fX+++/bt+Hj46OVK1fadwYAeDUQrl4jTk5OcnFxkZ+fn9avX6958+Zp//79CggI0IMHD3T79m198skn2rx5s9KnTx/X5SIBo60hJoQ+WtCrVy/NmzdPNptNV69eVZMmTdSnTx/7EYD79+/rzp07atu2rR49eqQ2bdrEZel4BU2YMEE7duxQ+vTp9dZbb0l6Gv5dXV3VqFEjjR07Vi1bttTJkyf14MEDNWzYUNLTdmyMUc6cOe2jpgJ4ddAt8BUV0V7adOnSKV26dBo1apSqVKkiNzc3fffdd9qxY4dy5sypW7duSZIyZswoR0dHBQUFxXbZSIBoa4gtIUcLxo0bp+nTp2v+/Plau3atVq1apTVr1qhXr146d+6cJGnq1KmqU6eO7t27p927d9POYLl79+5p/vz52rNnj86cOSPpf92iQ4Zfv3TpknLlyhWmDdpsNgbrAV5hHLl6BYXuNnPkyBG5uLjIGKNcuXJpyZIl2r17t5IlS6YiRYrY13n48GG48w84HwH/hbaGuLBnzx699957KlmypIwxyp07t3799VeVKVNGb7zxhgYOHKjmzZvLzc1NzZo1k6OjI9dLw0vZsGGDypcvLwcHBw0YMEDp0qVTz549lSxZMvXp00c//PCDOnbsqIwZM0qSsmfPrl69eqlXr172bdAGgdcDFxF+xZhQw8L2799fixcv1oMHD+Ti4iJfX1/7BTOlp3vdQvqBX758WXv37uWDH1FGW0NsCN3OJOnJkyeqVq2aMmbMqJkzZyo4OFiBgYFycXHRiBEjNGnSJO3cuVOpUqWyr8Nw63gZly9fVoUKFZQ8eXIVL15cU6ZM0e7du1WoUCFJ0tChQzV69Gi1bdtWbdu2lZeXl6SwO5+ebccAXl0cl37FhP6xO2HCBI0cOVK//fab3nrrLbVs2VKTJ0+2Lzt79mw1a9ZMjx8/1p49e+zXfAGigraGmBYyWIX0dJCUa9euydnZWc2aNdPixYu1YcMGOTg4yNnZWZLk6uqq1KlTK3ny5GG2Q7DCy0ibNq1mzZqlkydPaurUqdq+fbsKFSqkhw8fSpJ69OihTp06adq0aZo2bZouXLggKex1+ghWwOuDcPUK2rdvn7Zs2aL58+ercuXK+vvvv/XLL7+oRo0a+uyzz/TDDz9Iklq3bq1u3bpp7dq1cnZ2VmBgID9CEC20NcSkkB+nX3zxhWrXrq28efPau2K1atVK7du315o1axQcHCw/Pz+tWrVKGTJksIct4GWEnE/q4OAgJycnpUyZUl5eXuratasePXqkxIkT69GjR5Kknj17qmPHjurfv7/WrVsXl2UDiGN0C3wFPNvd4OLFi5o7d666dOmi33//XR9++KH69u2rjz76SPXq1dP69ev1/fffq0ePHvZ16DaDqKCtITaE7k61aNEide3aVePGjdOff/6pNWvWKHPmzCpevLj+/fdfjRw5UtmyZZOjo6NcXV21Z88eOTs70w0LLyV0Gzx8+LBSpkypJEmS6OjRo2rXrp2SJEmiTZs2ydXVNUxbW7JkierUqcNnHPAaI1wlcKF/qJ4+fVrJkiVT2rRp7V8MLVq0UJIkSTR69Gg5Ozvr008/1b59+5QoUSJt3bqVHx+IMtoaYtvWrVv1888/q1ChQmrVqpUkacWKFRo7dqxSpEihtm3bKk2aNPaBUxo3bszgFXhpoYNVnz599Ouvv+qbb75R5cqVFRwcrM2bN6t79+5KliyZ1q9fr0SJEqlVq1YqW7as/VxTdiIBry+6BSZQEydO1MGDB+0f3r6+vqpTp47y5cunnj17at++fZKkQ4cOKWnSpHJ2dtbDhw91/fp19e/fX9u2bZPNZhPZGv+Ftoa4cOXKFbVq1UozZ86Uv7+/fXrt2rXVqVMn3bx5UxMmTFBAQIA+/vhjffDBB/ahrglWeBkhweqrr77S1KlTNWDAABUtWtTePbBChQoaPXq0/P39lTVrVpUtW1YbNmxQ06ZN7dsgWAGvL45cJUBnzpxRmTJlVK1aNfXs2dPeTSGk28zq1avl5eWlr776Stu3b1f37t3VsmVLHTx4UE+ePNGePXvk6OhItxn8J9oa4tKff/6phg0bytvbW8OHD1eBAgXs81avXq1evXqpZs2aGjx4cBxWiVfRkSNHVK9ePY0dO1ZVqlSRv7+/rl69qm3btilPnjwqWbKkzpw5o+nTpys4OFgDBgywD9RDsAJeb4SrBOrgwYNq06aNSpcuLQcHB+XNm1etW7eWJK1atUrDhw9XihQp9P777+vGjRtasWKFMmTIoEmTJsnZ2ZkvAEQZbQ1x6dChQ2rZsqXeeustde7cWfny5bPP27Fjh95++23aFyx36NAhNW7cWNOnT1dgYKAWLlyozZs36/bt2/L09NTXX3+tWrVqhVmHzzoAEt0CEywfHx9NmTJF27dv14wZM3T37l37vJo1a6pbt27y9/fXwoULVahQIa1Zs0bTpk1jpDZEG20NcalQoUKaNm2a9u3bp9GjR+vo0aP2eSVLlrR3BQReVMiogKHlzp1bDg4OatOmjSpVqiRJGjx4sHbu3KnAwEBduXIl3Dp81gGQCFcJ2ptvvqnp06crRYoUWr16tf766y/7vFq1aqlr1646ceKEVq5caZ9ujOF8BEQbbQ1xqXDhwpo6daoOHjyofv366cyZM2Hm86MWLyr04BV79uzR7t279ccffyhRokQ6cOCAvv76a61fv15jxoxRrVq1lDlzZrm5uUUYyABAolvgK4FuM4gttDXEpT/++EOTJk3S1KlTw1ygFXgRoc8F7dWrl+bNmyebzaarV6+qSZMm6tOnj7JlyyZJun//vu7cuaO2bdvqypUr9vNJAeBZhKtXxIEDB9SmTRsVKVJEXbp0Ud68ecPMpy84rEJbQ1wK+UEc+ogD8DLGjRunAQMGaPny5UqVKpUuXLigjz76SKVKldKwYcPk7e2t0aNH68cff1SSJEm0YcMGzicFECnC1SvkwIED+uSTT+Tt7a0hQ4Yoa9ascV0SXlG0NcQlRp+ElZo3b67EiRNr0qRJ9rZ18OBBlSlTRl26dNHAgQN1584dLV26VM2aNeNaagCei91+r5DChQtr3LhxSp48uby9veO6HLzCaGuISwQrvKhn9yc/efJE//5fe3cXEtXWx3H8N5YzTo6i9OJkmCaCNINopBYVRSlkoNlF6IWkKWmEiYIR2NUUdVEQSA550Rt6VdgLmohiQy9gUIKiE4kYBcrJ0pKCBLUan4tD8yQ8PdVp1OP4/VzO2mvvtTebGX7zX3vtv/7SxMSEt31qakpJSUlyOBy6fv263r9/r7CwMBUWFvIuNQA/RbjyM6mpqbpy5YoCAgJ44BazinsNwELi8Xi8wfzly5caGRlRYGCg8vPzdfPmTblcLgUEBCgwMFCSZDKZtGLFCoWEhMzYD1MBAfw/hCs/ZDAYND09zfMImHXcawAWim/fUydOnNDevXtls9l0/PhxWSwWFRUVqbS0VK2trfJ4PPr48aOam5u1Zs0ab9gCgF9BXdtPMW0Gc4V7DcC/2feLnzQ0NKi+vl5Op1O9vb1qbW3V4OCgNm/erKysLGVmZio2NlZLliyRyWRSZ2en908kvusA/AoWtAAAAH7v0aNHunXrlhITE1VUVCRJampqUk1NjcLDw1VcXKxVq1bpyZMnslgsys3NZfEKAL+NcAUAAPzamzdvtG3bNo2OjurkyZOqqKjwtt29e1fV1dUKDQ1VVVWVUlNTvW0stw7gd/GgBAAA8GtWq1W3b9+W1WpVS0uL3G63ty0rK0uVlZV68eKF7ty5M6MfwQrA76JyBQAAFoWenh4VFhYqOTlZ5eXlstvt3rbHjx9r06ZNBCoAf4RwBQAAFo3u7m4dOnRIGzduVEVFhWw224x2pgIC+BOEKwAAsKh0d3fr8OHDio6O1rlz57Ru3br5HhIAP8EzVwAAYFHZsGGDnE6nQkJCFB0dPd/DAeBHqFwBAIBF6dv7q75/FxYA/AnCFQAAWLR4QTAAX+JvGgAAsGgRrAD4EuEKAAAAAHyAcAUAAAAAPkC4AgAAAAAfIFwBAAAAgA8QrgAAAADABwhXAADMI4fDoaSkpPkeBgDABwhXAIAF5+DBgzIYDDIYDDIajYqLi9OpU6f05cuXP9rnvn37fDdIAMCis3S+BwAAwD+RkZGha9euaXJyUi0tLSotLVVgYKCqqqpmbDc1NSWj0ThPowQALCZUrgAAC5LJZJLValV0dLSOHDmi9PR0NTU1eStQZ86cUWRkpOLj4yVJbrdbu3btktls1vLly1VSUqJPnz5J+ntqXl1dnRobG70VsQcPHvy03zdXr16V3W6XyWTS6tWrdfToUW/b4OCgsrOzZbFYFBoaqpycHL19+3ZuLhIAYE4RrgAAfsFsNmtqakqS5HK51N/fr/b2djU3N2t8fFy7d+9WeHi4Ojs71dDQoHv37nlD0LFjx5STk6OMjAwNDw9reHhYW7Zs+Wk/SaqtrVVpaalKSkrkdrvV1NSkuLg4SZLH41F2drbGxsb08OFDtbe36+XLl8rNzZ37CwQAmHVMCwQALGjT09NyuVxqa2tTWVmZRkdHFRwcrMuXL3unA166dEkTExOqr69XcHCwJMnpdCorK0tnz55VRESEzGazJicnZbVavfuuq6v7ab/Tp0+rsrJS5eXl3n4pKSmS/g55brdbr169UlRUlCSpvr5edrtdnZ2d3u0AAP6ByhUAYEFqbm6WxWJRUFCQ9uzZo9zcXDkcDklSQkLCjOes+vr6lJiY6A1IkrR161Z5PB719/f/8Bg/6zcyMqLXr18rLS3th/2joqK8wUqSbDabwsLC1NfX909PHQDwL0XlCgCwIO3cuVO1tbUyGo2KjIzU0qX//Un7PgzNJrPZPCfHAQAsDFSuAAALUnBwsOLi4rR27doZwep/Wb9+vXp6ejQ+Pu79rKOjQwEBAd4FL4xGo75+/fpb/UJCQhQTEyOXy/XD4w4NDWloaMj72fPnz/XhwwfZbLbfPmcAwL8b4QoA4Pfy8vIUFBSkgoICPXv2TPfv31dZWZkOHDigiIgISVJMTIx6e3vV39+vd+/e6fPnz7/Uz+Fw6Pz587pw4YIGBgbU1dWlmpoaSVJ6eroSEhKUl5enrq4uPX36VPn5+dqxY4eSk5Pn7XoAAGYH4QoA4PeWLVumtrY2jY2NKSUlRfv371daWpqcTqd3m+LiYsXHxys5OVkrV65UR0fHL/UrKChQdXW1Ll68KLvdrszMTA0MDEiSDAaDGhsbFR4eru3btys9PV2xsbG6cePGnF8DAMDsM0xPT0/P9yAAAAAAYKGjcgUAAAAAPkC4AgAAAAAfIFwBAAAAgA8QrgAAAADABwhXAAAAAOADhCsAAAAA8AHCFQAAAAD4AOEKAAAAAHyAcAUAAAAAPkC4AgAAAAAfIFwBAAAAgA/8BxNjhHT91VBeAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJsCAYAAAARCFkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF6UlEQVR4nOzddXyV5f/H8fdZktuIESNGg+QQQUA6pFNCRGkMGqSmkqIo3SUtSEqLSJeEtJICktK1kYNt1+8PfjvfjW24wb2C1/PxOA84d53PObtOvO/7uq/bZowxAgAAAAC8FIe4LgAAAAAAXgWEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQr4AVs3rxZNptNmzdvjutSXhlZsmRRixYt4rqM/xQTdbZo0UJZsmSxdJtIuMqVK6dy5cpZtr0//vhDLi4uOnfunGXbfBFnz56VzWbTzJkzY/Xxhg0bFuOP9Sp8J/Tv3182my3MtLj8XLbZbOrfv3+cPHZMevZ5TZo0SZkzZ1ZAQEDcFQVLEa6QYNhstijdovLl9u2332rZsmUxXvPMmTPD1ZcmTRqVL19ev/76a4w//qvq0aNHGjlypN5++225u7srUaJEypUrlzp06KC///47Vms5evSo+vfvr7Nnz8bq4xYrVkw2m00TJ06M1ceNLSE/jENujo6Oypw5s+rVq6eDBw9a+lg//fSTRo0aZek245Mvv/xSTZo0kbe3t31auXLllD9//jisyjqrV69+5X6Enz17Vi1btlT27NmVKFEipUuXTmXKlFG/fv3iujRYrEWLFnr8+LEmT54c16XAIk5xXQAQVT/++GOY+7Nnz9a6devCTX/jjTf+c1vffvutGjRooLp161pZYqQGDhyorFmzyhijq1evaubMmapevbpWrlypmjVrxkoNr4obN26oatWq2rdvn2rWrKkPPvhAyZIl04kTJzR//nxNmTJFjx8/jrHHP3HihBwc/rdf6ujRoxowYIDKlSsXa0efTp48qT179ihLliyaO3euPvvss1h53LjQpEkTVa9eXUFBQTp27JgmTpyoX3/9Vbt27ZKPj48lj/HTTz/p8OHD6tKliyXbi08OHjyo9evXa8eOHXFdiry9vfXw4UM5Oztbut3Vq1dr/PjxcRqwypQpo4cPH8rFxeWlt3Xq1CkVLVpUiRMnVqtWrZQlSxZdvnxZ+/fv1/fff68BAwZYUHHUPPt5F5sePnwoJ6dX/2dqokSJ1Lx5c40YMUIdO3YMd/QQCc+r32rxyvjwww/D3N+1a5fWrVsXbnp8VK1aNb311lv2+61bt1batGk1b948S8JVcHCwHj9+rESJEoWbd//+fSVNmvSlHyO+aNGihQ4cOKDFixfrvffeCzPv66+/1pdffhmjj+/q6hqj24+KOXPmKE2aNBo+fLgaNGigs2fPWhbs4lt7efPNN8O8x9955x3Vrl1bEydOjHRPb3x7DnFpxowZypw5s4oXLx7Xpchms0X4GfWshPj3c3BwiNJzi4qRI0fq3r17OnjwYJijjZJ07do1Sx4jquLy886q1zMhaNSokYYMGaJNmzapQoUKcV0OXhLdAvFKuX//vj7//HNlypRJrq6uyp07t4YNGyZjjH0Zm82m+/fva9asWfYuRyF9ys+dO6d27dopd+7cSpw4sVKlSqWGDRta3uXLw8NDiRMnDrdXLir1hzyHDh06aO7cucqXL59cXV21Zs0aezfELVu2qF27dkqTJo0yZsxoX2/ChAn25b28vNS+fXvduXPHPn/MmDFydHQMM2348OGy2Wzq1q2bfVpQUJCSJ0+uXr162acFBwdr1KhRypcvnxIlSqS0adPqk08+0e3bt8PUbozRoEGDlDFjRiVJkkTly5fXkSNHovS67d69W7/88otat24dLlhJT38IhD6/4s8//1SLFi2ULVs2e9eaVq1a6ebNm2HWCznX4Pjx42rUqJHc3NyUKlUqde7cWY8ePQqzbOhzEGbOnKmGDRtKksqXLx+ua+ry5ctVo0YNeXl5ydXVVdmzZ9fXX3+toKCgKD3fyPz0009q0KCBatasKXd3d/30008RLrd7925Vr15dKVKkUNKkSVWwYEGNHj3aPr9FixZKliyZTp8+rerVqyt58uRq2rSppKi3xXXr1qlUqVLy8PBQsmTJlDt3bn3xxRdhlhk7dqzy5cunJEmSKEWKFHrrrbcirfm/hPzwOHPmjCS9dJsvV66cfvnlF507d87+9wsdVK9du2bfGZIoUSIVKlRIs2bNCldXcHCwRo8erQIFCihRokTy9PRU1apVtXfvXvsygYGB+vrrr5U9e3a5uroqS5Ys+uKLL6J0rsWLvobLli1ThQoVXnhv+H+9fiHGjx+vbNmyKXHixCpWrJi2bdsW7tyxiM65el4b3LZtmxo2bKjMmTPL1dVVmTJlUteuXfXw4cMw648fP15S2K7jz5oyZYr9dS9atKj27NkTZn5IHefPn1fNmjWVLFkyZciQwb7tv/76SxUqVFDSpEnl7e0d7rWP7Jyr/3oPRuT06dPKmDFjuGAlSWnSpAk37ddff1XZsmWVPHlyubm5qWjRomHqi8rrGJlnz7kKeb/9/vvv6tatmzw9PZU0aVLVq1dP169fD7NucHCw+vfvLy8vL/tn/dGjR6N8Htez5ybdvXtXXbp0UZYsWeTq6qo0adKocuXK2r9//3O3E9k5rRGdYxaVz7OAgAD169dPOXLksL+ePXv2DPc+DggIUNeuXeXp6ankyZOrdu3aunjxYoQ1FilSRClTptTy5cuf+1yQMHDkCq8MY4xq166tTZs2qXXr1vLx8dFvv/2mHj166N9//9XIkSMlPe1e2KZNGxUrVkwff/yxJCl79uySpD179mjHjh16//33lTFjRp09e1YTJ05UuXLldPToUSVJkuSFavPz89ONGzdkjNG1a9c0duxY3bt3L8we+ajWH2Ljxo1auHChOnTooNSpUytLliz2c1HatWsnT09P9e3bV/fv35f09ItkwIABqlSpkj777DOdOHFCEydO1J49e/T777/L2dlZpUuXVnBwsLZv324/orZt2zY5ODho27Zt9sc+cOCA7t27pzJlytinffLJJ5o5c6ZatmypTp066cyZMxo3bpwOHDhg374k9e3bV4MGDVL16tVVvXp17d+/X++++26UuvKtWLFCkvTRRx9F6XVft26d/vnnH7Vs2VLp0qXTkSNHNGXKFB05ckS7du0K98XaqFEjZcmSRYMHD9auXbs0ZswY3b59W7Nnz45w+2XKlFGnTp00ZswYffHFF/YuqSH/zpw5U8mSJVO3bt2ULFkybdy4UX379pW/v7+GDh0apefwrN27d+vUqVOaMWOGXFxcVL9+fc2dOzfcD4B169apZs2aSp8+vTp37qx06dLp2LFjWrVqlTp37mxfLjAwUFWqVFGpUqU0bNgwJUmSJMpt8ciRI6pZs6YKFiyogQMHytXVVadOndLvv/9u3/4PP/ygTp06qUGDBvaw+ueff2r37t364IMPov38T58+LUlKlSpVmOkv2ua//PJL+fn56eLFi/bnlSxZMklPuyWVK1dOp06dUocOHZQ1a1YtWrRILVq00J07d8K8jq1bt9bMmTNVrVo1tWnTRoGBgdq2bZt27dplP2rdpk0bzZo1Sw0aNNDnn3+u3bt3a/DgwTp27JiWLl0a6XN+0dfw33//1fnz5/Xmm29G+3WO6usnSRMnTlSHDh1UunRpde3aVWfPnlXdunWVIkWKMEE3MhG1QUlatGiRHjx4oM8++0ypUqXSH3/8obFjx+rixYtatGiRpKefO5cuXYqwi3iIn376SXfv3tUnn3wim82mIUOGqH79+vrnn3/CdFEMCgpStWrVVKZMGQ0ZMkRz585Vhw4dlDRpUn355Zdq2rSp6tevr0mTJqlZs2YqUaKEsmbNGunziup78Fne3t5av369Nm7c+J9HMWbOnKlWrVopX7588vX1lYeHhw4cOKA1a9bY20ZUXsfo6tixo1KkSKF+/frp7NmzGjVqlDp06KAFCxbYl/H19dWQIUNUq1YtValSRYcOHVKVKlXC7bCKqk8//VSLFy9Whw4dlDdvXt28eVPbt2/XsWPHXriNhxaVz7Pg4GDVrl1b27dv18cff6w33nhDf/31l0aOHKm///47zLncbdq00Zw5c/TBBx+oZMmS2rhxo2rUqBHp47/55pthHgsJmAESqPbt25vQTXjZsmVGkhk0aFCY5Ro0aGBsNps5deqUfVrSpElN8+bNw23zwYMH4abt3LnTSDKzZ8+2T9u0aZORZDZt2vTcGmfMmGEkhbu5urqamTNnhlk2OvVLMg4ODubIkSMRPl6pUqVMYGCgffq1a9eMi4uLeffdd01QUJB9+rhx44wkM336dGOMMUFBQcbNzc307NnTGGNMcHCwSZUqlWnYsKFxdHQ0d+/eNcYYM2LECOPg4GBu375tjDFm27ZtRpKZO3dumHrWrFkTZnpIHTVq1DDBwcH25b744gsjKcK/SWj16tUzkuyP+18i+nvOmzfPSDJbt261T+vXr5+RZGrXrh1m2Xbt2hlJ5tChQ/Zp3t7eYepctGhRpG0hosf/5JNPTJIkScyjR4/s05o3b268vb2j9Jw6dOhgMmXKZH/91q5daySZAwcO2JcJDAw0WbNmNd7e3uFeq9Cve/PmzY0k07t37zDLRLUtjhw50kgy169fj7TeOnXqmHz58kXpuYV25swZI8kMGDDAXL9+3Vy5csVs3rzZFC5c2EgyP//8szHm5du8McbUqFEjwtd/1KhRRpKZM2eOfdrjx49NiRIlTLJkyYy/v78xxpiNGzcaSaZTp07hthHyeh88eNBIMm3atAkzv3v37kaS2bhxo31a2bJlTdmyZe33X/Q1XL9+vZFkVq5cGW5e2bJln7vNqL5+AQEBJlWqVKZo0aLmyZMn9uVmzpxpJIV5HiF/0xkzZtinRdYGjYn4/TN48GBjs9nMuXPn7NOe/S549vFSpUplbt26ZZ++fPnycK9LSB3ffvutfdrt27dN4sSJjc1mM/Pnz7dPP378uJFk+vXrZ5/27HdCVN+DETl8+LBJnDixkWR8fHxM586dzbJly8z9+/fDLHfnzh2TPHly8/bbb5uHDx9G+hhRfR1DPgdDe/bzLuT9VqlSpTCP0bVrV+Po6Gju3LljjDHmypUrxsnJydStWzfM9vr37x+lz3pjTLjX2N3d3bRv3/4/13tWZJ+vzz7fqHye/fjjj8bBwcFs27YtzPRJkyYZSeb33383xvzv/d6uXbswy33wwQfhnleIjz/+2CROnDgazwzxFd0C8cpYvXq1HB0d1alTpzDTP//8cxljojQ6X+LEie3/f/LkiW7evKkcOXLIw8PjP7sePM/48eO1bt06rVu3TnPmzFH58uXVpk0bLVmy5IXrL1u2rPLmzRvh47Vt21aOjo72++vXr9fjx4/VpUuXMCcnt23bVm5ubvrll18kPT1voGTJktq6dask6dixY7p586Z69+4tY4x27twp6enRrPz588vDw0PS0z2j7u7uqly5sm7cuGG/FSlSRMmSJdOmTZvC1PHsSbtRHUjA399fkpQ8efIoLR/67/no0SPduHHDfu5JRH/P9u3bh7nfsWNHSU//Ni8i9OPfvXtXN27cUOnSpfXgwQMdP3482tsLDAzUggUL1LhxY/vrV6FCBaVJk0Zz5861L3fgwAGdOXNGXbp0sf+NQkTUZerZATGi2hZDtr18+XIFBwdHWLOHh4cuXrwYrhtWVPXr10+enp5Kly6dypUrp9OnT+v7779X/fr1wyz3om3+eVavXq106dKpSZMm9mnOzs7q1KmT7t27py1btkiSfv75Z9lstghHcgt5vUPaUOjutdLT11TSc+t50dcwpPtrihQporWeFPXXb+/evbp586batm0bpptz06ZNo/W4EQ3KEvr9c//+fd24cUMlS5aUMUYHDhyI8rYbN24cppbSpUtLkv75559wy7Zp08b+fw8PD+XOnVtJkyZVo0aN7NNz584tDw+PCNcPEd33YGj58uXTwYMH9eGHH+rs2bMaPXq06tatq7Rp0+qHH36wL7du3TrdvXtXvXv3Dnd+UujHsOp1DO3jjz8O8xilS5dWUFCQfbj/DRs2KDAwUO3atQuzXshn6ovw8PDQ7t27denSpRfexn9tX3r+59miRYv0xhtvKE+ePGG+60KOMIZ814W835/9DH3ed12KFCn08OFDPXjw4CWfCeIa4QqvjHPnzsnLyyvcD++QLlpRucbLw4cP1bdvX/t5JqlTp5anp6fu3LkjPz+/F66tWLFiqlSpkipVqqSmTZvql19+Ud68edWhQwd7d7jo1v+87ijPzgtZN3fu3GGmu7i4KFu2bGG2Xbp0ae3bt08PHz7Utm3blD59er355psqVKiQvWvg9u3b7T9QpKej1/n5+SlNmjTy9PQMc7t37579JOyQx8mZM2eYOjw9PaP0Q8zNzU3S06ASFbdu3VLnzp2VNm1aJU6cWJ6envbXJqK/57N1Zc+eXQ4ODi98zt2RI0dUr149ubu7y83NTZ6envauoC/SntauXavr16+rWLFiOnXqlE6dOqUzZ86ofPnymjdvnv0HQUjXuagMte3k5BSu61ZU22Ljxo31zjvvqE2bNkqbNq3ef/99LVy4MMwPk169eilZsmQqVqyYcubMqfbt20er68vHH3+sdevWacOGDdq3b5+uXbumnj17hlvuZdp8ZM6dO6ecOXOGGy3t2dfh9OnT8vLyUsqUKZ+7LQcHB+XIkSPM9HTp0snDw+O59bzsa2ieOU8uKqL6+oX8++zzcnJyivIgKxG1QUk6f/68WrRooZQpUypZsmTy9PRU2bJlJUXv/ZM5c+Yw90M+a549HzTkXLnQ3N3dlTFjxnCByN3dPdz6oUXnPRiRXLly6ccff9SNGzf0559/6ttvv5WTk5M+/vhjrV+/PlqPYdXrGNp/vaaRtYuUKVO+UNiXpCFDhujw4cPKlCmTihUrpv79+z834EZXVD7PTp48qSNHjoT7nsuVK5ckhfmuc3BwsJ9yEOLZ91NoIe9TRgtM+DjnCgilY8eOmjFjhrp06aISJUrI3d1dNptN77//fqR7sl6Eg4ODypcvr9GjR+vkyZPKly9ftLcRem9kdOb9l1KlSunJkyfauXOntm3bZg9RpUuX1rZt23T8+HFdv349TLgKDg4Od/QktGd/sLyoPHnySHp6cnnox49Mo0aNtGPHDvXo0UM+Pj5KliyZgoODVbVq1Sj9PV/mS+7OnTsqW7as3NzcNHDgQPv1avbv369evXq9UHsKeX1D70UPbcuWLSpfvny0tunq6vrCQy0nTpxYW7du1aZNm/TLL79ozZo1WrBggSpUqKC1a9fK0dFRb7zxhk6cOKFVq1ZpzZo1+vnnnzVhwgT17ds3SkNK58yZU5UqVYpSLQnBi7SpF30NQ85Le14IiA8iaoNBQUGqXLmybt26pV69eilPnjxKmjSp/v33X7Vo0SJa75/QRzRDezZ0RrZcVNePCY6OjipQoIAKFCigEiVKqHz58po7d26U3hOSta/js3VFJCZfk0aNGql06dJaunSp1q5dq6FDh+r777/XkiVLVK1atUjXi+w99+zAQlH5PAsODlaBAgU0YsSICLeZKVOmF35+t2/fVpIkSRLMZxkix5ErvDK8vb116dKlcEc1QrpfhR55KbIP28WLF6t58+b2Ia4rV66sUqVKRTg61ssKDAyUJN27dy/a9UdXyLonTpwIM/3x48c6c+ZMmG0XK1ZMLi4u2rZtW5hwVaZMGe3evVsbNmyw3w+RPXt23bx5U++88479CF3oW6FChcLUcfLkyTB1XL9+PUo/AGvVqiXp6VDk/+X27dvasGGDevfurQEDBqhevXqqXLmysmXLFuk6z9Z16tQpBQcHP3cPfGRtafPmzbp586Zmzpypzp07q2bNmqpUqdIL77W9f/++li9frsaNG2vRokXhbunTp7eHr5C9pYcPH36hx4pOW3RwcFDFihU1YsQIHT16VN988402btxo7x4jSUmTJlXjxo01Y8YMnT9/XjVq1NA333zzwie2R/U5SFFr85H9Db29vXXy5MlwP0CffR2yZ8+uS5cu6datW8+tJzg4OFwbu3r1qu7cufOf7+8XeQ1DdkaEjKwYHVF9/UL+PXXqVJjlAgMDX2qU1b/++kt///23hg8frl69eqlOnTqqVKmSvLy8wi0bH/f0v+x7MCIhA6Ncvnw5yo8RndfRSpG1i5s3b75U2E+fPr3atWunZcuW6cyZM0qVKpW++eab566TIkWKCL/DIzpa/F+fZ9mzZ9etW7dUsWLFCL/rQo5MhbzfQ44uhnj2/RTamTNnonSdTsR/hCu8MkIuNDpu3Lgw00eOHCmbzRZmz1bSpEkj/LB1dHQMt+dt7NixLz109rOePHmitWvXysXFxf5hGp36o6tSpUpycXHRmDFjwjy/adOmyc/PL8wIRokSJVLRokU1b948nT9/PsyRq4cPH2rMmDHKnj270qdPb1+nUaNGCgoK0tdffx3usQMDA+2vdaVKleTs7KyxY8eGqWPUqFFReh4lSpRQ1apVNXXq1DCjMoV4/PixunfvLul/e1af/Xs+77FChl0OMXbsWEl67msfcj2eZ9tTRI//+PFjTZgwIdJtPc/SpUt1//59tW/fXg0aNAh3q1mzpn7++WcFBATozTffVNasWTVq1KhwdUVlz3JU22JEYSLkwr4hwxI/O+y9i4uL8ubNK2OMnjx5EtWnH23RafNJkyaNsHtU9erVdeXKlTAjoAUGBmrs2LFKliyZvWvVe++9J2NMhEeRQh67evXqksK3v5A94M8bRexFX8MMGTIoU6ZMYYaDj6qovn5vvfWWUqVKpR9++MG+w0h6epT1ZX5ER/T+McZEOIx5ZO/BuPQy78Ft27ZF+HcNOY8n5Af8u+++q+TJk2vw4MHhQnbIY0TndbRSxYoV5eTkpIkTJ4aZ/uxnSlQFBQWFe4+mSZNGXl5e/3kpg+zZs8vPz09//vmnfdrly5fDjdAZlc+zRo0a6d9//w1z7luIhw8f2kcqDfmMHDNmTJhlnvf9s3//fpUsWfK5zwUJA90C8cqoVauWypcvry+//FJnz55VoUKFtHbtWi1fvlxdunQJ0/e5SJEiWr9+vUaMGCEvLy9lzZpVb7/9tmrWrKkff/xR7u7uyps3r3bu3Kn169eHG/Y5un799Vf73u5r167pp59+0smTJ9W7d2/7eUTRqT+6PD095evrqwEDBqhq1aqqXbu2Tpw4oQkTJqho0aLhLsRcunRpfffdd3J3d1eBAgUkPf0iy507t06cOBHuGiVly5bVJ598osGDB+vgwYN699135ezsrJMnT2rRokUaPXq0GjRoIE9PT3Xv3l2DBw9WzZo1Vb16dR04cEC//vqrUqdOHaXnMnv2bL377ruqX7++atWqpYoVKypp0qQ6efKk5s+fr8uXL2vYsGFyc3OzD6n85MkTZciQQWvXrn3uXvwzZ86odu3aqlq1qnbu3GkfRjfkyFtEfHx85OjoqO+//15+fn5ydXVVhQoVVLJkSaVIkULNmzdXp06dZLPZ9OOPP75wt5m5c+cqVapUkX751q5dWz/88IN++eUX1a9fXxMnTlStWrXk4+Ojli1bKn369Dp+/LiOHDmi33777bmPFdW2OHDgQG3dulU1atSQt7e3rl27pgkTJihjxowqVaqUpKc/ANOlS6d33nlHadOm1bFjxzRu3DjVqFEjygOTvIjotPkiRYpowYIF6tatm4oWLapkyZKpVq1a+vjjjzV58mS1aNFC+/btU5YsWbR48WL9/vvvGjVqlL3+8uXL66OPPtKYMWN08uRJe7fTbdu2qXz58urQoYMKFSqk5s2ba8qUKfYuo3/88YdmzZqlunXrPrc758u8hnXq1NHSpUtljAl3hOf69esaNGhQuHWyZs2qpk2bRun1c3FxUf/+/dWxY0dVqFBBjRo10tmzZzVz5kxlz579hY8q5cmTR9mzZ1f37t3177//ys3NTT///HOEga1IkSKSng4eUKVKFTk6Our9999/oce1ioODwwu/B7///nvt27dP9evXV8GCBSU9/eE9e/ZspUyZ0j4ogpubm0aOHKk2bdqoaNGi+uCDD5QiRQodOnRIDx480KxZs6L1Olopbdq06ty5s4YPH27/TD106JD9sz667eLu3bvKmDGjGjRooEKFCilZsmRav3699uzZo+HDhz933ffff1+9evVSvXr11KlTJz148EATJ05Urly5wgxsFJXPs48++kgLFy7Up59+qk2bNumdd95RUFCQjh8/roULF+q3337TW2+9JR8fHzVp0kQTJkyQn5+fSpYsqQ0bNoQ7khdi3759unXrlurUqROt1wXxVCyMSAjEiIiG3717967p2rWr8fLyMs7OziZnzpxm6NCh4Ya+PX78uClTpox9uNuQYWFv375tWrZsaVKnTm2SJUtmqlSpYo4fPx5uONqXGYo9UaJExsfHx0ycODFcXVGtX1KEQ9KGPN6ePXsirGfcuHEmT548xtnZ2aRNm9Z89tlnEQ5r/ssvvxhJplq1amGmt2nTxkgy06ZNi3D7U6ZMMUWKFDGJEyc2yZMnNwUKFDA9e/Y0ly5dsi8TFBRkBgwYYNKnT28SJ05sypUrZw4fPhzuNX6eBw8emGHDhpmiRYuaZMmSGRcXF5MzZ07TsWPHMEPWX7x40dSrV894eHgYd3d307BhQ3Pp0qVwQ+GGDMl79OhR06BBA5M8eXKTIkUK06FDh3BDHEdU5w8//GCyZctmHB0dw7SL33//3RQvXtwkTpzYeHl5mZ49e5rffvstXNv5r6HYr169apycnMxHH3303NckSZIkpl69evZp27dvN5UrVzbJkyc3SZMmNQULFjRjx44N87hJkyaNcHtRaYsbNmwwderUMV5eXsbFxcV4eXmZJk2amL///tu+zOTJk02ZMmVMqlSpjKurq8mePbvp0aOH8fPzi/S5GPO/YbSHDh363OWsaPP37t0zH3zwgfHw8DCSwvwtrl69av9McHFxMQUKFAgzlHiIwMBAM3ToUJMnTx7j4uJiPD09TbVq1cy+ffvsyzx58sQMGDDAZM2a1Tg7O5tMmTIZX1/fMMPyGxN+KPYXfQ2NMWb//v1GUriho8uWLRvhZSIkmYoVK0br9TPGmDFjxhhvb2/j6upqihUrZn7//XdTpEgRU7VqVfsykQ3FHlkbPHr0qKlUqZJJliyZSZ06tWnbtq05dOhQuG0EBgaajh07Gk9PT2Oz2ezfC89rQ89+BkRWR2RD1nt7e5saNWrY70f2nfBf78GI/P7776Z9+/Ymf/78xt3d3Tg7O5vMmTObFi1amNOnT4dbfsWKFaZkyZImceLExs3NzRQrVszMmzfPPj+qr2N0hmJ/9v0W0fMPDAw0ffr0MenSpTOJEyc2FSpUMMeOHTOpUqUyn3766XNfA2PC/o0CAgJMjx49TKFCheyvZaFChcyECRP+czvGPL1kRf78+Y2Li4vJnTu3mTNnTrjnG5XPM2OeXo7h+++/N/ny5TOurq4mRYoUpkiRImbAgAFh3pMPHz40nTp1MqlSpTJJkyY1tWrVMhcuXIhwKPZevXqZzJkz/+cw/UgYbMbEwhmZABCPhVws9fr161E+ggYkFBUrVpSXl1ekF9mNCcHBwfL09FT9+vUj7EKF19OdO3eUIkUKDRo0SF9++WVclxMvBAQEKEuWLOrdu/dzLy6NhINzrgAAeIV9++23WrBgQZSGn38Rjx49Ctfddfbs2bp165bKlSsXI4+J+O/hw4fhpoWcc0S7+J8ZM2bI2dlZn376aVyXAotwzhUAAK+wt99+2349vZiwa9cude3aVQ0bNlSqVKm0f/9+TZs2Tfnz51fDhg1j7HERvy1YsEAzZ85U9erVlSxZMm3fvl3z5s3Tu+++q3feeSeuy4s3Pv30U4LVK4ZwBQAAXliWLFmUKVMmjRkzRrdu3VLKlCnVrFkzfffdd3JxcYnr8hBHChYsKCcnJw0ZMkT+/v72QS4iGkQFeJVwzhUAAAAAWIBzrgAAAADAAoQrAAAAALAA51xFIDg4WJcuXVLy5Mlf+AKIAAAAABI+Y4zu3r0rLy8vOTg8/9gU4SoCly5dUqZMmeK6DAAAAADxxIULF5QxY8bnLkO4ikDy5MklPX0B3dzc4rgaAAAAAHHF399fmTJlsmeE5yFcRSCkK6CbmxvhCgAAAECUThdiQAsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALBAnIarrVu3qlatWvLy8pLNZtOyZcvCzLfZbBHehg4dGuk2+/fvH275PHnyxPAzAQAAAPC6i9Nwdf/+fRUqVEjjx4+PcP7ly5fD3KZPny6bzab33nvvudvNly9fmPW2b98eE+UDAAAAgJ1TXD54tWrVVK1atUjnp0uXLsz95cuXq3z58sqWLdtzt+vk5BRuXQAAkDAU6TE7rktALNo3tFlclwBYJsGcc3X16lX98ssvat269X8ue/LkSXl5eSlbtmxq2rSpzp8//9zlAwIC5O/vH+YGAAAAANGRYMLVrFmzlDx5ctWvX/+5y7399tuaOXOm1qxZo4kTJ+rMmTMqXbq07t69G+k6gwcPlru7u/2WKVMmq8sHAAAA8IpLMOFq+vTpatq0qRIlSvTc5apVq6aGDRuqYMGCqlKlilavXq07d+5o4cKFka7j6+srPz8/++3ChQtWlw8AAADgFRen51xF1bZt23TixAktWLAg2ut6eHgoV65cOnXqVKTLuLq6ytXV9WVKBAAAAPCaSxBHrqZNm6YiRYqoUKFC0V733r17On36tNKnTx8DlQEAAADAU3Earu7du6eDBw/q4MGDkqQzZ87o4MGDYQag8Pf316JFi9SmTZsIt1GxYkWNGzfOfr979+7asmWLzp49qx07dqhevXpydHRUkyZNYvS5AAAAAHi9xWm3wL1796p8+fL2+926dZMkNW/eXDNnzpQkzZ8/X8aYSMPR6dOndePGDfv9ixcvqkmTJrp586Y8PT1VqlQp7dq1S56enjH3RAAAAAC89mzGGBPXRcQ3/v7+cnd3l5+fn9zc3OK6HAAAXitc5+r1wnWuEN9FJxskiHOuAAAAACC+I1wBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYwCmuCwAAAADiQpEes+O6BMSifUObxfhjcOQKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAvEabjaunWratWqJS8vL9lsNi1btizM/BYtWshms4W5Va1a9T+3O378eGXJkkWJEiXS22+/rT/++COGngEAAAAAPBWn4er+/fsqVKiQxo8fH+kyVatW1eXLl+23efPmPXebCxYsULdu3dSvXz/t379fhQoVUpUqVXTt2jWrywcAAAAAO6e4fPBq1aqpWrVqz13G1dVV6dKli/I2R4wYobZt26ply5aSpEmTJumXX37R9OnT1bt375eqFwAAAAAiE+/Pudq8ebPSpEmj3Llz67PPPtPNmzcjXfbx48fat2+fKlWqZJ/m4OCgSpUqaefOnZGuFxAQIH9//zA3AAAAAIiOeB2uqlatqtmzZ2vDhg36/vvvtWXLFlWrVk1BQUERLn/jxg0FBQUpbdq0YaanTZtWV65cifRxBg8eLHd3d/stU6ZMlj4PAAAAAK++OO0W+F/ef/99+/8LFCigggULKnv27Nq8ebMqVqxo2eP4+vqqW7du9vv+/v4ELAAAAADREq+PXD0rW7ZsSp06tU6dOhXh/NSpU8vR0VFXr14NM/3q1avPPW/L1dVVbm5uYW4AAAAAEB0JKlxdvHhRN2/eVPr06SOc7+LioiJFimjDhg32acHBwdqwYYNKlCgRW2UCAAAAeA3Fabi6d++eDh48qIMHD0qSzpw5o4MHD+r8+fO6d++eevTooV27duns2bPasGGD6tSpoxw5cqhKlSr2bVSsWFHjxo2z3+/WrZt++OEHzZo1S8eOHdNnn32m+/fv20cPBAAAAICYEKfnXO3du1fly5e33w8576l58+aaOHGi/vzzT82aNUt37tyRl5eX3n33XX399ddydXW1r3P69GnduHHDfr9x48a6fv26+vbtqytXrsjHx0dr1qwJN8gFAAAAAFgpTsNVuXLlZIyJdP5vv/32n9s4e/ZsuGkdOnRQhw4dXqY0AAAAAIiWBHXOFQAAAADEV4QrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxGm42rp1q2rVqiUvLy/ZbDYtW7bMPu/Jkyfq1auXChQooKRJk8rLy0vNmjXTpUuXnrvN/v37y2azhbnlyZMnhp8JAAAAgNddnIar+/fvq1ChQho/fny4eQ8ePND+/fvVp08f7d+/X0uWLNGJEydUu3bt/9xuvnz5dPnyZftt+/btMVE+AAAAANg5xeWDV6tWTdWqVYtwnru7u9atWxdm2rhx41SsWDGdP39emTNnjnS7Tk5OSpcunaW1AgAAAMDzJKhzrvz8/GSz2eTh4fHc5U6ePCkvLy9ly5ZNTZs21fnz55+7fEBAgPz9/cPcAAAAACA6Eky4evTokXr16qUmTZrIzc0t0uXefvttzZw5U2vWrNHEiRN15swZlS5dWnfv3o10ncGDB8vd3d1+y5QpU0w8BQAAAACvsAQRrp48eaJGjRrJGKOJEyc+d9lq1aqpYcOGKliwoKpUqaLVq1frzp07WrhwYaTr+Pr6ys/Pz367cOGC1U8BAAAAwCsuTs+5ioqQYHXu3Dlt3LjxuUetIuLh4aFcuXLp1KlTkS7j6uoqV1fXly0VAAAAwGssXh+5CglWJ0+e1Pr165UqVapob+PevXs6ffq00qdPHwMVAgAAAMBTcRqu7t27p4MHD+rgwYOSpDNnzujgwYM6f/68njx5ogYNGmjv3r2aO3eugoKCdOXKFV25ckWPHz+2b6NixYoaN26c/X737t21ZcsWnT17Vjt27FC9evXk6OioJk2axPbTAwAAAPAaidNugXv37lX58uXt97t16yZJat68ufr3768VK1ZIknx8fMKst2nTJpUrV06SdPr0ad24ccM+7+LFi2rSpIlu3rwpT09PlSpVSrt27ZKnp2fMPhkAAAAAr7U4DVflypWTMSbS+c+bF+Ls2bNh7s+fP/9lywIAAACAaIvX51wBAAAAQEJBuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALOMV1AQBeTpEes+O6BMSifUObxXUJAAAgEhy5AgAAAAALROvI1Z07d7R06VJt27ZN586d04MHD+Tp6anChQurSpUqKlmyZEzVCQAAAADxWpSOXF26dElt2rRR+vTpNWjQID18+FA+Pj6qWLGiMmbMqE2bNqly5crKmzevFixYENM1AwAAAEC8E6UjV4ULF1bz5s21b98+5c2bN8JlHj58qGXLlmnUqFG6cOGCunfvbmmhAAAAABCfRSlcHT16VKlSpXruMokTJ1aTJk3UpEkT3bx505LiAAAAACChiFK3wP8KVi+7PAAAAAAkdNEein3jxo1asmSJzp49K5vNpqxZs6pBgwYqU6ZMTNQHAAAAAAlCtIZi//TTT1WpUiXNmzdPN2/e1PXr1zV37lyVL19eHTt2jKkaAQAAACDei3K4Wrp0qWbMmKHp06frxo0b2rlzp3bt2qXr16/rhx9+0JQpU7RixYqYrBUAAAAA4q0oh6sZM2aoW7duatGihWw22/824OCgVq1aqUuXLpo2bVqMFAkAAAAA8V2Uw9X+/ftVr169SOfXr19f+/bts6QoAAAAAEhoohyubty4oYwZM0Y6P2PGjAzBDgAAAOC1FeVw9fjxYzk7O0c638nJSY8fP7akKAAAAABIaKI1FHufPn2UJEmSCOc9ePDAkoIAAAAAICGKcrgqU6aMTpw48Z/LAAAAAMDrKMrhavPmzTFYBgAAAAAkbNG6iHBEAgMDde/ePStqAQAAAIAEK8rhauXKlZo5c2aYad98842SJUsmDw8Pvfvuu7p9+7bV9QEAAABAghDlcDVixAjdv3/ffn/Hjh3q27ev+vTpo4ULF+rChQv6+uuvY6RIAAAAAIjvohyujhw5opIlS9rvL168WJUrV9aXX36p+vXra/jw4Vq5cmWMFAkAAAAA8V2Uw9Xdu3eVKlUq+/3t27erYsWK9vv58uXTpUuXrK0OAAAAABKIKIerDBky6NixY5Kke/fu6dChQ2GOZN28eTPSa2ABAAAAwKsuyuGqYcOG6tKli3788Ue1bdtW6dKlU/Hixe3z9+7dq9y5c8dIkQAAAAAQ30X5Old9+/bVv//+q06dOildunSaM2eOHB0d7fPnzZunWrVqxUiRAAAAABDfRTlcJU6cWLNnz450/qZNmywpCAAAAAASope+iDAAAAAAIBpHrlKkSCGbzRZuuru7u3LlyqXu3burcuXKlhYHAAAAAAlFlMPVqFGjIpx+584d7du3TzVr1tTixYs57woAAADAaynK4ap58+bPne/j46PBgwcTrgAAAAC8liw756pmzZo6fvy4VZsDAAAAgATFsnAVEBAgFxcXqzYHAAAAAAmKZeFq2rRp8vHxsWpzAAAAAJCgRPmcq27dukU43c/PT/v379fff/+trVu3WlYYAAAAACQkUQ5XBw4ciHC6m5ubKleurCVLlihr1qyWFQYAAAAACUmUw9WmTZtisg4AAAAASNAsO+cKAAAAAF5nUQpXn376qS5evBilDS5YsEBz5859qaIAAAAAIKGJUrdAT09P5cuXT++8845q1aqlt956S15eXkqUKJFu376to0ePavv27Zo/f768vLw0ZcqUmK4bAAAAAOKVKIWrr7/+Wh06dNDUqVM1YcIEHT16NMz85MmTq1KlSpoyZYqqVq0aI4UCAAAAQHwW5QEt0qZNqy+//FJffvmlbt++rfPnz+vhw4dKnTq1smfPLpvNFpN1AgAAAEC8FuVwFVqKFCmUIkWKl37wrVu3aujQodq3b58uX76spUuXqm7duvb5xhj169dPP/zwg+7cuaN33nlHEydOVM6cOZ+73fHjx2vo0KG6cuWKChUqpLFjx6pYsWIvXS8AvM6K9Jgd1yUgFu0b2iyuSwCABCdORwu8f/++ChUqpPHjx0c4f8iQIRozZowmTZqk3bt3K2nSpKpSpYoePXoU6TYXLFigbt26qV+/ftq/f78KFSqkKlWq6Nq1azH1NAAAAAAgbsNVtWrVNGjQINWrVy/cPGOMRo0apa+++kp16tRRwYIFNXv2bF26dEnLli2LdJsjRoxQ27Zt1bJlS+XNm1eTJk1SkiRJNH369Bh8JgAAAABed/H2OldnzpzRlStXVKlSJfs0d3d3vf3229q5c2eE6zx+/Fj79u0Ls46Dg4MqVaoU6TqSFBAQIH9//zA3AAAAAIiOeBuurly5IunpQBqhpU2b1j7vWTdu3FBQUFC01pGkwYMHy93d3X7LlCnTS1YPAAAA4HUTb8NVbPL19ZWfn5/9duHChbguCQAAAEACE6XRAgsXLhzlodb379//UgWFSJcunSTp6tWrSp8+vX361atX5ePjE+E6qVOnlqOjo65evRpm+tWrV+3bi4irq6tcXV1fvmgAAAAAr60ohavQw6PHlqxZsypdunTasGGDPUz5+/tr9+7d+uyzzyJcx8XFRUWKFNGGDRvsNQcHB2vDhg3q0KFDLFUOAAAA4HUUpXDVr1+/GHnwe/fu6dSpU/b7Z86c0cGDB5UyZUplzpxZXbp00aBBg5QzZ05lzZpVffr0kZeXV5iwV7FiRdWrV88enrp166bmzZvrrbfeUrFixTRq1Cjdv39fLVu2jJHnAAAAAADSC15E2Cp79+5V+fLl7fe7desmSWrevLlmzpypnj176v79+/r44491584dlSpVSmvWrFGiRIns65w+fVo3btyw32/cuLGuX7+uvn376sqVK/Lx8dGaNWvCDXIBAAAAAFaKdrgKCgrSyJEjtXDhQp0/f16PHz8OM//WrVtR3la5cuVkjIl0vs1m08CBAzVw4MBIlzl79my4aR06dKAbIAAAAIBYFe3RAgcMGKARI0aocePG8vPzU7du3VS/fn05ODiof//+MVAiAAAAAMR/0Q5Xc+fO1Q8//KDPP/9cTk5OatKkiaZOnaq+fftq165dMVEjAAAAAMR70Q5XV65cUYECBSRJyZIlk5+fnySpZs2a+uWXX6ytDgAAAAASiGiHq4wZM+ry5cuSpOzZs2vt2rWSpD179nCtKAAAAACvrWiHq3r16mnDhg2SpI4dO6pPnz7KmTOnmjVrplatWlleIAAAAAAkBNEeLfC7776z/79x48by9vbWjh07lDNnTtWqVcvS4gAAAAAgoYh2uNq6datKliwpJ6enqxYvXlzFixdXYGCgtm7dqjJlylheJAAAAADEd9HuFli+fPkIr2Xl5+cX5oLAAAAAAPA6iXa4MsbIZrOFm37z5k0lTZrUkqIAAAAAIKGJcrfA+vXrS5JsNptatGgRZmTAoKAg/fnnnypZsqT1FQIAAABAAhDlcOXu7i7p6ZGr5MmTK3HixPZ5Li4uKl68uNq2bWt9hQAAAACQAEQ5XM2YMUOSlCVLFnXv3p0ugAAAAAAQSrRHC+zXr19M1AEAAAAACVqUwtWbb76pDRs2KEWKFCpcuHCEA1qE2L9/v2XFAQAAAEBCEaVwVadOHfsAFnXr1o3JegAAAAAgQYpSuArdFZBugQAAAAAQXrTPuQqxd+9eHTt2TJKUN29eFSlSxLKiAAAAACChiXa4unjxopo0aaLff/9dHh4ekqQ7d+6oZMmSmj9/vjJmzGh1jQAAAAAQ7zlEd4U2bdroyZMnOnbsmG7duqVbt27p2LFjCg4OVps2bWKiRgAAAACI96J95GrLli3asWOHcufObZ+WO3dujR07VqVLl7a0OAAAAABIKKJ95CpTpkx68uRJuOlBQUHy8vKypCgAAAAASGiiHa6GDh2qjh07au/evfZpe/fuVefOnTVs2DBLiwMAAACAhCLa3QJbtGihBw8e6O2335aT09PVAwMD5eTkpFatWqlVq1b2ZW/dumVdpQAAAAAQj0U7XI0aNSoGygAAAACAhC3a4ap58+YxUQcAAAAAJGgvfBFhSXr06JEeP34cZpqbm9tLFQQAAAAACVG0B7S4f/++OnTooDRp0ihp0qRKkSJFmBsAAAAAvI6iHa569uypjRs3auLEiXJ1ddXUqVM1YMAAeXl5afbs2TFRIwAAAADEe9HuFrhy5UrNnj1b5cqVU8uWLVW6dGnlyJFD3t7emjt3rpo2bRoTdQIAAABAvBbtI1e3bt1StmzZJD09vypkuPVSpUpp69at1lYHAAAAAAlEtMNVtmzZdObMGUlSnjx5tHDhQklPj2h5eHhYWhwAAAAAJBTRDlctW7bUoUOHJEm9e/fW+PHjlShRInXt2lU9evSwvEAAAAAASAiifc5V165d7f+vVKmSjh8/rn379ilHjhwqWLCgpcUBAAAAQELxUte5kiRvb295e3tbUQsAAAAAJFhR7ha4ceNG5c2bV/7+/uHm+fn5KV++fNq2bZulxQEAAABAQhHlcDVq1Ci1bdtWbm5u4ea5u7vrk08+0YgRIywtDgAAAAASiiiHq0OHDqlq1aqRzn/33Xe1b98+S4oCAAAAgIQmyuHq6tWrcnZ2jnS+k5OTrl+/bklRAAAAAJDQRDlcZciQQYcPH450/p9//qn06dNbUhQAAAAAJDRRDlfVq1dXnz599OjRo3DzHj58qH79+qlmzZqWFgcAAAAACUWUh2L/6quvtGTJEuXKlUsdOnRQ7ty5JUnHjx/X+PHjFRQUpC+//DLGCgUAAACA+CzK4Spt2rTasWOHPvvsM/n6+soYI0my2WyqUqWKxo8fr7Rp08ZYoQAAAAAQn0XrIsLe3t5avXq1bt++rVOnTskYo5w5cypFihQxVR8AAAAAJAjRClchUqRIoaJFi1pdCwAAAAAkWFEe0AIAAAAAEDnCFQAAAABYgHAFAAAAABYgXAEAAACABaI0oMWKFSuivMHatWu/cDEAAAAAkFBFKVzVrVs3Shuz2WwKCgp6mXoAAAAAIEGKUrgKDg6O6ToAAAAAIEHjnCsAAAAAsMALXUT4/v372rJli86fP6/Hjx+HmdepUydLCguRJUsWnTt3Ltz0du3aafz48eGmz5w5Uy1btgwzzdXVVY8ePbK0LgAAAAAILdrh6sCBA6pevboePHig+/fvK2XKlLpx44aSJEmiNGnSWB6u9uzZE+Y8rsOHD6ty5cpq2LBhpOu4ubnpxIkT9vs2m83SmgAAAADgWdHuFti1a1fVqlVLt2/fVuLEibVr1y6dO3dORYoU0bBhwywv0NPTU+nSpbPfVq1apezZs6ts2bKRrmOz2cKskzZtWsvrAgAAAIDQon3k6uDBg5o8ebIcHBzk6OiogIAAZcuWTUOGDFHz5s1Vv379mKhTkvT48WPNmTNH3bp1e+7RqHv37snb21vBwcF688039e233ypfvnyRLh8QEKCAgAD7fX9//5eutUiP2S+9DSQc+4Y2i+sSAAAAEMeifeTK2dlZDg5PV0uTJo3Onz8vSXJ3d9eFCxesre4Zy5Yt0507d9SiRYtIl8mdO7emT5+u5cuXa86cOQoODlbJkiV18eLFSNcZPHiw3N3d7bdMmTLFQPUAAAAAXmXRDleFCxfWnj17JElly5ZV3759NXfuXHXp0kX58+e3vMDQpk2bpmrVqsnLyyvSZUqUKKFmzZrJx8dHZcuW1ZIlS+Tp6anJkydHuo6vr6/8/Pzst5gOiQAAAABePdEOV99++63Sp08vSfrmm2+UIkUKffbZZ7p+/fpzA8zLOnfunNavX682bdpEaz1nZ2cVLlxYp06dinQZV1dXubm5hbkBAAAAQHRE+5yrt956y/7/NGnSaM2aNZYWFJkZM2YoTZo0qlGjRrTWCwoK0l9//aXq1avHUGUAAAAA8AJHripUqKA7d+6Em+7v768KFSpYUVM4wcHBmjFjhpo3by4np7B5sFmzZvL19bXfHzhwoNauXat//vlH+/fv14cffqhz585F+4gXAAAAAERHtI9cbd68OdyFgyXp0aNH2rZtmyVFPWv9+vU6f/68WrVqFW7e+fPn7QNsSNLt27fVtm1bXblyRSlSpFCRIkW0Y8cO5c2bN0ZqAwAAAAApGuHqzz//tP//6NGjunLliv1+UFCQ1qxZowwZMlhb3f979913ZYyJcN7mzZvD3B85cqRGjhwZI3UAAAAAQGSiHK58fHxks9lks9ki7P6XOHFijR071tLiAAAAACChiHK4OnPmjIwxypYtm/744w95enra57m4uChNmjRydHSMkSIBAAAAIL6Lcrjy9vaW9HRwCQAAAABAWNEe0EKSTp8+rVGjRunYsWOSpLx586pz587Knj27pcUBAAAAQEIR7aHYf/vtN+XNm1d//PGHChYsqIIFC2r37t3Kly+f1q1bFxM1AgAAAEC8F+0jV71791bXrl313XffhZveq1cvVa5c2bLiAAAAACChiPaRq2PHjql169bhprdq1UpHjx61pCgAAAAASGiiHa48PT118ODBcNMPHjyoNGnSWFETAAAAACQ4Ue4WOHDgQHXv3l1t27bVxx9/rH/++UclS5aUJP3+++/6/vvv1a1btxgrFAAAAADisyiHqwEDBujTTz9Vnz59lDx5cg0fPly+vr6SJC8vL/Xv31+dOnWKsUIBAAAAID6LcrgyxkiSbDabunbtqq5du+ru3buSpOTJk8dMdQAAAACQQERrtECbzRbmPqEKAAAAAJ6KVrjKlStXuID1rFu3br1UQQAAAACQEEUrXA0YMEDu7u4xVQsAAAAAJFjRClfvv/8+w60DAAAAQASifJ2r/+oOCAAAAACvsyiHq5DRAgEAAAAA4UW5W2BwcHBM1gEAAAAACVqUj1wBAAAAACJHuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALxOtw1b9/f9lstjC3PHnyPHedRYsWKU+ePEqUKJEKFCig1atXx1K1AAAAAF5n8TpcSVK+fPl0+fJl+2379u2RLrtjxw41adJErVu31oEDB1S3bl3VrVtXhw8fjsWKAQAAALyO4n24cnJyUrp06ey31KlTR7rs6NGjVbVqVfXo0UNvvPGGvv76a7355psaN25cLFYMAAAA4HUU78PVyZMn5eXlpWzZsqlp06Y6f/58pMvu3LlTlSpVCjOtSpUq2rlz53MfIyAgQP7+/mFuAAAAABAd8Tpcvf3225o5c6bWrFmjiRMn6syZMypdurTu3r0b4fJXrlxR2rRpw0xLmzatrly58tzHGTx4sNzd3e23TJkyWfYcAAAAALwe4nW4qlatmho2bKiCBQuqSpUqWr16te7cuaOFCxda+ji+vr7y8/Oz3y5cuGDp9gEAAAC8+pziuoDo8PDwUK5cuXTq1KkI56dLl05Xr14NM+3q1atKly7dc7fr6uoqV1dXy+oEAAAA8PqJ10eunnXv3j2dPn1a6dOnj3B+iRIltGHDhjDT1q1bpxIlSsRGeQAAAABeY/E6XHXv3l1btmzR2bNntWPHDtWrV0+Ojo5q0qSJJKlZs2by9fW1L9+5c2etWbNGw4cP1/Hjx9W/f3/t3btXHTp0iKunAAAAAOA1Ea+7BV68eFFNmjTRzZs35enpqVKlSmnXrl3y9PSUJJ0/f14ODv/LhyVLltRPP/2kr776Sl988YVy5sypZcuWKX/+/HH1FAAAAAC8JuJ1uJo/f/5z52/evDnctIYNG6phw4YxVBEAAAAARCxedwsEAAAAgISCcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAF4nW4Gjx4sIoWLarkyZMrTZo0qlu3rk6cOPHcdWbOnCmbzRbmlihRoliqGAAAAMDrKl6Hqy1btqh9+/batWuX1q1bpydPnujdd9/V/fv3n7uem5ubLl++bL+dO3culioGAAAA8LpyiusCnmfNmjVh7s+cOVNp0qTRvn37VKZMmUjXs9lsSpcuXUyXBwAAAAB28frI1bP8/PwkSSlTpnzucvfu3ZO3t7cyZcqkOnXq6MiRI89dPiAgQP7+/mFuAAAAABAdCSZcBQcHq0uXLnrnnXeUP3/+SJfLnTu3pk+fruXLl2vOnDkKDg5WyZIldfHixUjXGTx4sNzd3e23TJkyxcRTAAAAAPAKSzDhqn379jp8+LDmz5//3OVKlCihZs2aycfHR2XLltWSJUvk6empyZMnR7qOr6+v/Pz87LcLFy5YXT4AAACAV1y8PucqRIcOHbRq1Spt3bpVGTNmjNa6zs7OKly4sE6dOhXpMq6urnJ1dX3ZMgEAAAC8xuL1kStjjDp06KClS5dq48aNypo1a7S3ERQUpL/++kvp06ePgQoBAAAA4Kl4feSqffv2+umnn7R8+XIlT55cV65ckSS5u7srceLEkqRmzZopQ4YMGjx4sCRp4MCBKl68uHLkyKE7d+5o6NChOnfunNq0aRNnzwMAAADAqy9eh6uJEydKksqVKxdm+owZM9SiRQtJ0vnz5+Xg8L8DcLdv31bbtm115coVpUiRQkWKFNGOHTuUN2/e2CobAAAAwGsoXocrY8x/LrN58+Yw90eOHKmRI0fGUEUAAAAAELF4fc4VAAAAACQUhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAskiHA1fvx4ZcmSRYkSJdLbb7+tP/7447nLL1q0SHny5FGiRIlUoEABrV69OpYqBQAAAPC6ivfhasGCBerWrZv69eun/fv3q1ChQqpSpYquXbsW4fI7duxQkyZN1Lp1ax04cEB169ZV3bp1dfjw4ViuHAAAAMDrJN6HqxEjRqht27Zq2bKl8ubNq0mTJilJkiSaPn16hMuPHj1aVatWVY8ePfTGG2/o66+/1ptvvqlx48bFcuUAAAAAXidOcV3A8zx+/Fj79u2Tr6+vfZqDg4MqVaqknTt3RrjOzp071a1btzDTqlSpomXLlkX6OAEBAQoICLDf9/PzkyT5+/u/cO1BAQ9feF0kPC/TVl4Wbe31QltDbKGtIbbQ1hBbXrSthaxnjPnPZeN1uLpx44aCgoKUNm3aMNPTpk2r48ePR7jOlStXIlz+ypUrkT7O4MGDNWDAgHDTM2XK9AJV43XkPvbTuC4BrwnaGmILbQ2xhbaG2PKybe3u3btyd3d/7jLxOlzFFl9f3zBHu4KDg3Xr1i2lSpVKNpstDitLWPz9/ZUpUyZduHBBbm5ucV0OXmG0NcQW2hpiC20NsYW2Fn3GGN29e1deXl7/uWy8DlepU6eWo6Ojrl69Gmb61atXlS5dugjXSZcuXbSWlyRXV1e5urqGmebh4fFiRUNubm68WREraGuILbQ1xBbaGmILbS16/uuIVYh4PaCFi4uLihQpog0bNtinBQcHa8OGDSpRokSE65QoUSLM8pK0bt26SJcHAAAAACvE6yNXktStWzc1b95cb731looVK6ZRo0bp/v37atmypSSpWbNmypAhgwYPHixJ6ty5s8qWLavhw4erRo0amj9/vvbu3aspU6bE5dMAAAAA8IqL9+GqcePGun79uvr27asrV67Ix8dHa9assQ9acf78eTk4/O8AXMmSJfXTTz/pq6++0hdffKGcOXNq2bJlyp8/f1w9hdeGq6ur+vXrF66LJWA12hpiC20NsYW2hthCW4tZNhOVMQUBAAAAAM8Vr8+5AgAAAICEgnAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAACAMIKDg+O6hASJcAUAAADA7rvvvlOHDh305MmTuC4lwSFcIcEJuXoAVxEAAMAafKcitIwZM2rSpEnq06cPASuaCFdIcG7fvq2AgADdvXtXEl8IiHm0MQCvsqNHj8pms0mSpk+frr1798ZxRYhLxhh9+OGHWrRokUaMGKGvvvpKjx49iuuyEgzCFRKUH3/8UXXq1NGbb76pmjVratmyZfYvBMBKv/zyi1asWCFJstlsBCzECM5pQFz7888/VaNGDY0cOVI9evRQu3btlDJlyrguC3Ek9Hdd2bJl9f3332vo0KEaNmyYHj9+HIeVJRxOcV0AEFVLlizRxx9/rGHDhunBgwc6c+aM6tevL19fX3Xr1k2pUqWK6xLxili8eLEaNWqkDBkyKDAwUPXr17cHLMI8rBIcHCwHh6f7OJcvX65Tp04pTZo0KlKkiPLmzRvH1eF1kTJlSrVq1UqDBg1SUFCQjh49qmzZsikwMFBOTvxMfN2EfMf9/PPP+vzzz1WxYkVlzpxZffv21d27dzVo0CA5OzvHcZXxG+8aJBirV6/WBx98oPbt29unlSxZUs2aNdOTJ080cOBAJUqUKA4rxKvgwIEDGjZsmNq0aaOgoCB99dVXMsbovffeI2DBMsYYe7Dq1auXZs+erXz58uny5cvy9vbWxx9/rLp168ZtkXgtZMyYURkyZNDdu3fl5eWl5cuXq2vXrnJyclJQUJAcHR3jukTEshMnTqhNmzYaPHiwWrVqJT8/Py1btkzt2rWTJH399ddycXGJ4yrjL8IVEgRjjC5fviwvLy9J/+tK8+GHH8rJyUlNmzZV7ty51bp1a3784qU4OjrK29tbnTt3liSNHDlSffr0kSQCFiwT0n7GjBmj+fPna+nSpSpevLhGjRql3r17288tbdy4sSTR5mCpkKOmIe2qTJky2rZtm3777TdNmjRJjx49kq+vL8HqNeXv76+UKVOqSpUqcnFxkaenp9q2baugoCC1a9dOHh4e6tKlixInThzXpcZLnHOFeC2k72/Ih/+iRYt09OhR+5eCMUbvv/+++vXrp759++rcuXP8AMELCQnsBQsW1LBhw5QvXz7ly5dPHTp0UIkSJdSnTx8tXrxY0tP2+PDhw7gsF6+Ae/fu6ejRo+revbuKFy+uZcuWqX///urSpYsSJUqkb7/9VkuXLpUkPtdgmdDdUQ8fPqw9e/YoSZIkevvtt9W+fXs1aNBAs2bN0pAhQ+zrDB48WIcOHYqrkhHLEiVKpDNnzuiff/6R9L/vx+rVqytNmjT68ssv9d1338VlifGazXCWNhKAwMBA3bt3T40aNZKLi4tGjx6t7Nmz2/uE//7773rvvfe0Zs0a+fj4xHW5SMBC2lTo7jCHDh3SmDFjtHPnTn3zzTeqXbu2KlSooJ49e6pGjRpxXDESsr///ltJkyaVn5+fatWqpY4dO6pLly6aN2+e2rZtqwwZMmj06NGqWrVqXJeKV0DoI6BffvmlFi1apODgYD158kT169dXjx495ODgoPHjx2vevHl65513dOPGDR0+fFj//PMPR7JeQSFt4tkuoB988IHOnz+vESNGqFixYpKe7hDq2rWrSpYsqRIlSihPnjxxVXa8xpErxHszZsxQjRo15OHhodatW8vf31+ff/65Tpw4YT/ZNmPGjPLw8GCoULyUmTNnqlq1agoMDJSjo6P9yGmhQoXUqVMnvfPOO/riiy+UJ08enT59Wu+++24cV4yEIigoKMLp2bJlU4YMGbRt2zalT59erVu3lvS0e2rZsmXVunVr2hksExKsRowYoWnTpmny5Mk6deqUKlSooNmzZ+vcuXNKly6d2rdvr88//1z//vuv3NzcdOrUKTk6OjK65SsmJFht2LBBvXr1Urdu3XT06FFJUrt27eTu7q5OnTpp1apVOnTokAYNGqTNmzerXr16BKvnIFwhXjPG6MmTJ7p586YuX76sxo0bq0WLFrp//76qV6+u2bNna+HChfr000/l7u5u37sCRJcxRo8fP5afn58uXrxonxY6YDVp0kRnz56Vp6enzp49K2dnZwUGBsZl2YjnLl26JEn2PcJjxoxR+/bt1bp1a12+fNm+g8gYoxs3bmjv3r168uSJ5s6dqxIlStiPJEQWzoDoMMYoMDBQ27Ztk6+vr8qXL6+VK1dqyZIl+uabb1SiRAkFBAQobdq0+uyzz7R+/Xr99NNP9s+6kO6EeDXYbDatXbtWVapU0dmzZzV37lw1btxYs2bNUqlSpfTVV18pT548qlOnjho0aKA5c+Zo4cKF8vDwiOvS4zW6BSJeieikbT8/PxUqVEg1a9bUuHHjJEm7du3S3LlztWDBAmXJkkWenp5atmyZnJ2dGd0IUfK8tlanTh2NHj06zLw7d+6oQYMGunz5sg4dOiQnJyeGKsZz+fr6atKkSdq9e7dy5cql/v37a/To0apWrZr27t2rhw8fau7cuSpTpoz27dunzz//XP/884+cnJyUNGlS7d+/X87OzgxmAcsEBwfr8ePHqlixosaPH6+7d++qevXqGjZsmD755BMFBARoypQpeuutt1S8eHF7u6MNvlpC/p7Xrl3TgAEDVKhQIX388ceSnnYHPH78uDp06KBmzZrJyclJJ06ckDFGKVKkUNq0aeO4+gTAAAnAwoULTd68ec2OHTvCTL9y5Yq5d++eCQ4ONsYY8+TJk7goD6+QkLa2e/fuMNP/+usv06hRI/P48WNjDG0N/+369eumZMmSJk+ePObw4cOmZcuW5o8//jDGGBMUFGRq165t0qRJYzZt2mSMMebAgQNmwYIFZuLEifb2RTvDywgKCopwepMmTUzWrFlN0qRJzaxZs+zTr169asqWLWsmTZoUWyUijuzevdu88847pkiRImbjxo326Y8fPzYffPCB8fHxMVOmTDF3796NwyoTJo7vIt759ttv1aRJE/3yyy/2aYUKFZKLi4v27NkjSfauWGnSpFHSpElls9kUHBzMUQREy/Pa2q5duyT9b5Sk/Pnza8GCBfbuMbQ1/JfUqVNr1apVcnNzU7Vq1XTo0CElS5ZMkuTg4KDly5erRIkSatSokbZs2SIfHx81atRIn376qX1QFdoZXlToUQH//PNPHTt2TH5+fpKeXlstTZo0ypYtm5o1ayZjjG7fvq0WLVooMDBQbdq0icvSEQvy5Mkjm82m/fv36+DBg/Yu8M7Ozpo9e7YKFiyowYMH20fJRdQRrhDv+Pj46Ny5c+rfv79KlSqlHTt2KFeuXOrSpYv69u2r8+fP239whO6mQF9wRFdU2lrIsP+h8YMXUZUiRQr9+uuvKlCggA4cOKDr169L+l9oX7ZsmUqVKqXy5cvrwIEDYdalezNeRsh3Ys+ePVW/fn0VLlxYn376qX799Vf7ID1PnjxRxowZVbZsWVWtWlVXr17Vpk2b5OjoyHl+r5hnv8fc3Ny0evVqVahQQT/++KNWrlxp/5s7Ojpq2rRpqly5ssqWLRsX5SZonHOFeOn+/fs6dOiQvvvuO/3999/KmDGjGjRooLlz56pWrVr6/PPP+eEBS9DWYKXQRwtCu337tqpXr65bt25pxYoVyp07d5jzWHr37q1vvvmGtoaXFroNrl69Wp07d9bEiRN18+ZNTZ06VUFBQerSpYtq166tf//9V9OnT5ejo6PSp0+vZs2aydHRkaPzr5iQz5o//vhDO3fu1KNHj+Tj46MqVaro7t27ql27th4+fKgvvvhCNWrU4HPoJRGuEO88++Nk5cqV2rJli8aPH6+AgAC1bNlS06ZNi8MK8aqgrcFKodvTypUr9e+//ypLlizKkSOHcuTIIT8/P1WuXFn+/v5avnx5uIAliQF5YJm1a9dqxYoVypYtm7p16ybpaffAfv366c6dO2rXrp0aNmwYbj3a4Kvp559/Vrt27VS4cGG5u7tr0aJF+uabb+Tr62sPWE+ePFHnzp1Vv3592sBLIFwh3nr2h++BAwf022+/qXv37uxRg6Voa7BSr169NGHCBGXLlk3nz59XgQIF1KpVK7Vo0UJ+fn6qUqWK7t27pwULFihfvnxxXS5eQWfPnlWNGjV05swZffrppxoxYoR9XkjAun//vt5//321atUqDitFTAm94+bo0aOqXLmyvvrqK3322We6cOGCsmbNqm7dumnw4MFydHSUv7+/ypQpI09PTy1dutR+fiiij5NUEOuezfOR5fvQP3aNMSpcuLB69+5tHwIb+C+0NcSG0Oem7NmzR+vXr9dvv/2mQ4cOad26dcqdO7fGjh2r+fPny93dXb/++qsePXqkb775Jg6rxqvk2c+2LFmyaNKkSSpcuLC2bt2qdevW2ecVLFhQAwcO1KNHj3Tw4MFYrhQxbeXKlZJkH+hLkq5fv648efLos88+05kzZ1SyZEm1bdtWQ4YMkaOjo44fPy43Nzdt375dU6dOJVi9JMIVYk3Ih3/InpR//vknzP3neXYZjibgeWhriA1Hjx6V9L+BJ77//ntNmjRJb7zxhooXLy5Jeuutt9SlSxdlzZpVy5Yt05MnT5QiRQodOHBAP/74Y5zVjldHcHCw/XPrypUrevDggYKCglS6dGkNGjRIrq6umjRpkjZu3Ghfp0CBApoxY4ZGjRoVR1UjJpw+fVp16tTRhx9+KOl/Ow4fPnyoa9eu6Y8//lD58uVVvXp1+3VDt2/frgEDBujcuXNKliyZvL2946z+VwXhCrEm9F6UwYMH66uvvorSeqH3yNGLFVFBW0NM69q1q1q0aKGtW7fap929e1czZszQjh079O+//9qn58uXT++9955+/vlnXbhwQZKUPHlyRmSDJUJ+QA8YMECVKlVSxYoV1b17dz18+FDly5fXgAEDdOXKFY0fP16bNm2yr5c9e3Y5ODjYPyuR8GXNmlUrVqzQmjVr1Lx5c/v0HDlyyNPTU++++65Kly6tyZMn23cKLV++XH5+fkqePHlclf3KIVwhxn3xxRf2PSQhXwK3bt3SG2+8IUnP/WAP3Wd45cqVYb4YgGfR1hBb2rZtq4CAAH3//ffavHmzJGnQoEEaPXq0zp49q5kzZ+rmzZv25bNnz64cOXKE62bKSeN4UaE/z+bMmaNx48apW7duevPNN7Vz507VqVNHDx48UKVKlTRgwABdv35d/fv31/79+8Nsh8uYvDocHBxUrVo1zZo1S0uXLlWzZs0kPQ1XVatWlaurqzJkyKCjR4/q2LFj6tmzp6ZNm6YhQ4YoZcqUcVz9q4N3FGLUxYsX9ddff2n+/PmaMWOGffrZs2ftPzIi+2AP/WN30qRJqlOnDl20ECnaGmJLUFCQ8ubNq0WLFun8+fMaMmSIvctVx44dNWjQIPXr10+DBw/Wli1bdOTIEfXr10/JkydXjhw54rh6vApCD8KzatUqXbp0SWPGjFGrVq00ZswY9ejRQ7dv31bt2rXtAatnz57KmzevfHx84rZ4xIiQ3hb+/v6qUaOG5s2bpxUrVqhp06aSnl7vrHXr1tq0aZMKFSqkjz76SGvWrNHGjRuVP3/+uCz91WOAGHb06FHTvHlzU7JkSTN16lRjjDF16tQxAwYMMMYYExQUFG6dJ0+e2P8/adIk4+HhYRYvXhw7BSPBoq0htgQGBhpjjDlx4oTJnz+/qVatmtmwYYN9/rfffmtsNpux2WymefPmpn79+ubx48fGmIjbIRAV1apVM4cOHbLf37Nnj8mVK5dxc3MzS5cutU9//Pix+fnnn03RokXNu+++a+7duxdmO7TBV0dwcLD9/+vXrzdVq1Y1T548MY8fPzarVq0y7u7u5oMPPrAvc+7cObN582Zz/Phxc+3atbgo+ZXHkSvEmJAuC2+88YZ69eql7Nmza+rUqZo7d66yZMmitGnT6vTp0zp37pyuXr2qK1euaOfOnZL+N4jA5MmT1bNnT02dOlXvvfdenD0XxG+0NcSG0N2wQrrz5cqVy34u1dChQ+1HsHx9fTV27FhJUpEiRTR9+nQ5OzsrKCiIblh4IefOnVPBggWVJ08e+7Ts2bOrQ4cOSpkypaZOnWqf7uzsrFq1asnX11fHjx/XF198Iel/RzdogwnfiBEjtHz58jDnGP/xxx9KliyZnJyc5OzsrOrVq2vu3Ln65Zdf7EewMmfOrLJlyyp37tzy9PSMy6fw6orrdIdXU+i9YlevXjXGPN3D+9FHH5m3337b2Gw24+bmZnLmzGnSpk1r0qRJY9KkSWNq165t3wszYcIE4+7uzlEEPBdtDbEhdDs7duyY2blzp/H39zcPHz40xhhz/Phxkz9/flO1atUwR7C+/vprY7PZzKhRo8zt27dju2y8ooYPH242bdpkjDHG39/fTJgwwRQoUMC0aNEizHKPHz82mzdvth9pxavh9u3b5v333zdJkyY1a9assU/v1KmTadq0aZhlg4KCzKpVq0zq1KlN3bp1Y7vU1xLhCpYL/SNk4MCBpn79+mbfvn3GGGOOHDliPvroI1O8eHHTqVMn4+fnZ65evWoOHTpk/v77b/sXwD///GOyZMliFi1aFCfPAQkDbQ2xIXS3my+//NLkypXLpEqVyhQqVMiMHDnSXLlyxRjzNHQVKFDA1KhRw6xevdq+zpAhQ4zNZjMTJkwIsy3gRdy4ccPUqFHDeHh4mN9//90YY8ydO3fMuHHjjI+Pj2nZsmWE6xGwXi0nT540bdu2NR4eHmblypXGGGO6du1q2rRpY4wx9h0/xjzt/r5kyRKTOXNm8++//8ZJva8TwhVijK+vr0mbNq2ZM2eOuXjxon360aNHTbNmzUzx4sXNrFmzwq0X8gVw+fLlWKsVCRttDbHh66+/NunTpze//vqrMcaY2rVrG29vb/Pll1/a29Dx48dNmjRpTLdu3cL8mB05cqQ5evRonNSNhC2iQP7XX3+ZDz/80KROndps377dGPO/gFWkSBFTp06dWK4SsSX0TsUdO3aYXr16GQ8PD7Nt2zYzevRo06NHD/Po0SNz584d+3Lnz583xphw594hZhCuECP27t1rsmXLZtavXx9mesiHwrFjx0yLFi1Mzpw57XtcQrBnF9FBW0NsOHLkiClVqpRZsWKFMcaYtWvXmuTJk5tKlSqZzJkzmz59+tgD1rlz5+zBKvSAKUB0hf4hHRwcHOb+X3/9ZZo0aRIuYH333XemRYsWDFrxCgoODrZ/b61bt874+PiYWbNmmU8++cS4u7sbT09Pkz17dpM1a1aTPn16kzNnTuPt7W3eeOMNc+vWrTiu/vXBWMOIETdv3pQxRoUKFbJPM8bIwcFBT548UZ48edS9e3dlz55d1apVC7NuyJDYQFTQ1hAbvLy81KlTJ1WoUEHbtm3TRx99pGHDhunjjz9WlSpVNHv2bN2+fVv9+vVT5syZJT0dsp0h/fGiQg+3PmnSJG3dulU2m03FihVT586dlT9/fn355Zcyxqh+/fpaunSpSpYsqQ4dOihJkiT2gQ4YvOLVYP5/MBKbzab58+frgw8+kCQlTZpUgwYNUqJEiTR16lQ1adJEnTp10tmzZ/XkyRPZbDblypVLKVKkiMvyXyt86iNGuLq66tKlSzp79qxSp04t8/QoqWw2mzZs2CAPDw8VL15c+fLlk/T0RwgX08SLoK0hNnh4eKhq1apKmjSpZs2apfr166t169aSpCxZsujChQsKDg5WqlSp7OvQzvAyQkJR79699eOPP6pBgwZKnjy5evXqpevXr2vQoEHKly+fvvrqKzk6OqpUqVI6dOiQChQoIOl/O5nw6rDZbFq8eLE++OADLVmyRAsWLNCRI0f03nvvqW3btnry5IlmzZqlBg0aqGLFinFd7muLdx1eSuihiUPz9vZW8eLFNWLECP3555+y2Wz2IwlDhgzRypUrwyzPjxD8F9oa4lry5MklSbdu3dL9+/ftF6f28/PT8OHDNW7cONlsNvseZuBlzZs3T4sXL9bPP/+s0aNH66233lJQUJC+/fZbffbZZ5KkfPnyqXv37urbt6/y5s1rX5cj868Wm82mpUuXqlGjRpo2bZrq1q2re/fu6dKlS5KetoNu3bqpcePGKlu2rNauXRvHFb++bIZvAbyg0N0Nfv31V927d08BAQH68MMPJUkzZ87UDz/8oMSJE6tp06ZydHTUjz/+qGvXrmnfvn10l0GU0dYQn/To0UO//fabcuTIocuXL8vPz09//fWXHB0d6YYFywQFBWny5Ml69OiRunXrpl9++UUffvihBg0apMSJE6tNmzby9fXVN998E2a9wMBAPvNeUb/++qtu375t7xLYqVMn3blzR7Nnz7Yvs2rVKu3bt0/vv/++cufOHVelvtYIV3ghId2upKcXy5w3b55SpEih69evq0CBAvrxxx+VOnVqLV++XMuXL9eiRYuUP39+pU+fXgsWLLBfTJOjCPgvtDXEF6Hb4hdffKGrV6/KwcFBEydOlJOTE+0MLyV0+wrh7++v69evK1myZKpSpYqaNm2qHj166PDhwypbtqxu376tb7/9Vr17946jqhEXQtrKt99+qxUrVuj333+Xo6OjBg4cqNWrV2vVqlVKnTp1XJf5+orV4TPwyhk6dKhJly6d2bNnjzHGmClTphibzWbKlStnv/aLMU8v7nr37l37KDeMoIXooq0hPojsWkG0M7yMZy+G/mw727Vrl8mdO7c5e/asMcaYU6dOmVatWplNmzZx/arXUMj327hx40zu3LmNMcb079/fODk52a/1iLhD3wVES1BQkP3/V69e1eHDhzV27Fi99dZbWr58uXr06KGBAwfq3Llzatq0qS5cuCBJSpMmjZIlS2Y/H4EuC/gvtDXEBhNJ543IpoccmXr2HEDaGV5GSFfS/v37q06dOipatKjmzJmjq1evSnp6vt/ff/+tuXPn6tixY+rYsaOuX7+usmXLytHR0X7+H14v+fPnV8qUKdWhQwcNHjxYu3bt0ptvvhnXZSFusx0SqhMnThhjjFmyZIm5du2a2bNnj8mSJYsZN26cMcaYUaNGGZvNZnx8fMy1a9fislQkcLQ1xJTQRwuOHDlijh07Zk6fPh3h/NBCXx/txIkTxt/fP+aKxGtj5syZJn369GbKlCmmbt26Jl++fKZnz57m3LlzxpinR++dnJxMjhw5zFtvvWUeP35sjOF6fa+zXbt2GZvNZpycnMz+/fvjuhz8P45cIUqWLl2qfv36SZK6dOmiXr16KTAwUPXq1ZOnp6e2bdumvHnz2k+yTJ48uVq3bq18+fIpZcqUcVk6EhjaGmKDCTVMdd++ffXBBx+oXLlyatmypcaOHSvp6dGEZ49QmVDnxYwdO1aNGzfW7du3Y7d4vBKebVsBAQHq27ev2rZtq6VLl6pp06Zat26dxo4dq6tXr6p79+46duyY5syZo927d8vZ2VmBgYGMCvga8/Hx0cCBA3X48GEVLlw4rsvB/6MfA/5TQECATp06pe+++05btmzRvn37tHPnzjDdYP7++2+dO3dO7u7uunv3rpYvX65y5cqpa9eukri2EKKGtobYEvKDdMCAAZo0aZJ++uknZciQQd9//706d+6s+/fvq3fv3vaA5eDgECZYTZ48WX379tXEiRPtFw0Goip0uJ87d66uXr2qAwcOqEqVKvZlfH19JUmLFi2SzWbTZ599phw5cihHjhySnoYzuqO+3lxdXeXr68t3XnwTtwfOkFA8evTIlCxZ0thsNtO+fXv79JATaY8dO2ZSpUplvL29Ta5cuUz+/Pk5wRsvhLaGmBS6C9XevXtNsWLFzObNm40xxqxZs8YkT57c1KtXzyRNmtQMGTLEvmzoNjZp0iTj5uZmfv7559grHK+M0N1Ne/ToYdzc3Ez+/PmNo6OjKV68uDlz5kyY5b/77juTIUMGM3bs2FiuFMCLYJcHIhX6ei1PnjxRhQoVVKxYMc2aNUuenp7q16+fHB0d9fjxY+XJk0e7du3SggULlCRJEnXs2JGhiRFltDXEhtDt7Pjx4ypYsKDq1q2rokWLauPGjWrRooWGDRumRo0aqUGDBurVq5d9qOuQIwSTJ09Wz549NX36dNWvXz8unw4SqJA2+Pfff+vGjRvauHGjfHx8NHXqVM2ePVtfffWVvvnmG3l7e0uSevXqJS8vL3tXaADxG9e5QoRC/whZtGiRMmTIoDfffFPBwcGaMGGCBg0apK5du9rPjZGko0ePhrk6PD92ERW0NcQG88z10nbt2qXly5crUaJEcnFxUevWrZUsWTINHTpULi4uat++vf7880+5u7tr5cqVstlsWrRokZo1a6a5c+cSrPBSFixYoC+++ELp06fXypUrlSJFCklPw/ucOXPk7e2tb7/9NlyXUz7rgPiPAS0QjgnVF7x3797q1KmTTpw4oYcPHypJkiRq2bKlvvrqK40aNUpfffWV7t+/r+rVq2vo0KFhtsMXAP4LbQ2xJSRY/fHHH9q+fbu+++47ubm5ycXFRQEBATp48KACAgLk4uKiBw8e6Nq1a2rfvr1WrVplX9fHx0crV64kWOGlBQcHK1OmTDp69KgePnxon/7JJ5/oo48+0sWLF/Xpp5/ah2IPwWcdEP9x5AqR+v777zVixAitWrVKPj4+cnZ2ts8LCAjQlClT1KNHD2XKlEmJEyfWvn37wiwDRBVtDbFhwoQJ2rFjhx4/fqx58+bJ0dHRfuT0+++/19ixY1W5cmWdPHlSDx480J49e+To6ChjTJgdAYAVVq1apf79+ytx4sSaO3dumKNUI0eO1MmTJzVu3DjaHZDAEK4QoYCAADVu3FglSpRQr169dP78eR09elSTJ0/WG2+8oaZNmypfvnw6efKkjhw5olq1atkvZMjoRYgO2hpiy5AhQ/TFF18oU6ZMWrdunX3UNUk6ffq0Fi9erI0bNypDhgyaPHmynJ2d6YYFy4Xuorps2TKNHTtWwcHBmj17tjJlyhRuudBdpwHEf4QrhGOM0b1791S5cmUVKFBA77zzjpYuXap79+5Jkh49eqS8efNq3LhxcnV1ta/HjxBEF20NMWXDhg0qX768HBwcNGDAAKVLl06ffPKJJkyYoD59+qhNmzbq2LGjMmbMGOk2CPCIKaED1tKlSzVu3DjZbDZNnTpVWbJkiXA5AAkDu0Jec8aYcBcylJ5emLVLly7avHmzevfurcKFC2vAgAHasGGDSpQoIT8/vzA/diX6guP5aGuILZcvX1aHDh1UvHhxderUSYMHD1bx4sUlSe3atVPv3r01d+5cTZs2TZcuXbKvF7p9GmMIVogxNptNIfu269Wrp06dOunatWsaPnx4uOUAJCx8c7zG/Pz85O7ubv/wHjdunE6ePKmgoCD169dP77//vkqVKiWbzaYMGTLY1zty5IiyZs0aV2UjAaKtITalTZtWs2bNUpUqVXT48GFt375dhQoV0sOHD5U4cWL16NFDxhj7+SwtWrRQpkyZwnS94kctYlpIwLLZbKpTp45SpEihUqVKxXVZAF4SR65eU76+vsqUKZOuXbtmv9+/f3+dPXtW69evV758+XTgwAFlzJhRGTJkkJ+fn3777TfVqlVLFy5c0JgxYyRJ9CrFf6GtIbaEHHlycHCQk5OTUqZMKS8vL3Xt2lWPHj1S4sSJ9ejRI0lSz5491bFjR/Xv31/r1q2Ly7LxConscyqy6aGPYJUpU4Zzq4BXAO/i11SzZs1UoEABlS5dWhcuXLD/oF2+fLm2bt2qkiVLqkqVKtq/f78k6Z9//tF3330nm82mAwcO2C/ayt5d/BfaGmJD6JP+Dx8+rHTp0mnfvn2aPXu27t69qwoVKiggIECJEiWy/5jt0aOHFi1apObNm8dl6XhFBAcH2z+njh49quPHj+uff/6RJPvAFP/l77//1t27d2O0TgAxiwEtXmOnTp1S06ZNdf78eWXOnFlz5sxRzpw5JUl37txRy5YttWPHDv3666968803dfLkSWXPnl0ODg6c6I1ooa0hJoUOVn369NGvv/6qb775RpUrV1ZwcLA2b96s7t27K1myZFq/fr0SJUqkVq1aqWzZsvZgxSApeBmhB57o27evVqxYoStXrih37txq0KCBOnbsKEnhRv4Lvd7YsWM1ffp0LV++PNzFgwEkIAavlaCgoDD3T548aWrWrGmcnZ3NX3/9FWaZ27dvm/r16xubzWaOHz8e6TaAiNDWENu+/PJLky5dOrNq1Spz8+ZN+/SgoCCzefNmU6BAAZMuXTpTpkwZkzlzZvPkyZM4rBavov79+xtPT0+zbt06c/ToUdO8eXNjs9nM4MGD7cuEfK4FBwfbp02aNMl4eHiYefPmxXrNAKzF7uDXSOg9Zjt37lSGDBmUI0cODR8+XLdv31bdunW1Y8cOpUmTRsYYeXh46IcfflCuXLnCXA+GPuH4L7Q1xLYjR45o4cKFmjlzpqpUqSJ/f3+dPHlS27ZtU548eVS2bFktX75c06dPV3BwsDZs2GDvcsoRK7woE+rI0759+7R69WotWrRIZcuW1W+//aYlS5aobt26GjRokBwdHdWjR49wR+QnT56snj17asaMGapfv35cPh0AVojjcIdYEvoIgK+vrylQoIBZvHixuX//vjHGmL///tsUL17cZM+e3Vy5ciXcOsYY9vIiSmhriAsHDx40uXPnNr///rvZsmWLad++vcmXL5/x8vIyhQoVMitWrAi3TmBgYBxUildF6M+tY8eOmcePH5tvv/3W3L9/32zYsMGkS5fOTJ482dy+fdtUrFjR2Gw24+vrG2YbkyZNMm5ubmbx4sWxXT6AGMJu4ddEyBGAfv36afr06Ro+fLiqVKmiJEmSSJJy5syp+fPnK1WqVCpTpowuXboU7qgB570gKmhriGkRDQyQO3duOTg4qE2bNqpUqZIkafDgwdq5c6cCAwN15cqVcOtwxAovyhhj/9zy9fXVZ599pocPH+rzzz9XkiRJNHfuXDVq1EgtWrSQh4eHcufOrXfeeUd//vmnfUCVRYsWqUuXLpoxY4bee++9uHw6ACzEL5jXyD///KOff/5ZkydPVuXKlXXjxg2dOnVKa9euVZYsWdSoUSMtXrxY5cuXV9euXbVgwYK4LhkJFG0NMSV0l9M9e/bYR2grVqyYDhw4oFWrVsnT01OlSpWyL+fm5halkdqAqArpCvjHH39o+/btGjZsmNzc3CRJAQEBOnjwoIoWLSoXFxc9ePBA165dU/v27fX+++/bt+Hj46OVK1fadwYAeDUQrl4jTk5OcnFxkZ+fn9avX6958+Zp//79CggI0IMHD3T79m198skn2rx5s9KnTx/X5SIBo60hJoQ+WtCrVy/NmzdPNptNV69eVZMmTdSnTx/7EYD79+/rzp07atu2rR49eqQ2bdrEZel4BU2YMEE7duxQ+vTp9dZbb0l6Gv5dXV3VqFEjjR07Vi1bttTJkyf14MEDNWzYUNLTdmyMUc6cOe2jpgJ4ddAt8BUV0V7adOnSKV26dBo1apSqVKkiNzc3fffdd9qxY4dy5sypW7duSZIyZswoR0dHBQUFxXbZSIBoa4gtIUcLxo0bp+nTp2v+/Plau3atVq1apTVr1qhXr146d+6cJGnq1KmqU6eO7t27p927d9POYLl79+5p/vz52rNnj86cOSPpf92iQ4Zfv3TpknLlyhWmDdpsNgbrAV5hHLl6BYXuNnPkyBG5uLjIGKNcuXJpyZIl2r17t5IlS6YiRYrY13n48GG48w84HwH/hbaGuLBnzx699957KlmypIwxyp07t3799VeVKVNGb7zxhgYOHKjmzZvLzc1NzZo1k6OjI9dLw0vZsGGDypcvLwcHBw0YMEDp0qVTz549lSxZMvXp00c//PCDOnbsqIwZM0qSsmfPrl69eqlXr172bdAGgdcDFxF+xZhQw8L2799fixcv1oMHD+Ti4iJfX1/7BTOlp3vdQvqBX758WXv37uWDH1FGW0NsCN3OJOnJkyeqVq2aMmbMqJkzZyo4OFiBgYFycXHRiBEjNGnSJO3cuVOpUqWyr8Nw63gZly9fVoUKFZQ8eXIVL15cU6ZM0e7du1WoUCFJ0tChQzV69Gi1bdtWbdu2lZeXl6SwO5+ebccAXl0cl37FhP6xO2HCBI0cOVK//fab3nrrLbVs2VKTJ0+2Lzt79mw1a9ZMjx8/1p49e+zXfAGigraGmBYyWIX0dJCUa9euydnZWc2aNdPixYu1YcMGOTg4yNnZWZLk6uqq1KlTK3ny5GG2Q7DCy0ibNq1mzZqlkydPaurUqdq+fbsKFSqkhw8fSpJ69OihTp06adq0aZo2bZouXLggKex1+ghWwOuDcPUK2rdvn7Zs2aL58+ercuXK+vvvv/XLL7+oRo0a+uyzz/TDDz9Iklq3bq1u3bpp7dq1cnZ2VmBgID9CEC20NcSkkB+nX3zxhWrXrq28efPau2K1atVK7du315o1axQcHCw/Pz+tWrVKGTJksIct4GWEnE/q4OAgJycnpUyZUl5eXuratasePXqkxIkT69GjR5Kknj17qmPHjurfv7/WrVsXl2UDiGN0C3wFPNvd4OLFi5o7d666dOmi33//XR9++KH69u2rjz76SPXq1dP69ev1/fffq0ePHvZ16DaDqKCtITaE7k61aNEide3aVePGjdOff/6pNWvWKHPmzCpevLj+/fdfjRw5UtmyZZOjo6NcXV21Z88eOTs70w0LLyV0Gzx8+LBSpkypJEmS6OjRo2rXrp2SJEmiTZs2ydXVNUxbW7JkierUqcNnHPAaI1wlcKF/qJ4+fVrJkiVT2rRp7V8MLVq0UJIkSTR69Gg5Ozvr008/1b59+5QoUSJt3bqVHx+IMtoaYtvWrVv1888/q1ChQmrVqpUkacWKFRo7dqxSpEihtm3bKk2aNPaBUxo3bszgFXhpoYNVnz599Ouvv+qbb75R5cqVFRwcrM2bN6t79+5KliyZ1q9fr0SJEqlVq1YqW7as/VxTdiIBry+6BSZQEydO1MGDB+0f3r6+vqpTp47y5cunnj17at++fZKkQ4cOKWnSpHJ2dtbDhw91/fp19e/fX9u2bZPNZhPZGv+Ftoa4cOXKFbVq1UozZ86Uv7+/fXrt2rXVqVMn3bx5UxMmTFBAQIA+/vhjffDBB/ahrglWeBkhweqrr77S1KlTNWDAABUtWtTePbBChQoaPXq0/P39lTVrVpUtW1YbNmxQ06ZN7dsgWAGvL45cJUBnzpxRmTJlVK1aNfXs2dPeTSGk28zq1avl5eWlr776Stu3b1f37t3VsmVLHTx4UE+ePNGePXvk6OhItxn8J9oa4tKff/6phg0bytvbW8OHD1eBAgXs81avXq1evXqpZs2aGjx4cBxWiVfRkSNHVK9ePY0dO1ZVqlSRv7+/rl69qm3btilPnjwqWbKkzpw5o+nTpys4OFgDBgywD9RDsAJeb4SrBOrgwYNq06aNSpcuLQcHB+XNm1etW7eWJK1atUrDhw9XihQp9P777+vGjRtasWKFMmTIoEmTJsnZ2ZkvAEQZbQ1x6dChQ2rZsqXeeustde7cWfny5bPP27Fjh95++23aFyx36NAhNW7cWNOnT1dgYKAWLlyozZs36/bt2/L09NTXX3+tWrVqhVmHzzoAEt0CEywfHx9NmTJF27dv14wZM3T37l37vJo1a6pbt27y9/fXwoULVahQIa1Zs0bTpk1jpDZEG20NcalQoUKaNm2a9u3bp9GjR+vo0aP2eSVLlrR3BQReVMiogKHlzp1bDg4OatOmjSpVqiRJGjx4sHbu3KnAwEBduXIl3Dp81gGQCFcJ2ptvvqnp06crRYoUWr16tf766y/7vFq1aqlr1646ceKEVq5caZ9ujOF8BEQbbQ1xqXDhwpo6daoOHjyofv366cyZM2Hm86MWLyr04BV79uzR7t279ccffyhRokQ6cOCAvv76a61fv15jxoxRrVq1lDlzZrm5uUUYyABAolvgK4FuM4gttDXEpT/++EOTJk3S1KlTw1ygFXgRoc8F7dWrl+bNmyebzaarV6+qSZMm6tOnj7JlyyZJun//vu7cuaO2bdvqypUr9vNJAeBZhKtXxIEDB9SmTRsVKVJEXbp0Ud68ecPMpy84rEJbQ1wK+UEc+ogD8DLGjRunAQMGaPny5UqVKpUuXLigjz76SKVKldKwYcPk7e2t0aNH68cff1SSJEm0YcMGzicFECnC1SvkwIED+uSTT+Tt7a0hQ4Yoa9ascV0SXlG0NcQlRp+ElZo3b67EiRNr0qRJ9rZ18OBBlSlTRl26dNHAgQN1584dLV26VM2aNeNaagCei91+r5DChQtr3LhxSp48uby9veO6HLzCaGuISwQrvKhn9yc/efJE//5fe3cXEtXWx3H8N5YzTo6i9OJkmCaCNINopBYVRSlkoNlF6IWkKWmEiYIR2NUUdVEQSA550Rt6VdgLmohiQy9gUIKiE4kYBcrJ0pKCBLUan4tD8yQ8PdVp1OP4/VzO2mvvtTebGX7zX3vtv/7SxMSEt31qakpJSUlyOBy6fv263r9/r7CwMBUWFvIuNQA/RbjyM6mpqbpy5YoCAgJ44BazinsNwELi8Xi8wfzly5caGRlRYGCg8vPzdfPmTblcLgUEBCgwMFCSZDKZtGLFCoWEhMzYD1MBAfw/hCs/ZDAYND09zfMImHXcawAWim/fUydOnNDevXtls9l0/PhxWSwWFRUVqbS0VK2trfJ4PPr48aOam5u1Zs0ab9gCgF9BXdtPMW0Gc4V7DcC/2feLnzQ0NKi+vl5Op1O9vb1qbW3V4OCgNm/erKysLGVmZio2NlZLliyRyWRSZ2en908kvusA/AoWtAAAAH7v0aNHunXrlhITE1VUVCRJampqUk1NjcLDw1VcXKxVq1bpyZMnslgsys3NZfEKAL+NcAUAAPzamzdvtG3bNo2OjurkyZOqqKjwtt29e1fV1dUKDQ1VVVWVUlNTvW0stw7gd/GgBAAA8GtWq1W3b9+W1WpVS0uL3G63ty0rK0uVlZV68eKF7ty5M6MfwQrA76JyBQAAFoWenh4VFhYqOTlZ5eXlstvt3rbHjx9r06ZNBCoAf4RwBQAAFo3u7m4dOnRIGzduVEVFhWw224x2pgIC+BOEKwAAsKh0d3fr8OHDio6O1rlz57Ru3br5HhIAP8EzVwAAYFHZsGGDnE6nQkJCFB0dPd/DAeBHqFwBAIBF6dv7q75/FxYA/AnCFQAAWLR4QTAAX+JvGgAAsGgRrAD4EuEKAAAAAHyAcAUAAAAAPkC4AgAAAAAfIFwBAAAAgA8QrgAAAADABwhXAADMI4fDoaSkpPkeBgDABwhXAIAF5+DBgzIYDDIYDDIajYqLi9OpU6f05cuXP9rnvn37fDdIAMCis3S+BwAAwD+RkZGha9euaXJyUi0tLSotLVVgYKCqqqpmbDc1NSWj0ThPowQALCZUrgAAC5LJZJLValV0dLSOHDmi9PR0NTU1eStQZ86cUWRkpOLj4yVJbrdbu3btktls1vLly1VSUqJPnz5J+ntqXl1dnRobG70VsQcPHvy03zdXr16V3W6XyWTS6tWrdfToUW/b4OCgsrOzZbFYFBoaqpycHL19+3ZuLhIAYE4RrgAAfsFsNmtqakqS5HK51N/fr/b2djU3N2t8fFy7d+9WeHi4Ojs71dDQoHv37nlD0LFjx5STk6OMjAwNDw9reHhYW7Zs+Wk/SaqtrVVpaalKSkrkdrvV1NSkuLg4SZLH41F2drbGxsb08OFDtbe36+XLl8rNzZ37CwQAmHVMCwQALGjT09NyuVxqa2tTWVmZRkdHFRwcrMuXL3unA166dEkTExOqr69XcHCwJMnpdCorK0tnz55VRESEzGazJicnZbVavfuuq6v7ab/Tp0+rsrJS5eXl3n4pKSmS/g55brdbr169UlRUlCSpvr5edrtdnZ2d3u0AAP6ByhUAYEFqbm6WxWJRUFCQ9uzZo9zcXDkcDklSQkLCjOes+vr6lJiY6A1IkrR161Z5PB719/f/8Bg/6zcyMqLXr18rLS3th/2joqK8wUqSbDabwsLC1NfX909PHQDwL0XlCgCwIO3cuVO1tbUyGo2KjIzU0qX//Un7PgzNJrPZPCfHAQAsDFSuAAALUnBwsOLi4rR27doZwep/Wb9+vXp6ejQ+Pu79rKOjQwEBAd4FL4xGo75+/fpb/UJCQhQTEyOXy/XD4w4NDWloaMj72fPnz/XhwwfZbLbfPmcAwL8b4QoA4Pfy8vIUFBSkgoICPXv2TPfv31dZWZkOHDigiIgISVJMTIx6e3vV39+vd+/e6fPnz7/Uz+Fw6Pz587pw4YIGBgbU1dWlmpoaSVJ6eroSEhKUl5enrq4uPX36VPn5+dqxY4eSk5Pn7XoAAGYH4QoA4PeWLVumtrY2jY2NKSUlRfv371daWpqcTqd3m+LiYsXHxys5OVkrV65UR0fHL/UrKChQdXW1Ll68KLvdrszMTA0MDEiSDAaDGhsbFR4eru3btys9PV2xsbG6cePGnF8DAMDsM0xPT0/P9yAAAAAAYKGjcgUAAAAAPkC4AgAAAAAfIFwBAAAAgA8QrgAAAADABwhXAAAAAOADhCsAAAAA8AHCFQAAAAD4AOEKAAAAAHyAcAUAAAAAPkC4AgAAAAAfIFwBAAAAgA/8BxNjhHT91VBeAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -855,7 +906,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 42, "id": "74401d69-fff8-4c41-a5ce-6f7e4b1800c5", "metadata": {}, "outputs": [], @@ -880,10 +931,77 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 55, "id": "7ac76044-ee76-4807-b497-ad1541ec45a2", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Protocol Token Total Collateral (USD)\n", + "0 zklend USDC 6.481915e+06\n", + "1 zklend USDT 3.356178e+06\n", + "2 zklend STRK 1.239352e+07\n", + "3 zklend ETH 4.235030e+03\n", + "4 zklend wBTC 3.604780e+01\n", + "5 zklend DAI 7.715796e+04\n", + "6 zklend wstETH 5.272330e+01\n", + "7 nostra_alpha USDC 4.002109e+04\n", + "8 nostra_alpha ETH 3.202590e+01\n", + "9 nostra_alpha USDT 3.019192e+04\n", + "10 nostra_mainnet ETH 1.928400e+04\n", + "11 nostra_mainnet USDC 1.720035e+07\n", + "12 nostra_mainnet DAI 7.468461e+04\n", + "13 nostra_mainnet USDT 1.256802e+07\n", + "14 nostra_mainnet wstETH 5.437920e+01\n", + "15 nostra_mainnet STRK 5.948398e+07\n", + "16 nostra_mainnet wBTC 2.448470e+01\n", + "17 nostra_mainnet LORDS 1.882704e+06\n", + "18 hashstack_v0 USDC 1.130584e+03\n", + "19 hashstack_v0 ETH 6.064000e-01\n", + "20 hashstack_v0 USDT 2.268058e+02\n", + "21 hashstack_v0 DAI 9.689930e+01\n", + "22 hashstack_v0 wBTC 2.000000e-03\n", + "23 hashstack_v1 USDT 2.316824e+04\n", + "24 hashstack_v1 USDC 4.014684e+04\n", + "25 hashstack_v1 DAI 5.764160e+02\n", + "26 hashstack_v1 ETH 1.978970e+01\n", + "27 hashstack_v1 wBTC 2.710000e-02\n", + " Protocol Token Total Debt (USD)\n", + "0 zklend ETH 1.299392e+03\n", + "1 zklend USDC 4.787483e+06\n", + "2 zklend USDT 2.116141e+06\n", + "3 zklend wstETH 2.938450e+01\n", + "4 zklend wBTC 5.681700e+00\n", + "5 zklend DAI 6.299988e+04\n", + "6 zklend STRK 1.945519e+06\n", + "7 nostra_alpha USDT 4.961984e+03\n", + "8 nostra_alpha wBTC 7.600000e-03\n", + "9 nostra_alpha USDC 8.623691e+03\n", + "10 nostra_alpha ETH 3.410900e+00\n", + "11 nostra_alpha DAI 1.949320e+03\n", + "12 nostra_mainnet USDT 6.838741e+06\n", + "13 nostra_mainnet ETH 6.265038e+03\n", + "14 nostra_mainnet USDC 9.499169e+06\n", + "15 nostra_mainnet STRK 6.207267e+06\n", + "16 nostra_mainnet wstETH 3.458160e+01\n", + "17 nostra_mainnet wBTC 1.179560e+01\n", + "18 nostra_mainnet LORDS 4.322130e+04\n", + "19 nostra_mainnet DAI 5.101548e+04\n", + "20 hashstack_v0 ETH 1.989000e-01\n", + "21 hashstack_v0 USDT 1.257607e+02\n", + "22 hashstack_v0 USDC 8.258461e+02\n", + "23 hashstack_v0 DAI 1.601284e+02\n", + "24 hashstack_v0 wBTC 3.500000e-03\n", + "25 hashstack_v1 USDT 3.371473e+04\n", + "26 hashstack_v1 ETH 1.637170e+01\n", + "27 hashstack_v1 USDC 5.081960e+04\n", + "28 hashstack_v1 DAI 6.368208e+02\n", + "29 hashstack_v1 wBTC 2.390000e-02\n" + ] + } + ], "source": [ "# agregating the data\n", "# Convert the aggregated data to DataFrame for better readability\n", @@ -891,12 +1009,567 @@ "collateral_df = pd.DataFrame(collateral_list, columns=['Protocol', 'Token', 'Total Collateral (USD)'])\n", "\n", "debt_list = [(protocol, token, amount) for protocol, tokens in debt_amounts.items() for token, amount in tokens.items()]\n", - "debt_df = pd.DataFrame(debt_list, columns=['Protocol', 'Token', 'Total Debt (USD)'])" + "debt_df = pd.DataFrame(debt_list, columns=['Protocol', 'Token', 'Total Debt (USD)'])\n", + "print(collateral_df, debt_df, sep='\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "b88d6fad-fb16-4514-9137-946cd2a5c443", + "metadata": {}, + "source": [ + "#### Coverting to USD denominater" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "48b48551-98a3-455f-a9cd-55f8257b5a17", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProtocolTokenTotal Collateral (USD)
0zklendUSDC6.488397e+06
1zklendUSDT3.359534e+06
2zklendSTRK8.514347e+07
3zklendETH1.121567e+07
4zklendwBTC2.475979e+06
5zklendDAI7.723512e+04
6zklendwstETH1.649016e+05
7nostra_alphaUSDC4.006111e+04
8nostra_alphaETH8.481451e+04
9nostra_alphaUSDT3.022211e+04
10nostra_mainnetETH5.107000e+07
11nostra_mainnetUSDC1.721755e+07
12nostra_mainnetDAI7.475929e+04
13nostra_mainnetUSDT1.258059e+07
14nostra_mainnetwstETH1.700807e+05
15nostra_mainnetSTRK4.086550e+08
16nostra_mainnetwBTC1.681756e+06
17nostra_mainnetLORDS1.193013e+05
18hashstack_v0USDC1.131714e+03
19hashstack_v0ETH1.605935e+03
20hashstack_v0USDT2.270326e+02
21hashstack_v0DAI9.699620e+01
22hashstack_v0wBTC1.373720e+02
23hashstack_v1USDT2.319141e+04
24hashstack_v1USDC4.018698e+04
25hashstack_v1DAI5.769924e+02
26hashstack_v1ETH5.240926e+04
27hashstack_v1wBTC1.861391e+03
\n", + "
" + ], + "text/plain": [ + " Protocol Token Total Collateral (USD)\n", + "0 zklend USDC 6.488397e+06\n", + "1 zklend USDT 3.359534e+06\n", + "2 zklend STRK 8.514347e+07\n", + "3 zklend ETH 1.121567e+07\n", + "4 zklend wBTC 2.475979e+06\n", + "5 zklend DAI 7.723512e+04\n", + "6 zklend wstETH 1.649016e+05\n", + "7 nostra_alpha USDC 4.006111e+04\n", + "8 nostra_alpha ETH 8.481451e+04\n", + "9 nostra_alpha USDT 3.022211e+04\n", + "10 nostra_mainnet ETH 5.107000e+07\n", + "11 nostra_mainnet USDC 1.721755e+07\n", + "12 nostra_mainnet DAI 7.475929e+04\n", + "13 nostra_mainnet USDT 1.258059e+07\n", + "14 nostra_mainnet wstETH 1.700807e+05\n", + "15 nostra_mainnet STRK 4.086550e+08\n", + "16 nostra_mainnet wBTC 1.681756e+06\n", + "17 nostra_mainnet LORDS 1.193013e+05\n", + "18 hashstack_v0 USDC 1.131714e+03\n", + "19 hashstack_v0 ETH 1.605935e+03\n", + "20 hashstack_v0 USDT 2.270326e+02\n", + "21 hashstack_v0 DAI 9.699620e+01\n", + "22 hashstack_v0 wBTC 1.373720e+02\n", + "23 hashstack_v1 USDT 2.319141e+04\n", + "24 hashstack_v1 USDC 4.018698e+04\n", + "25 hashstack_v1 DAI 5.769924e+02\n", + "26 hashstack_v1 ETH 5.240926e+04\n", + "27 hashstack_v1 wBTC 1.861391e+03" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "token_ids = []\n", + "for token in tokens:\n", + " if token == 'DAI':\n", + " token_ids.append('dai')\n", + " elif token == 'ETH':\n", + " token_ids.append('ethereum')\n", + " elif token == 'USDC':\n", + " token_ids.append('usd-coin')\n", + " elif token == 'USDT':\n", + " token_ids.append('tether')\n", + " elif token == 'wBTC':\n", + " token_ids.append('wrapped-bitcoin')\n", + " elif token == 'LORDS':\n", + " token_ids.append('lords')\n", + " elif token == 'STRK':\n", + " token_ids.append('strike')\n", + " elif token == 'wstETH':\n", + " token_ids.append('wrapped-steth')\n", + " elif token == 'ZEND':\n", + " token_ids.append('zenad')\n", + " elif token == 'UNO':\n", + " token_ids.append('uno-re')\n", + "#print(token_ids)\n", + "\n", + "# Total Collateral (USD)\n", + "for token, token_id in zip(tokens,token_ids):\n", + " val = collateral_df[collateral_df['Token'] == token].loc[:, 'Total Collateral (USD)'] * prices[token_id]['usd']\n", + " collateral_df.loc[collateral_df['Token'] == token, 'Total Collateral (USD)'] = val\n", + "collateral_df" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "1dde9c83-bafc-4119-9a30-47edf2c816e5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProtocolTokenTotal Debt (USD)
0zklendETH3.441192e+06
1zklendUSDC4.792271e+06
2zklendUSDT2.118258e+06
3zklendwstETH9.190531e+04
4zklendwBTC3.902532e+05
5zklendDAI6.306288e+04
6zklendSTRK1.336571e+07
7nostra_alphaUSDT4.966946e+03
8nostra_alphawBTC5.220136e+02
9nostra_alphaUSDC8.632314e+03
10nostra_alphaETH9.033121e+03
11nostra_alphaDAI1.951269e+03
12nostra_mainnetUSDT6.845580e+06
13nostra_mainnetETH1.659176e+07
14nostra_mainnetUSDC9.508668e+06
15nostra_mainnetSTRK4.264392e+07
16nostra_mainnetwstETH1.081602e+05
17nostra_mainnetwBTC8.101926e+05
18nostra_mainnetLORDS2.738804e+03
19nostra_mainnetDAI5.106650e+04
20hashstack_v0ETH5.267489e+02
21hashstack_v0USDT1.258865e+02
22hashstack_v0USDC8.266719e+02
23hashstack_v0DAI1.602885e+02
24hashstack_v0wBTC2.404010e+02
25hashstack_v1USDT3.374845e+04
26hashstack_v1ETH4.335734e+04
27hashstack_v1USDC5.087042e+04
28hashstack_v1DAI6.374576e+02
29hashstack_v1wBTC1.641595e+03
\n", + "
" + ], + "text/plain": [ + " Protocol Token Total Debt (USD)\n", + "0 zklend ETH 3.441192e+06\n", + "1 zklend USDC 4.792271e+06\n", + "2 zklend USDT 2.118258e+06\n", + "3 zklend wstETH 9.190531e+04\n", + "4 zklend wBTC 3.902532e+05\n", + "5 zklend DAI 6.306288e+04\n", + "6 zklend STRK 1.336571e+07\n", + "7 nostra_alpha USDT 4.966946e+03\n", + "8 nostra_alpha wBTC 5.220136e+02\n", + "9 nostra_alpha USDC 8.632314e+03\n", + "10 nostra_alpha ETH 9.033121e+03\n", + "11 nostra_alpha DAI 1.951269e+03\n", + "12 nostra_mainnet USDT 6.845580e+06\n", + "13 nostra_mainnet ETH 1.659176e+07\n", + "14 nostra_mainnet USDC 9.508668e+06\n", + "15 nostra_mainnet STRK 4.264392e+07\n", + "16 nostra_mainnet wstETH 1.081602e+05\n", + "17 nostra_mainnet wBTC 8.101926e+05\n", + "18 nostra_mainnet LORDS 2.738804e+03\n", + "19 nostra_mainnet DAI 5.106650e+04\n", + "20 hashstack_v0 ETH 5.267489e+02\n", + "21 hashstack_v0 USDT 1.258865e+02\n", + "22 hashstack_v0 USDC 8.266719e+02\n", + "23 hashstack_v0 DAI 1.602885e+02\n", + "24 hashstack_v0 wBTC 2.404010e+02\n", + "25 hashstack_v1 USDT 3.374845e+04\n", + "26 hashstack_v1 ETH 4.335734e+04\n", + "27 hashstack_v1 USDC 5.087042e+04\n", + "28 hashstack_v1 DAI 6.374576e+02\n", + "29 hashstack_v1 wBTC 1.641595e+03" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Total Debt (USD)\n", + "for token, token_id in zip(tokens,token_ids):\n", + " val = debt_df[debt_df['Token'] == token].loc[:, 'Total Debt (USD)'] * prices[token_id]['usd']\n", + " debt_df.loc[debt_df['Token'] == token, 'Total Debt (USD)'] = val\n", + "debt_df" + ] + }, + { + "cell_type": "markdown", + "id": "bdc71978-7b1c-421d-837a-96f61e54a051", + "metadata": {}, + "source": [ + "### Collateral data per protocol per token USD Equivalent" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 58, "id": "521fbd91-b7d6-4cfd-99aa-a203e63f3daa", "metadata": {}, "outputs": [ @@ -904,44 +1577,106 @@ "data": { "text/plain": [ "Protocol Token \n", - "hashstack_v0 DAI 9.689930e+01\n", - " ETH 6.064000e-01\n", - " USDC 1.130584e+03\n", - " USDT 2.268058e+02\n", - " wBTC 2.000000e-03\n", - "hashstack_v1 DAI 5.764160e+02\n", - " ETH 1.978970e+01\n", - " USDC 4.014684e+04\n", - " USDT 2.316824e+04\n", - " wBTC 2.710000e-02\n", - "nostra_alpha ETH 3.202590e+01\n", - " USDC 4.002109e+04\n", - " USDT 3.019192e+04\n", - "nostra_mainnet DAI 7.468461e+04\n", - " ETH 1.928400e+04\n", - " LORDS 1.882704e+06\n", - " STRK 5.948398e+07\n", - " USDC 1.720035e+07\n", - " USDT 1.256802e+07\n", - " wBTC 2.448470e+01\n", - " wstETH 5.437920e+01\n", - "zklend DAI 7.715796e+04\n", - " ETH 4.235030e+03\n", - " STRK 1.239352e+07\n", - " USDC 6.481915e+06\n", - " USDT 3.356178e+06\n", - " wBTC 3.604780e+01\n", - " wstETH 5.272330e+01\n", + "hashstack_v0 DAI 9.699620e+01\n", + " ETH 1.605935e+03\n", + " USDC 1.131714e+03\n", + " USDT 2.270326e+02\n", + " wBTC 1.373720e+02\n", + "hashstack_v1 DAI 5.769924e+02\n", + " ETH 5.240926e+04\n", + " USDC 4.018698e+04\n", + " USDT 2.319141e+04\n", + " wBTC 1.861391e+03\n", + "nostra_alpha ETH 8.481451e+04\n", + " USDC 4.006111e+04\n", + " USDT 3.022211e+04\n", + "nostra_mainnet DAI 7.475929e+04\n", + " ETH 5.107000e+07\n", + " LORDS 1.193013e+05\n", + " STRK 4.086550e+08\n", + " USDC 1.721755e+07\n", + " USDT 1.258059e+07\n", + " wBTC 1.681756e+06\n", + " wstETH 1.700807e+05\n", + "zklend DAI 7.723512e+04\n", + " ETH 1.121567e+07\n", + " STRK 8.514347e+07\n", + " USDC 6.488397e+06\n", + " USDT 3.359534e+06\n", + " wBTC 2.475979e+06\n", + " wstETH 1.649016e+05\n", "Name: Total Collateral (USD), dtype: float64" ] }, - "execution_count": 19, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "collateral_per_protocol_token = collateral_df.groupby(['Protocol','Token'])['Total Collateral (USD)'].sum()\n", + "collateral_per_protocol_token" + ] + }, + { + "cell_type": "markdown", + "id": "11ddb189-eef7-492a-b0eb-f54f295ab3ff", + "metadata": {}, + "source": [ + "### Debt data per protocol per token USD Equivalent" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "bab1ec7c-8181-45e8-bbd6-f81f49920962", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Protocol Token \n", + "hashstack_v0 DAI 1.602885e+02\n", + " ETH 5.267489e+02\n", + " USDC 8.266719e+02\n", + " USDT 1.258865e+02\n", + " wBTC 2.404010e+02\n", + "hashstack_v1 DAI 6.374576e+02\n", + " ETH 4.335734e+04\n", + " USDC 5.087042e+04\n", + " USDT 3.374845e+04\n", + " wBTC 1.641595e+03\n", + "nostra_alpha DAI 1.951269e+03\n", + " ETH 9.033121e+03\n", + " USDC 8.632314e+03\n", + " USDT 4.966946e+03\n", + " wBTC 5.220136e+02\n", + "nostra_mainnet DAI 5.106650e+04\n", + " ETH 1.659176e+07\n", + " LORDS 2.738804e+03\n", + " STRK 4.264392e+07\n", + " USDC 9.508668e+06\n", + " USDT 6.845580e+06\n", + " wBTC 8.101926e+05\n", + " wstETH 1.081602e+05\n", + "zklend DAI 6.306288e+04\n", + " ETH 3.441192e+06\n", + " STRK 1.336571e+07\n", + " USDC 4.792271e+06\n", + " USDT 2.118258e+06\n", + " wBTC 3.902532e+05\n", + " wstETH 9.190531e+04\n", + "Name: Total Debt (USD), dtype: float64" + ] + }, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "collateral_df.groupby(['Protocol','Token'])['Total Collateral (USD)'].sum()" + "debt_per_protocol_token = debt_df.groupby(['Protocol','Token'])['Total Debt (USD)'].sum()\n", + "debt_per_protocol_token" ] }, { @@ -954,13 +1689,13 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 62, "id": "d654007a-8ef0-4c33-ab35-50f65b030cfd", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAMGCAYAAAAA9YxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZQUlEQVR4nOzdd3gU1f/28XuTkARS6aEmoXdQUKQGBKQXqSpIFRSVLl0p0gRBQFQQkSpfRKQjAlICCApKE+liKGLoJAECIWWeP3iyP9YESJYdNoH367r2utgzZ898Jjsbcu+ZYjEMwxAAAAAAAHAoF2cXAAAAAADAk4jADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAGlcjRo1VKNGDevzU6dOyWKxaO7cuY+1jo4dOyooKOixrvNROLPe5N6jESNGyGKxOKUeR7FYLBoxYoSzy3hsgoKC1KhRI2eX8Vg56/dLehIUFKSOHTs6uwwA6QSBG0C6N3fuXFksFnl6eurcuXNJlteoUUOlSpVyQmVPl8T34WGPlITgw4cPa8SIETp16pTpdSdavny56tevr2zZssnd3V25c+dW69attXnz5sdWw/188cUXBKAUCgoKStF+yM/z0YSGhtr8PDNkyKACBQqoffv2+vvvvx26LvZ/AOmZm7MLAABHiYmJ0UcffaRp06Y5uxRTBQYG6tatW8qQIYOzS7FRvXp1LViwwKbtjTfe0PPPP69u3bpZ27y9vR861uHDhzVy5EjVqFHD9FlqwzDUuXNnzZ07V88884z69u2rgIAAhYeHa/ny5apVq5Z27NihypUrm1rHg3zxxRfKli0bs2opMGXKFN24ccP6fO3atVq0aJEmT56sbNmyWdud+X4+SXr27KnnnntOsbGx2rt3r2bOnKkffvhBBw8eVO7cuR2yDvZ/AOkZgRvAE6NcuXL66quvNHjwYIf9ofdfhmHo9u3bypgxoynjp0TibH5aU6BAARUoUMCm7a233lKBAgXUrl07J1X1cJMmTdLcuXPVu3dvffLJJzaHfQ8dOlQLFiyQm9uT999lXFycEhIS5O7u7uxS7HLz5k15eXklaW/WrJnN8/Pnz2vRokVq1qxZujolIr2oVq2aWrZsKUnq1KmTihQpop49e2revHkaPHhwsq+533sHAE8iDikH8MQYMmSI4uPj9dFHHz20b1xcnEaNGqWCBQvKw8NDQUFBGjJkiGJiYmz6JZ7DuX79elWoUEEZM2bUl19+aT2c8rvvvtPIkSOVJ08e+fj4qGXLloqMjFRMTIx69+6tHDlyyNvbW506dUoy9pw5c/Tiiy8qR44c8vDwUIkSJTR9+vSH1v7fcyz/e2jngw7f/vHHH1WtWjV5eXnJx8dHDRs21KFDh5KsY8WKFSpVqpQ8PT1VqlQpLV++/KF1pdS+fftUv359+fr6ytvbW7Vq1dKvv/5qXT537ly1atVKklSzZk3rtoSGhkqSVq5cqYYNGyp37tzy8PBQwYIFNWrUKMXHx6e6llu3bmncuHEqVqyYJk6cmOw51q+//rqef/556/O///5brVq1UpYsWZQpUya98MIL+uGHH1K9bill+0BQUJAOHTqkrVu3Wn8W957THxERod69eytfvnzy8PBQoUKFNH78eCUkJFj7JO4zEydO1JQpU6z7/eHDh3Xnzh0NGzZM5cuXl5+fn7y8vFStWjVt2bLFrm1K3B8XL16sIUOGKCAgQF5eXmrSpInOnj2bpP+uXbtUr149+fn5KVOmTAoJCdGOHTts+iSe/3748GG99tprypw5s6pWrWpXfVLKP//JmTdvntzc3NS/f3+7tuGvv/5Sx44d5e/vLz8/P3Xq1EnR0dEPXe/27dvVqlUr5c+fXx4eHsqXL5/69OmjW7du2fTr2LGjvL29de7cOTVr1kze3t7Knj273nvvvSSfkYiICHXs2FF+fn7y9/dXhw4dFBER8dBaHuTFF1+UJIWFhdlsd3LvXUreh4ft/yn9PN6+fVsjRoxQkSJF5OnpqVy5cql58+Y6efKktc/NmzfVr18/62epaNGimjhxogzDeKSfCYCn25P3lT2Ap1ZwcLDat2+vr776SoMGDXrgLPcbb7yhefPmqWXLlurXr5927dqlcePG6ciRI0nC5bFjx/Tqq6/qzTffVNeuXVW0aFHrsnHjxiljxowaNGiQ/vrrL02bNk0ZMmSQi4uLrl27phEjRujXX3/V3LlzFRwcrGHDhllfO336dJUsWVJNmjSRm5ubVq9erbffflsJCQl65513UrzdxYsXT3Iod0REhPr27ascOXJY2xYsWKAOHTqobt26Gj9+vKKjozV9+nRVrVpV+/bts4bzDRs2qEWLFipRooTGjRunK1euqFOnTsqbN2+Ka7qfQ4cOqVq1avL19dWAAQOUIUMGffnll6pRo4a2bt2qihUrqnr16urZs6c+/fRTDRkyRMWLF7dup3Q3kHt7e6tv377y9vbW5s2bNWzYMEVFRenjjz9OVT0///yzrl69qt69e8vV1fWh/S9cuKDKlSsrOjpaPXv2VNasWTVv3jw1adJE33//vV5++eVUrT8l+8CUKVPUo0cPeXt7a+jQoZKknDlzSpKio6MVEhKic+fO6c0331T+/Pm1c+dODR48WOHh4ZoyZYrN+ubMmaPbt2+rW7du8vDwUJYsWRQVFaVZs2bp1VdfVdeuXXX9+nV9/fXXqlu3rnbv3q1y5cqlapsSjRkzRhaLRQMHDtTFixc1ZcoU1a5dW/v377ceIbJ582bVr19f5cuX1/Dhw+Xi4mL9EmL79u02X3RIUqtWrVS4cGGNHTv2kUJQaj7/95o5c6beeustDRkyRKNHj7ZrG1q3bq3g4GCNGzdOe/fu1axZs5QjRw6NHz/+gTUvWbJE0dHR6t69u7Jmzardu3dr2rRp+ueff7RkyRKbvvHx8apbt64qVqyoiRMnauPGjZo0aZIKFiyo7t27S7p7tE7Tpk31888/66233lLx4sW1fPlydejQwZ4fqVVigM2aNatNe3LvXUrehwft/yn9PMbHx6tRo0batGmTXnnlFfXq1UvXr1/XTz/9pD///FMFCxaUYRhq0qSJtmzZoi5duqhcuXJav369+vfvr3Pnzmny5MmP9HMB8BQzACCdmzNnjiHJ+O2334yTJ08abm5uRs+ePa3LQ0JCjJIlS1qf79+/35BkvPHGGzbjvPfee4YkY/Pmzda2wMBAQ5Kxbt06m75btmwxJBmlSpUy7ty5Y21/9dVXDYvFYtSvX9+mf6VKlYzAwECbtujo6CTbUrduXaNAgQI2bSEhIUZISIj1eVhYmCHJmDNnTrI/j4SEBKNRo0aGt7e3cejQIcMwDOP69euGv7+/0bVrV5u+58+fN/z8/Gzay5UrZ+TKlcuIiIiwtm3YsMGQlGQbHsbLy8vo0KGD9XmzZs0Md3d34+TJk9a2f//91/Dx8TGqV69ubVuyZIkhydiyZUuSMZP7ub355ptGpkyZjNu3b1vbOnTo8NB6p06dakgyli9fnqLt6d27tyHJ2L59u7Xt+vXrRnBwsBEUFGTEx8cbhpH8ezR8+HDjv//tpnQfKFmypM0+kGjUqFGGl5eXcfz4cZv2QYMGGa6ursaZM2ds6vH19TUuXrxo0zcuLs6IiYmxabt27ZqRM2dOo3Pnzjbtkozhw4cnqeNeiZ+NPHnyGFFRUdb27777zpBkTJ061TCMu/tp4cKFjbp16xoJCQnWftHR0UZwcLBRp04da1viz+7VV1994LqT8/HHHxuSjLCwMMMwUv/5b9iwoWEYd/cVi8VijBo1yrrcnm3478/05ZdfNrJmzfrQ7UhuXxk3bpxhsViM06dPW9s6dOhgSDI+/PBDm77PPPOMUb58eevzFStWGJKMCRMmWNvi4uKMatWqPfD3S6LE93n27NnGpUuXjH///df44YcfjKCgIMNisRi//fabzXb/971Lzftwv/0/pZ/H2bNnG5KMTz75JMkYie9b4s9j9OjRNstbtmxpWCwW46+//rK2BQYG2vxeA4AH4ZByAE+UAgUK6PXXX9fMmTMVHh6ebJ+1a9dKkvr27WvT3q9fP0lKcjhicHCw6tatm+xY7du3t7l4WcWKFa0X4bpXxYoVdfbsWcXFxVnb7j0PPDIyUpcvX1ZISIj+/vtvRUZGPmxT72vUqFFas2aN5s6dqxIlSkiSfvrpJ0VEROjVV1/V5cuXrQ9XV1dVrFjRevhweHi49u/frw4dOsjPz886Zp06daxj2Ss+Pl4bNmxQs2bNbM71zpUrl1577TX9/PPPioqKeug49/7crl+/rsuXL6tatWqKjo7W0aNHU1VT4vp8fHxS1H/t2rV6/vnnbQ5n9vb2Vrdu3XTq1CkdPnw4Vet/1H1gyZIlqlatmjJnzmzzvtauXVvx8fHatm2bTf8WLVooe/bsNm2urq7W87gTEhJ09epVxcXFqUKFCtq7d2+qtude7du3t/m5tmzZUrly5bJ+/vbv368TJ07otdde05UrV6y137x5U7Vq1dK2bdtsDouX7l4T4FGl9vMvSRMmTFCvXr00fvx4vf/++9Z2R2xDtWrVdOXKlYfu+/fuKzdv3tTly5dVuXJlGYahffv2Jemf3HruvXr42rVr5ebmZp3xlu7uCz169HhgHf/VuXNnZc+eXblz51bDhg118+ZNzZs3TxUqVHhgPfa8D/+V0s/j0qVLlS1btmS3LfE0krVr18rV1VU9e/ZMUo9hGPrxxx8fWg8AJIdDygE8cd5//30tWLBAH330kaZOnZpk+enTp+Xi4qJChQrZtAcEBMjf31+nT5+2aQ8ODr7vuvLnz2/zPDGk5suXL0l7QkKCIiMjrYda7tixQ8OHD9cvv/yS5BzOyMhIm8CbUuvWrdPIkSM1ePBgtWjRwtp+4sQJSf93fuV/+fr6SpJ12wsXLpykT9GiRR8pgF26dEnR0dE2h+QnKl68uBISEnT27FmVLFnygeMcOnRI77//vjZv3pwkpKT2i4rE7b5+/XqK+p8+fVoVK1ZM0p54uPvp06dTdQu6R90HTpw4oT/++CNJiE508eJFm+f325fnzZunSZMm6ejRo4qNjX1o/5T47z5ksVhUqFAh663eEvfJBx3CHBkZqcyZMzuknkSp/fxv3bpVP/zwgwYOHGhz3rZk3zb893dG4rJr165Z98fknDlzRsOGDdOqVat07dq1JOu4l6enZ5J9InPmzDavO336tHLlypXkrgHJfT4fZNiwYapWrZpcXV2VLVs2FS9ePNmLDP73vUvt+5CclH4eT548qaJFiz7w4oenT59W7ty5k3z5du9YAGAPAjeAJ07iVbFnzpypQYMG3bdfchfISs6Drkh+v/N+79du/P9zF0+ePKlatWqpWLFi+uSTT5QvXz65u7tr7dq1mjx5cpJZsZQICwtT27ZtVadOHev5pYkSx1uwYIECAgKSvDa9XIU7IiJCISEh8vX11YcffqiCBQvK09NTe/fu1cCBA1P9cytWrJgk6eDBg0mubm02R+wDCQkJqlOnjgYMGJDs8iJFitg8T25f/uabb9SxY0c1a9ZM/fv3V44cOeTq6qpx48bZXFDK0RK37+OPP77veeL/DYOOvDtASj//JUuWVEREhBYsWKA333zTJjjasw0P+92QnPj4eNWpU0dXr17VwIEDVaxYMXl5eencuXPq2LFjkn0lJdcjcJTSpUurdu3aD+13v/cupe8DAKRX6eMvLABIpffff1/ffPNNshciCgwMVEJCgk6cOGGdvZDuXoAnIiJCgYGBpte3evVqxcTEaNWqVTYzXvZeGfrWrVtq3ry5/P39tWjRIrm42J4xVLBgQUlSjhw5HvjHceK2J87c3evYsWN21ZYoe/bsypQpU7LjHD16VC4uLtYjA+73R3hoaKiuXLmiZcuWqXr16tb2xCsip1bVqlWVOXNmLVq0SEOGDHloUAkMDLxv/YnLUyo1+8D9fh4FCxbUjRs3UhR47uf7779XgQIFtGzZMpv1DB8+3O4xpaT7kGEY+uuvv1SmTBlJ/7dP+vr6PlL9qZXaz3+2bNn0/fffq2rVqqpVq5Z+/vln6wUZH9c2HDx4UMePH9e8efPUvn17a/tPP/1k95iBgYHatGmTbty4YfOlwKN+zlOz/pS+D/fb/1P6eSxYsKB27dql2NhYm1OA/jvWxo0bdf36dZtZbns+2wBwL87hBvBEKliwoNq1a6cvv/xS58+ft1nWoEEDSUpyBedPPvlEktSwYUPT60sMdvfOakVGRmrOnDl2jffWW2/p+PHjWr58uc3hq4nq1q0rX19fjR071uaQ4USXLl2SdPd86nLlymnevHk2h6n+9NNPqT4/+b9cXV310ksvaeXKldbDiqW7f2D/73//U9WqVa2H1Cbeo/e/tyhK7ud2584dffHFF3bVlClTJg0cOFBHjhzRwIEDk51l/Oabb7R7925Jd/ed3bt365dffrEuv3nzpmbOnKmgoKBUneeemn3Ay8sr2ds1tW7dWr/88ovWr1+fZFlERITNNQNSU8euXbtsttEe8+fPtzlU//vvv1d4eLjq168vSSpfvrwKFiyoiRMn6saNG0len7hPOpo9n/+8efNq48aNunXrlurUqaMrV65IenzbkNx7ZBhGsqfMpFSDBg0UFxdncxu6+Ph4TZs2zf5CU7l+KWXvw/32/5R+Hlu0aKHLly/rs88+SzJG4s+0QYMGio+PT9Jn8uTJslgs1v0WAFKLGW4AT6yhQ4dqwYIFOnbsmM15wWXLllWHDh00c+ZM6yHKu3fv1rx589SsWTPVrFnT9Npeeuklubu7q3HjxnrzzTd148YNffXVV8qRI8d9L/Z2Pz/88IPmz5+vFi1a6I8//tAff/xhXebt7a1mzZrJ19dX06dP1+uvv65nn31Wr7zyirJnz64zZ87ohx9+UJUqVax/aI4bN04NGzZU1apV1blzZ129elXTpk1TyZIlkw0VqTF69Gj99NNPqlq1qt5++225ubnpyy+/VExMjCZMmGDtV65cObm6umr8+PGKjIyUh4eHXnzxRVWuXFmZM2dWhw4d1LNnT1ksFi1YsOCRbhHVv39/HTp0SJMmTdKWLVvUsmVLBQQE6Pz581qxYoV2796tnTt3SpIGDRqkRYsWqX79+urZs6eyZMmiefPmKSwsTEuXLk1yZMGDpGYfKF++vKZPn67Ro0erUKFCypEjh1588UX1799fq1atUqNGjdSxY0eVL19eN2/e1MGDB/X999/r1KlTypYt2wPraNSokZYtW6aXX35ZDRs2VFhYmGbMmKESJUo80vudJUsWVa1aVZ06ddKFCxc0ZcoUFSpUSF27dpUkubi4aNasWapfv75KliypTp06KU+ePDp37py2bNkiX19frV692u7134+9n/9ChQppw4YNqlGjhurWravNmzfL19f3sWxDsWLFVLBgQb333ns6d+6cfH19tXTp0iTncqdG48aNVaVKFQ0aNEinTp1SiRIltGzZske6YGNqpOZ9uN/+n9LPY/v27TV//nz17dtXu3fvVrVq1XTz5k1t3LhRb7/9tpo2barGjRurZs2aGjp0qE6dOqWyZctqw4YNWrlypXr37m09mgEAUs0JV0YHAIe697Zg/5V4i5x7bwtmGIYRGxtrjBw50ggODjYyZMhg5MuXzxg8eLDNbaUMw/a2QPdKvCXOkiVLUlRL4q1xLl26ZG1btWqVUaZMGcPT09MICgoyxo8fb719TeItjAzj4bcFS1xnco//3hZry5YtRt26dQ0/Pz/D09PTKFiwoNGxY0fj999/t+m3dOlSo3jx4oaHh4dRokQJY9myZSm6zdZ//fe2YIZhGHv37jXq1q1reHt7G5kyZTJq1qxp7Ny5M8lrv/rqK6NAgQKGq6urzS3CduzYYbzwwgtGxowZjdy5cxsDBgww1q9fn+Q2Yqmt9/vvvzdeeuklI0uWLIabm5uRK1cuo02bNkZoaKhNv5MnTxotW7Y0/P39DU9PT+P555831qxZY9MnpbcFS+k+cP78eaNhw4aGj4+PIclmf7h+/boxePBgo1ChQoa7u7uRLVs2o3LlysbEiROtt6xLrOfjjz9Ost0JCQnG2LFjjcDAQMPDw8N45plnjDVr1iT781Mqbgu2aNEiY/DgwUaOHDmMjBkzGg0bNrS5fVWiffv2Gc2bNzeyZs1qeHh4GIGBgUbr1q2NTZs2JfnZ3fv5San/3hbMMB7t879r1y7rbewSb9X1KNuQ+Pm9t77kHD582Khdu7bh7e1tZMuWzejatatx4MCBJPtZhw4dDC8vrySvT27/u3LlivH6668bvr6+hp+fn/H6668b+/btS9Vtwf77O/B+603uvUvp+/Cg/T8ln0fDuHtbtaFDh1rXFRAQYLRs2dLmFoXXr183+vTpY+TOndvIkCGDUbhwYePjjz+2ueWbYXBbMACpYzGMR5gWAAAAuEdoaKhq1qypJUuWqGXLls4uBwAAp+IcbgAAAAAATEDgBgAAAADABARuAAAAAABMwDncAAAAAACYgBluAAAAAABMQOAGAAAAAMAEbs4u4FEkJCTo33//lY+PjywWi7PLAQAAAAA84QzD0PXr15U7d265uDx4DjtdB+5///1X+fLlc3YZAAAAAICnzNmzZ5U3b94H9knXgdvHx0fS3Q319fV1cjUAAAAAgCddVFSU8uXLZ82jD+LUwD1ixAiNHDnSpq1o0aI6evRoil6feBi5r68vgRsAAAAA8Nik5LRmp89wlyxZUhs3brQ+d3NzekkAAAAAADwyp6dbNzc3BQQEOLsMAAAAAAAcyum3BTtx4oRy586tAgUKqG3btjpz5sx9+8bExCgqKsrmAQAAAABAWmQxDMNw1sp//PFH3bhxQ0WLFlV4eLhGjhypc+fO6c8//0z2BPTkzvmWpMjISM7hBgAAAJCuJSQk6M6dO84u46mXIUMGubq63nd5VFSU/Pz8UpRDnRq4/ysiIkKBgYH65JNP1KVLlyTLY2JiFBMTY32eeHU4AjcAAACA9OzOnTsKCwtTQkKCs0uBJH9/fwUEBCR7YbTUBG6nn8N9L39/fxUpUkR//fVXsss9PDzk4eHxmKsCAAAAAPMYhqHw8HC5uroqX758cnFx+pm/Ty3DMBQdHa2LFy9KknLlyvVI46WpwH3jxg2dPHlSr7/+urNLAQAAAIDHIi4uTtHR0cqdO7cyZcrk7HKeehkzZpQkXbx4UTly5Hjg4eUP49SvTt577z1t3bpVp06d0s6dO/Xyyy/L1dVVr776qjPLAgAAAIDHJj4+XpLk7u7u5EqQKPGLj9jY2Ecax6kz3P/8849effVVXblyRdmzZ1fVqlX166+/Knv27M4sCwAAAAAeu+TOF4ZzOOq9cGrg/vbbb525egAAAAAATMPZ+AAAAACAdGPEiBEqV66cs8tIEQI3AAAAADzhOnbsKIvFIovFInd3dxUqVEgffvih4uLiHmnMZs2aOa7IJ1Cauko5AAAAAMAc9erV05w5cxQTE6O1a9fqnXfeUYYMGTR48GCbfnfu3OECbg7CDDcAAAAAPAU8PDwUEBCgwMBAde/eXbVr19aqVausM9VjxoxR7ty5VbRoUUnSwYMH9eKLLypjxozKmjWrunXrphs3bki6e1j3vHnztHLlSuvMeWho6ENfl2j27NkqWbKkPDw8lCtXLr377rvWZWfOnFHTpk3l7e0tX19ftW7dWhcuXHg8PyQHI3ADAAAAwFMoY8aMunPnjiRp06ZNOnbsmH766SetWbNGN2/eVN26dZU5c2b99ttvWrJkiTZu3GgNxu+9955at26tevXqKTw8XOHh4apcufJDXydJ06dP1zvvvKNu3brp4MGDWrVqlQoVKiRJSkhIUNOmTXX16lVt3bpVP/30k/7++2+1adPm8f+AHIBDygEAAADgKWIYhjZt2qT169erR48eunTpkry8vDRr1izroeRfffWVbt++rfnz58vLy0uS9Nlnn6lx48YaP368cubMqYwZMyomJkYBAQHWsefNm/fQ140ePVr9+vVTr169rK977rnnJN0N/gcPHlRYWJjy5csnSZo/f75Kliyp3377zdovvWCGGwAAAACeAmvWrJG3t7c8PT1Vv359tWnTRiNGjJAklS5d2ua87SNHjqhs2bLW0CxJVapUUUJCgo4dO3bfdTzsdRcvXtS///6rWrVq3ff1+fLls4ZtSSpRooT8/f115MgRezfdaZjhBgAAAICnQM2aNTV9+nS5u7srd+7ccnP7vzh4b0A2U8aMGR/LetIKZrgBAAAA4Cng5eWlQoUKKX/+/DZhOznFixfXgQMHdPPmTWvbjh075OLiYr2omru7u+Lj41P1Oh8fHwUFBWnTpk33Xe/Zs2d19uxZa9vhw4cVERGhEiVKpHqbnY3ADQAAAACw0bZtW3l6eqpDhw76888/tWXLFvXo0UOvv/66cubMKUkKCgrSH3/8oWPHjuny5cuKjY1N0etGjBihSZMm6dNPP9WJEye0d+9eTZs2TZJUu3ZtlS5dWm3bttXevXu1e/dutW/fXiEhIapQoYLTfh72InADAAAAAGxkypRJ69ev19WrV/Xcc8+pZcuWqlWrlj777DNrn65du6po0aKqUKGCsmfPrh07dqTodR06dNCUKVP0xRdfqGTJkmrUqJFOnDghSbJYLFq5cqUyZ86s6tWrq3bt2ipQoIAWL1782H8GjmAxDMNwdhH2ioqKkp+fnyIjI+Xr6+vscgAAAAAg1W7fvq2wsDAFBwfL09PT2eVAD35PUpNDmeEGAAAAAMAEBG4AAAAAAExA4AYAAAAAwATchxsAgMegyrQqDhtrR48dDhsLAACYhxluAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABNwWDAAAAADSoPL95z/W9e35uH2q+teoUUPlypXTlClTbNrnzp2r3r17KyIiQtHR0Ro1apS+++47nTt3Tj4+PipRooT69u2rpk2bWsfZunWrJMnd3V3ZsmXTs88+q06dOql58+ZJ1rtlyxZ9/PHH2rVrl27duqWgoCDVr19fffv2VZ48eezbeJMwww0AAAAAMMVbb72lZcuWadq0aTp69KjWrVunli1b6sqVKzb9unbtqvDwcJ08eVJLly5ViRIl9Morr6hbt242/b788kvVrl1bAQEBWrp0qQ4fPqwZM2YoMjJSkyZNepybliLMcAMAAAAATLFq1SpNnTpVDRo0kCQFBQWpfPnySfplypRJAQEBkqS8efPqhRdeULFixdS5c2e1bt1atWvX1j///KOePXuqZ8+emjx5svW1QUFBql69uiIiIh7LNqUGM9wAAAAAAFMEBARo7dq1un79eqpf26FDB2XOnFnLli2TJC1ZskR37tzRgAEDku3v7+//KKWagsANAAAAADDFzJkztXPnTmXNmlXPPfec+vTpox07dqTotS4uLipSpIhOnTolSTpx4oR8fX2VK1cuEyt2LAI3AAAAAMAU1atX199//61NmzapZcuWOnTokKpVq6ZRo0al6PWGYchisST5d3pB4AYAAAAApJqvr68iIyOTtEdERMjPz8/6PEOGDKpWrZoGDhyoDRs26MMPP9SoUaN0586dB44fHx+vEydOKDg4WJJUpEgRRUZGKjw83LEbYiICNwAAAAAg1YoWLaq9e/cmad+7d6+KFCly39eVKFFCcXFxun379gPHnzdvnq5du6YWLVpIklq2bCl3d3dNmDAh2f5p8aJpXKUcAAAAAJBq3bt312effaaePXvqjTfekIeHh3744QctWrRIq1evlnT3HtuvvvqqKlSooKxZs+rw4cMaMmSIatasKV9fX+tY0dHROn/+vOLi4vTPP/9o+fLlmjx5srp3766aNWtKkvLly6fJkyfr3XffVVRUlNq3b6+goCD9888/mj9/vry9vdPcrcEI3AAAAACQBu35uL2zS3igAgUKaNu2bRo6dKhq166tO3fuqFixYlqyZInq1asnSapbt67mzZunIUOGKDo6Wrlz51ajRo00bNgwm7G++uorffXVV3J3d1fWrFlVvnx5LV68WC+//LJNv7fffltFihTRxIkT9fLLL+vWrVsKCgpSo0aN1Ldv38e27SllMQzDcHYR9oqKipKfn58iIyNtvh0BACCtqTKtisPG2tEjZVd3BQCkD7dv31ZYWJiCg4Pl6enp7HKgB78nqcmhnMMNAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAncnF0AAAAAACCpMx+Wfqzryz/s4GNd39OAGW4AAAAAQKrVqFFDvXv3TtI+d+5c+fv7S5Kio6M1ePBgFSxYUJ6ensqePbtCQkK0cuVKm3EsFossFos8PDyUJ08eNW7cWMuWLbMZM7HP/R6nTp0yeYtTj8ANAAAAADDFW2+9pWXLlmnatGk6evSo1q1bp5YtW+rKlSs2/bp27arw8HCdPHlSS5cuVYkSJfTKK6+oW7dukqQ2bdooPDzc+qhUqZL1NYmPfPnyOWMTH4hDygEAAAAApli1apWmTp2qBg0aSJKCgoJUvnz5JP0yZcqkgIAASVLevHn1wgsvqFixYurcubNat26t2rVrK2PGjNb+7u7uNq9Jq5jhBgAAAACYIiAgQGvXrtX169dT/doOHTooc+bMNoeWpzcEbgAAAACAKWbOnKmdO3cqa9aseu6559SnTx/t2LEjRa91cXFRkSJF0uS52SlF4AYAAAAAmKJ69er6+++/tWnTJrVs2VKHDh1StWrVNGrUqBS93jAMWSwWk6s0D4EbAAAAAJBqvr6+ioyMTNIeEREhPz8/6/MMGTKoWrVqGjhwoDZs2KAPP/xQo0aN0p07dx44fnx8vE6cOKHg4GCH1/64ELgBAAAAAKlWtGhR7d27N0n73r17VaRIkfu+rkSJEoqLi9Pt27cfOP68efN07do1tWjR4pFrdRauUg4AAAAASLXu3bvrs88+U8+ePfXGG2/Iw8NDP/zwgxYtWqTVq1dLunuP7VdffVUVKlRQ1qxZdfjwYQ0ZMkQ1a9aUr6+vdazo6GidP39ecXFx+ueff7R8+XJNnjxZ3bt3V82aNZ21iY+MwA0AAAAAaVD+YQedXcIDFShQQNu2bdPQoUNVu3Zt3blzR8WKFdOSJUtUr149SVLdunU1b948DRkyRNHR0cqdO7caNWqkYcOG2Yz11Vdf6auvvpK7u7uyZs2q8uXLa/HixXr55ZedsWkOYzEMw3B2EfaKioqSn5+fIiMjbb4dAQAgrakyrYrDxtrRI2VXdwUApA+3b99WWFiYgoOD5enp6exyoAe/J6nJoZzDDQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJ3JxdAAAAAAAgqSrTqjzW9e3oseOxru9pwAw3AAAAAMAuly5dUvfu3ZU/f355eHgoICBAdevW1ZgxY2SxWB74CA0N1dy5c63PXVxclCtXLrVp00ZnzpyxWU+NGjXUu3dvm7apU6fKw8ND33777WPc4tRhhhsAAAAAYJcWLVrozp07mjdvngoUKKALFy5o06ZNKlmypMLDw639evXqpaioKM2ZM8faliVLFp06dUq+vr46duyYDMNQWFiY3n77bbVq1Uq7du2673qHDx+uiRMnauXKlapXr56p2/goCNwAAAAAgFSLiIjQ9u3bFRoaqpCQEElSYGCgnn/++SR9M2bMqJiYGAUEBCRZZrFYrO25cuVSly5d1LNnT0VFRcnX19emr2EY6tmzp7755hv99NNPqly5sglb5jgcUg4AAAAASDVvb295e3trxYoViomJcciYFy9e1PLly+Xq6ipXV1ebZXFxcWrXrp2+//57bd26Nc2HbYkZbgAAAACAHdzc3DR37lx17dpVM2bM0LPPPquQkBC98sorKlOmTIrHiYyMlLe3twzDUHR0tCSpZ8+e8vLysun31VdfSZIOHDigYsWKOW5DTMQMNwAAAADALi1atNC///6rVatWqV69egoNDdWzzz6ruXPnpngMHx8f7d+/X7///rsmTZqkZ599VmPGjEnSr2rVqvL29tYHH3yguLg4B26FeQjcAAAAAAC7eXp6qk6dOvrggw+0c+dOdezYUcOHD0/x611cXFSoUCEVL15cffv21QsvvKDu3bsn6Ve6dGlt2rRJW7ZsUZs2bdJF6CZwAwAAAAAcpkSJErp586bdrx80aJAWL16svXv3JllWrlw5bdq0Sdu2bVPr1q0VGxv7KKWajsANAAAAAEi1K1eu6MUXX9Q333yjP/74Q2FhYVqyZIkmTJigpk2b2j1uvnz59PLLL2vYsGHJLi9btqw2b96sn3/+Oc2Hbi6aBgAAAABp0I4eO5xdwgN5e3urYsWKmjx5sk6ePKnY2Fjly5dPXbt21ZAhQx5p7D59+qhSpUravXt3srcZK126tDZv3qxatWqpVatW+u677+Tu7v5I6zSDxTAMw9lF2CsqKkp+fn6KjIxMcn82AADSkirTqjhsrLT+BxgAIHVu376tsLAwBQcHy9PT09nlQA9+T1KTQzmkHAAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATuDm7AAAAAABAUlurhzzW9YVs2/pY1/c0YIYbAAAAAJBqHTt2lMViSfLw9PRMtv3eR2hoqObOnSt/f/9kx7ZYLFqxYsVj3R4zMMMNAAAAALBLvXr1NGfOHJs2i8UiwzCsz3v16qWoqCibflmyZNGpU6ceV5lOQ+AGAAAAANjFw8NDAQEBD+yTMWNGxcTEPLTfk4hDygEAAAAAMAGBGwAAAABglzVr1sjb29vmMXbs2BS/PjIyMsnrvb29Taz48eKQcgAAAACAXWrWrKnp06fbtGXJkiXFr/fx8dHevXuTtBcuXPiRa0sLCNwAAAAAALt4eXmpUKFCdr/excXlkV6f1nFIOQAAAAAAJmCGGwAAAABgl5iYGJ0/f96mzc3NTdmyZXNSRWkLgRsAAAAA0qCQbVudXcJDrVu3Trly5bJpK1q0qI4ePeqkitIWi3HvHcnTmaioKPn5+SkyMlK+vr7OLgcAgPuqMq2Kw8ba0WOHw8YCADjf7du3FRYWpuDgYHl6ejq7HOjB70lqcijncAMAAAAAYII0E7g/+ugjWSwW9e7d29mlAAAAAADwyNJE4P7tt9/05ZdfqkyZMs4uBQAAAAAAh3B64L5x44batm2rr776SpkzZ3Z2OQAAAAAAOITTA/c777yjhg0bqnbt2g/tGxMTo6ioKJsHAAAAAABpkVNvC/btt99q7969+u2331LUf9y4cRo5cqTJVQEAAAAA8OicNsN99uxZ9erVSwsXLkzxpe8HDx6syMhI6+Ps2bMmVwkAAAAAgH2cNsO9Z88eXbx4Uc8++6y1LT4+Xtu2bdNnn32mmJgYubq62rzGw8NDHh4ej7tUAAAAAABSzWmBu1atWjp48KBNW6dOnVSsWDENHDgwSdgGAAAAACA9cVrg9vHxUalSpWzavLy8lDVr1iTtAAAAAPC0+azf6se6vncnNX6s63saOP0q5QAAAACAJ1toaKgsFov1kTFjRpUsWVIzZ8609rl3eXKPESNGSJL27dunVq1aKWfOnPL09FThwoXVtWtXHT9+3Elbd39OvUr5f4WGhjq7BAAAAACASY4dOyZfX1/dunVLq1evVvfu3VWwYEHVqlVL4eHh1n6LFy/WsGHDdOzYMWubt7e31qxZoxYtWqhu3bpauHChChYsqIsXL2rJkiX64IMPtHjxYmds1n0xww0AAAAASLU1a9bI399f8fHxkqT9+/fLYrFo0KBB1j5vvPGG2rVrZ32eI0cOBQQEKDg4WD179lRwcLD27t0rSQoICLA+/Pz8ZLFYbNpcXFzUqVMnNWjQQKtWrVLt2rUVHBysihUrauLEifryyy8f7w8gBQjcAAAAAIBUq1atmq5fv659+/ZJkrZu3aps2bLZHLm8detW1ahRI8lrDcPQunXrdObMGVWsWDFF61u/fr0uX76sAQMGJLvc398/tZtgOgI3AAAAACDV/Pz8VK5cOWvADg0NVZ8+fbRv3z7duHFD586d019//aWQkBDra/LmzStvb2+5u7urYcOGGj58uKpXr56i9Z04cUKSVKxYMYdvi1kI3AAAAAAAu4SEhCg0NFSGYWj79u1q3ry5ihcvrp9//llbt25V7ty5VbhwYWv/7du3a//+/dq/f79mzZqlsWPHavr06Slal2EYZm2GadLURdMAAAAAAOlHjRo1NHv2bB04cEAZMmRQsWLFVKNGDYWGhuratWs2s9uSFBwcbD30u2TJktq1a5fGjBmj7t27P3RdRYoUkSQdPXpUlSpVcvi2mIEZbgAAAACAXRLP4548ebI1XCcG7tDQ0GTP376Xq6urbt26laJ1vfTSS8qWLZsmTJiQ7PKIiIjUlP5YMMMNAAAAALBL5syZVaZMGS1cuFCfffaZJKl69epq3bq1YmNjk8xwX7x4Ubdv31ZMTIx2796tBQsWqGXLlilal5eXl2bNmqVWrVqpSZMm6tmzpwoVKqTLly/ru+++05kzZ/Ttt986fBsfBYEbAAAAANKgdyc1dnYJKRISEqL9+/dbZ7OzZMmiEiVK6MKFCypatKhN38Tnbm5uypcvn958802NGDEixetq2rSpdu7cqXHjxum1115TVFSU8uXLpxdffFGjR4921CY5jMVIj2ee/39RUVHy8/NTZGSkfH19nV0OAAD3VWVaFYeNtaPHDoeNBQBwvtu3byssLEzBwcHy9PR0djnQg9+T1ORQzuEGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwARuzi4AAAAAAJDUmHYtH+v6hn7zfar6d+zYUfPmzZMkubm5KUuWLCpTpoxeffVVdezYUS4utvO7devW1caNG/Xrr7/queeeSzJWRESEVqxY8UjbkNYwww0AAAAAsEu9evUUHh6uU6dO6ccff1TNmjXVq1cvNWrUSHFxcdZ+Z86c0c6dO/Xuu+9q9uzZTqz48SJwAwAAAADs4uHhoYCAAOXJk0fPPvushgwZopUrV+rHH3/U3Llzrf3mzJmjRo0aqXv37lq0aJFu3brlvKIfIwI3AAAAAMBhXnzxRZUtW1bLli2TJBmGoTlz5qhdu3YqVqyYChUqpO+/T93h6+kVgRsAAAAA4FDFihXTqVOnJEkbN25UdHS06tatK0lq166dvv76aydW9/gQuAEAAAAADmUYhiwWiyRp9uzZatOmjdzc7l6z+9VXX9WOHTt08uRJZ5b4WBC4AQAAAAAOdeTIEQUHB+vq1atavny5vvjiC7m5ucnNzU158uRRXFzcU3HxNAI3AAAAAMBhNm/erIMHD6pFixZauHCh8ubNqwMHDmj//v3Wx6RJkzR37lzFx8c7u1xTcR9uAAAAAIBdYmJidP78ecXHx+vChQtat26dxo0bp0aNGql9+/YqX768WrZsqVKlStm8Ll++fBo8eLDWrVunhg0bOql68zHDDQAAAACwy7p165QrVy4FBQWpXr162rJliz799FOtXLlS+/fv14EDB9SiRYskr/Pz81OtWrWe+IunWQzDMJxdhL2ioqLk5+enyMhI+fr6OrscAADuq8q0Kg4ba0ePHQ4bCwDgfLdv31ZYWJiCg4Pl6enp7HKgB78nqcmhzHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJnBzdgEAAAAAgKSOjNn8WNdXfOiLj3V9iUJDQ1WzZk1du3ZN/v7+1vaOHTtq3rx5SfrXrVtXgwYNUs2aNR847pYtW3Tq1Cn17t1bERERSZZbLBYtX75czZo1e8QtuD8CNwAAAAAgTapXr57mzJlj0+bh4SEvLy+Fh4db23r16qWoqCibvlmyZNGpU6ceV6nJ4pByAAAAAECqrVmzRv7+/oqPj5ck7d+/XxaLRYMGDbL2eeONN9SuXTudPn1ajRs3VubMmeXl5aWSJUtq7dq1OnXqlHWmOnPmzLJYLOrYsaP19R4eHgoICLB5ZM6cWe7u7jZtGTNmTNLX3d39sf48ksMMNwAAAAAg1apVq6br169r3759qlChgrZu3aps2bIpNDTU2mfr1q0aOHCg3nnnHd25c0fbtm2Tl5eXDh8+LG9vb+XLl09Lly5VixYtdOzYMfn6+ipjxozO2ygHY4YbAAAAAJBqfn5+KleunDVgh4aGqk+fPtq3b59u3Lihc+fO6a+//lJISIjOnDmjKlWqqHTp0ipQoIAaNWqk6tWry9XVVVmyZJEk5ciRQwEBAfLz87OuY82aNfL29rZ5jB07NlV1RkZGJhnD29vbYT+HB2GGGwAAAABgl5CQEIWGhqpfv37avn27xo0bp++++04///yzrl69qty5c6tw4cLq2bOnunfvrg0bNqh27dpq0aKFypQp89Dxa9asqenTp9u0JQb0lPLx8dHevXuTtBcuXDhV49iDwA0AAAAAsEuNGjU0e/ZsHThwQBkyZFCxYsVUo0YNhYaG6tq1awoJCZF091zuunXr6ocfftCGDRs0btw4TZo0ST169Hjg+F5eXipUqNAj1eji4vLIY9i9bqesFQAAAACQ7iWexz158mRruE4M3KGhoapRo4a1b758+fTWW29p2bJl6tevn7766itJsl7cLPHia08SAjcAAAAAwC6ZM2dWmTJltHDhQmu4rl69uvbu3avjx49bQ3jv3r21fv16hYWFae/evdqyZYuKFy8uSQoMDJTFYtGaNWt06dIl3bhxwzp+TEyMzp8/b/O4fPnyY99OexG4AQAAAAB2CwkJUXx8vDVwZ8mSRSVKlFBAQICKFi0q6e7s9TvvvKPixYurXr16KlKkiL744gtJUp48eTRy5EgNGjRIOXPm1Lvvvmsde926dcqVK5fNo2rVqo99G+1lMQzDcHYR9oqKipKfn58iIyPl6+vr7HIAALivKtOqOGysHT12OGwsAIDz3b59W2FhYQoODpanp6ezy4Ee/J6kJocyww0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYwM3ZBQAAAAAAkhoxYkSaXl/Hjh0VERGhFStWJFl269YtffTRR1q0aJFOnz4tHx8f1axZUyNGjFDJkiVt1jly5EhJkouLi3Lnzq369evro48+UpYsWaz9goKCdPr0aUmSp6encubMqeeff15vvfWWXnzxRZt1L1++XOPHj9eRI0eUkJCg/Pnzq06dOpoyZUqqts8RmOEGAAAAADhMTEyMateurdmzZ2v06NE6fvy41q5dq7i4OFWsWFG//vqrTf+SJUsqPDxcZ86c0Zw5c7Ru3Tp17949ybgffvihwsPDdezYMc2fP1/+/v6qXbu2xowZY+2zadMmtWnTRi1atNDu3bu1Z88ejRkzRrGxsaZvd3KY4QYAAAAAOMyUKVP0yy+/aN++fSpbtqwkKTAwUEuXLlXFihXVpUsX/fnnn7JYLJIkNzc3BQQESJLy5MmjVq1aac6cOUnG9fHxsfbLnz+/qlevrly5cmnYsGFq2bKlihYtqtWrV6tKlSrq37+/9XVFihRRs2bNTN7q5DHDDQAAAABwmP/973+qU6eONWwncnFxUZ8+fXT48GEdOHAg2deeOnVK69evl7u7e4rW1atXLxmGoZUrV0qSAgICdOjQIf3555+PthEOQuAGAAAAADjM8ePHVbx48WSXJbYfP37c2nbw4EF5e3srY8aMCg4O1qFDhzRw4MAUrStLlizKkSOHTp06JUnq0aOHnnvuOZUuXVpBQUF65ZVXNHv2bMXExDzaRtmJwA0AAAAAcCjDMFLct2jRotq/f79+++03DRw4UHXr1lWPHj1Sta7Ew9O9vLz0ww8/6K+//tL7778vb29v9evXT88//7yio6NTvR2PisANAAAAAHCYIkWK6MiRI8kuS2wvUqSItc3d3V2FChVSqVKl9NFHH8nV1dV65fKHuXLlii5duqTg4GCb9oIFC+qNN97QrFmztHfvXh0+fFiLFy+2c4vsR+AGAAAAADjMK6+8oo0bNyY5TzshIUGTJ09WiRIlkpzffa/3339fEydO1L///vvQdU2dOlUuLi4PvChaUFCQMmXKpJs3b6Z4GxyFq5QDAAAAAOwSGRmp/fv327S1a9dOK1euVOPGjTVp0iRVrFhRFy5c0NixY3XkyBFt3LjRegh4cipVqqQyZcpo7Nix+uyzz6zt169f1/nz5xUbG6uwsDB98803mjVrlsaNG6dChQpJuntf7+joaDVo0ECBgYGKiIjQp59+qtjYWNWpU8eUn8GDELgBAAAAAHYJDQ3VM888Y9PWpUsXbd68WWPHjtWQIUN0+vRp+fj4qGbNmvr1119VqlSph47bp08fdezYUQMHDlS+fPkkScOGDdOwYcPk7u6ugIAAvfDCC9q0aZNq1qxpfV1ISIg+//xztW/fXhcuXFDmzJn1zDPPaMOGDSpatKhjNz4FLEZqzmZPY6KiouTn56fIyEj5+vo6uxwAAO6ryrQqDhtrR48dDhsLAOB8t2/fVlhYmIKDg+Xp6enscqAHvyepyaGcww0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAkAak4xtIPXESEhIcMg734QYAAAAAJ8qQIYMsFosuXbqk7Nmzy2KxOLukp5ZhGLpz544uXbokFxcXubu7P9J4BG4AAAAAcCJXV1flzZtX//zzj06dOuXsciApU6ZMyp8/v1xcHu2gcAI3AAAAADiZt7e3ChcurNjYWGeX8tRzdXWVm5ubQ440IHADAAAAQBrg6uoqV1dXZ5cBB+KiaQAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJjALbUvOHLkiL799ltt375dp0+fVnR0tLJnz65nnnlGdevWVYsWLeTh4WFGrQAAAAAApBspnuHeu3evateurWeeeUY///yzKlasqN69e2vUqFFq166dDMPQ0KFDlTt3bo0fP14xMTFm1g0AAAAAQJqW4hnuFi1aqH///vr+++/l7+9/336//PKLpk6dqkmTJmnIkCGOqBEAAAAAgHQnxYH7+PHjypAhw0P7VapUSZUqVVJsbOwjFQYAAAAAQHqW4kPKUxK2H6U/AAAAAABPklRfNC0hIUFz587VsmXLdOrUKVksFgUHB6tly5Z6/fXXZbFYzKgTAAAAAIB0JVW3BTMMQ02aNNEbb7yhc+fOqXTp0ipZsqROnz6tjh076uWXX07VyqdPn64yZcrI19dXvr6+qlSpkn788cdUjQEAAAAAQFqUqhnuuXPnatu2bdq0aZNq1qxps2zz5s1q1qyZ5s+fr/bt26dovLx58+qjjz5S4cKFZRiG5s2bp6ZNm2rfvn0qWbJkakoDAAAAACBNSdUM96JFizRkyJAkYVuSXnzxRQ0aNEgLFy5M8XiNGzdWgwYNVLhwYRUpUkRjxoyRt7e3fv3119SUBQAAAABAmpOqwP3HH3+oXr16911ev359HThwwK5C4uPj9e233+rmzZuqVKlSsn1iYmIUFRVl8wAAAAAAIC1KVeC+evWqcubMed/lOXPm1LVr11JVwMGDB+Xt7S0PDw+99dZbWr58uUqUKJFs33HjxsnPz8/6yJcvX6rWBQAAAADA45KqwB0fHy83t/uf9u3q6qq4uLhUFVC0aFHt379fu3btUvfu3dWhQwcdPnw42b6DBw9WZGSk9XH27NlUrQsAAAAAgMclVRdNMwxDHTt2lIeHR7LLY2JiUl2Au7u7ChUqJEkqX768fvvtN02dOlVffvllkr4eHh73XTcAAAAAAGlJqgJ3hw4dHtonpVcov5+EhAS7gjsAAAAAAGlJqgL3nDlzHLrywYMHq379+sqfP7+uX7+u//3vfwoNDdX69esduh4AAAAAAB63VAXu+zl9+rRu3rypYsWKycUl5aeFX7x4Ue3bt1d4eLj8/PxUpkwZrV+/XnXq1HFEWQAAAAAAOE2qAvfs2bMVERGhvn37Wtu6deumr7/+WtLdC6CtX78+xVcPT3wdAAAAAABPmlRdpXzmzJnKnDmz9fm6des0Z84czZ8/X7/99pv8/f01cuRIhxcJAAAAAEB6k6oZ7hMnTqhChQrW5ytXrlTTpk3Vtm1bSdLYsWPVqVMnx1YIAAAAAEA6lKoZ7lu3bsnX19f6fOfOnapevbr1eYECBXT+/HnHVQcAAAAAQDqVqsAdGBioPXv2SJIuX76sQ4cOqUqVKtbl58+fl5+fn2MrBAAAAAAgHUr1fbjfeecdHTp0SJs3b1axYsVUvnx56/KdO3eqVKlSDi8SAAAAAID0JlWBe8CAAYqOjtayZcsUEBCgJUuW2CzfsWOHXn31VYcWCAAAAABAemQxDMNwdhH2ioqKkp+fnyIjI23OLQcAIK2pMq3Kwzul0I4eOxw2FgAASJ3U5NBUzXBHRUUl2+7l5SVXV9fUDAUAAAAAwBMtVRdN8/f3V+bMmZM8MmbMqKJFi+qrr74yq04AAAAAANKVVM1wb9myJdn2iIgI7dmzR/3795ebmxv34gYAAAAAPPVSFbhDQkLuu6xp06YKCgrStGnTCNwAAAAAgKdeqg4pf5iQkBD99ddfjhwSAAAAAIB0yaGBOzIyUn5+fo4cEgAAAACAdMlhgTs2NlYff/yxKlas6KghAQAAAABIt1J1Dnfz5s2TbY+MjNShQ4dksVi0fft2hxQGAAAAAEB6lqrAfb/DxfPly6cWLVqobdu2HFIOAAAAAIBSGbjnzJljVh0AAAAAADxRHHrRNAAAAAAAcFeKA3e9evX066+/PrTf9evXNX78eH3++eePVBgAAAAAAOlZig8pb9WqlVq0aCE/Pz81btxYFSpUUO7cueXp6alr167p8OHD+vnnn7V27Vo1bNhQH3/8sZl1AwAAAACQpqU4cHfp0kXt2rXTkiVLtHjxYs2cOVORkZGSJIvFohIlSqhu3br67bffVLx4cdMKBgAAAAAgPUjVRdM8PDzUrl07tWvXTtLd24HdunVLWbNmVYYMGUwpEAAAAACA9ChVgfu//Pz8uA0YAAAAAADJ4CrlAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmCDFVynPnDmzLBZLivpevXrV7oIAAAAAAHgSpDhwT5kyxcQyAAAAAAB4sqQ4cHfo0MHMOgAAAAAAeKKkOHDfz+3bt3Xnzh2bNl9f30cdFgAAAACAdM2ui6bdvHlT7777rnLkyCEvLy9lzpzZ5gEAAAAAwNPOrsA9YMAAbd68WdOnT5eHh4dmzZqlkSNHKnfu3Jo/f76jawQAAAAAIN2x65Dy1atXa/78+apRo4Y6deqkatWqqVChQgoMDNTChQvVtm1bR9cJAAAAAEC6YtcM99WrV1WgQAFJd8/XTrwNWNWqVbVt2zbHVQcAAAAAQDplV+AuUKCAwsLCJEnFihXTd999J+nuzLe/v7/DigMAAAAAIL2yK3B36tRJBw4ckCQNGjRIn3/+uTw9PdWnTx/179/foQUCAAAAAJAe2XUOd58+faz/rl27to4ePao9e/aoUKFCKlOmjMOKAwAAAAAgvUr1DHdsbKxq1aqlEydOWNsCAwPVvHlzwjYAAAAAAP9fqgN3hgwZ9Mcff5hRCwAAAAAATwy7zuFu166dvv76a0fXAgAAAADAE8Ouc7jj4uI0e/Zsbdy4UeXLl5eXl5fN8k8++cQhxQEAAAAAkF7ZFbj//PNPPfvss5Kk48eP2yyzWCyPXhUAAAAAAOmcXYF7y5Ytjq4DAAAAAIAnil3ncCf666+/tH79et26dUuSZBiGQ4oCAAAAACC9sytwX7lyRbVq1VKRIkXUoEEDhYeHS5K6dOmifv36ObRAAAAAAADSI7sCd58+fZQhQwadOXNGmTJlsra3adNG69atc1hxAAAAAACkV3adw71hwwatX79eefPmtWkvXLiwTp8+7ZDCAAAAAABIz+ya4b5586bNzHaiq1evysPD45GLAgAAAAAgvbMrcFerVk3z58+3PrdYLEpISNCECRNUs2ZNhxUHAAAAAEB6Zdch5RMmTFCtWrX0+++/686dOxowYIAOHTqkq1evaseOHY6uEQAAAACAdMeuGe5SpUrp+PHjqlq1qpo2baqbN2+qefPm2rdvnwoWLOjoGgEAAAAASHfsmuE+c+aM8uXLp6FDhya7LH/+/I9cGAAAAAAA6ZldM9zBwcG6dOlSkvYrV64oODj4kYsCAAAAACC9sytwG4Yhi8WSpP3GjRvy9PR85KIAAAAAAEjvUnVIed++fSXdvSr5Bx98YHNrsPj4eO3atUvlypVzaIEAAAAAAKRHqQrc+/btk3R3hvvgwYNyd3e3LnN3d1fZsmX13nvvObZCAAAAAADSoVQF7i1btkiSOnXqpKlTp8rX19eUogAAAAAASO/sukr5nDlzHF0HAAAAAABPFLsCtyT9/vvv+u6773TmzBnduXPHZtmyZcseuTAAAAAAANIzu65S/u2336py5co6cuSIli9frtjYWB06dEibN2+Wn5+fo2sEAAAAACDdsStwjx07VpMnT9bq1avl7u6uqVOn6ujRo2rdurXy58/v6BoBAAAAAEh37ArcJ0+eVMOGDSXdvTr5zZs3ZbFY1KdPH82cOdOhBQIAAAAAkB7ZFbgzZ86s69evS5Ly5MmjP//8U5IUERGh6Ohox1UHAAAAAEA6ZddF06pXr66ffvpJpUuXVqtWrdSrVy9t3rxZP/30k2rVquXoGgEAAAAASHfsCtyfffaZbt++LUkaOnSoMmTIoJ07d6pFixZ6//33HVogAAAAAADpkV2BO0uWLNZ/u7i4aNCgQQ4rCAAAAACAJ0GKA3dUVFSKB/X19bWrGAAAAAAAnhQpDtz+/v6yWCwP7GMYhiwWi+Lj4x+5MAAAAAAA0rMUB+4tW7aYWQcAAAAAAE+UFAfukJAQM+sAAAAAAOCJkuLA/ccff6R40DJlythVDAAAAAAAT4oUB+5y5crJYrHIMIwH9uMcbgAAAAAAUhG4w8LCzKwDAAAAAIAnSooDd2BgoJl1AAAAAADwRElx4P6vkydPasqUKTpy5IgkqUSJEurVq5cKFizosOIAAAAAAEivXOx50fr161WiRAnt3r1bZcqUUZkyZbRr1y6VLFlSP/30k6NrBAAAAAAg3bFrhnvQoEHq06ePPvrooyTtAwcOVJ06dRxSHAAAAAAA6ZVdM9xHjhxRly5dkrR37txZhw8ffuSiAAAAAABI7+wK3NmzZ9f+/fuTtO/fv185cuR41JoAAAAAAEj37DqkvGvXrurWrZv+/vtvVa5cWZK0Y8cOjR8/Xn379nVogQAAAAAApEd2Be4PPvhAPj4+mjRpkgYPHixJyp07t0aMGKGePXs6tEAAAAAAANIjuwK3xWJRnz591KdPH12/fl2S5OPj49DCAAAAAABIz1J1DvetW7e0atUqa8iW7gZtHx8fRUVFadWqVYqJiXF4kQAAAAAApDepCtwzZ87U1KlTk53N9vX11aeffqpZs2Y5rDgAAAAAANKrVAXuhQsXqnfv3vdd3rt3b82bN+9RawIAAAAAIN1LVeA+ceKEypYte9/lZcqU0YkTJx65KAAAAAAA0rtUBe64uDhdunTpvssvXbqkuLi4Ry4KAAAAAID0LlWBu2TJktq4ceN9l2/YsEElS5Z85KIAAAAAAEjvUhW4O3furFGjRmnNmjVJlq1evVpjxoxR586dHVYcAAAAAADpVaruw92tWzdt27ZNTZo0UbFixVS0aFFJ0tGjR3X8+HG1bt1a3bp1M6VQAAAAAADSk1TNcEvSN998o2+//VZFihTR8ePHdezYMRUtWlSLFi3SokWLzKgRAAAAAIB0J1Uz3Ilat26t1q1bO7oWAAAAAACeGKme4QYAAAAAAA9H4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABE4N3OPGjdNzzz0nHx8f5ciRQ82aNdOxY8ecWRIAAAAAAA6R4quUN2/ePMWDLlu2LEX9tm7dqnfeeUfPPfec4uLiNGTIEL300ks6fPiwvLy8Urw+AAAAAADSmhQHbj8/P+u/DcPQ8uXL5efnpwoVKkiS9uzZo4iIiFQF83Xr1tk8nzt3rnLkyKE9e/aoevXqKR4HAAAAAIC0JsWBe86cOdZ/Dxw4UK1bt9aMGTPk6uoqSYqPj9fbb78tX19fu4uJjIyUJGXJkiXZ5TExMYqJibE+j4qKsntdAAAAAACYya5zuGfPnq333nvPGrYlydXVVX379tXs2bPtKiQhIUG9e/dWlSpVVKpUqWT7jBs3Tn5+ftZHvnz57FoXAAAAAABmsytwx8XF6ejRo0najx49qoSEBLsKeeedd/Tnn3/q22+/vW+fwYMHKzIy0vo4e/asXesCAAAAAMBsKT6k/F6dOnVSly5ddPLkST3//POSpF27dumjjz5Sp06dUj3eu+++qzVr1mjbtm3Kmzfvfft5eHjIw8PDnpIBAAAAAHis7ArcEydOVEBAgCZNmqTw8HBJUq5cudS/f3/169cvxeMYhqEePXpo+fLlCg0NVXBwsD3lAAAAAACQ5tgVuF1cXDRgwAANGDDAeuEyey6W9s477+h///ufVq5cKR8fH50/f17S3SuiZ8yY0Z7SAAAAAABIE+w6h1u6ex73xo0btWjRIlksFknSv//+qxs3bqR4jOnTpysyMlI1atRQrly5rI/FixfbWxYAAAAAAGmCXTPcp0+fVr169XTmzBnFxMSoTp068vHx0fjx4xUTE6MZM2akaBzDMOxZPQAAAAAAaZ5dM9y9evVShQoVdO3aNZtDv19++WVt2rTJYcUBAAAAAJBe2TXDvX37du3cuVPu7u427UFBQTp37pxDCgMAAAAAID2za4Y7ISFB8fHxSdr/+ecf+fj4PHJRAAAAAACkd3YF7pdeeklTpkyxPrdYLLpx44aGDx+uBg0aOKo2AAAAAADSLbsOKZ80aZLq1q2rEiVK6Pbt23rttdd04sQJZcuWTYsWLXJ0jQAAAAAApDt2Be68efPqwIEDWrx4sQ4cOKAbN26oS5cuatu2LffPBgAAAABAdgZuSXJzc1Pbtm3Vtm1bR9YDAAAAAMATwa5zuF1dXVWzZk1dvXrVpv3ChQtydXV1SGEAAAAAAKRndgVuwzAUExOjChUq6NChQ0mWAQAAAADwtLMrcFssFi1dulSNGzdWpUqVtHLlSptlAAAAAAA87eye4XZ1ddXUqVM1ceJEtWnTRqNHj2Z2GwAAAACA/8/ui6Yl6tatmwoXLqxWrVpp27ZtjqgJAAAAAIB0z64Z7sDAQJuLo9WsWVO//vqrzp4967DCAAAAAABIz+ya4Q4LC0vSVqhQIe3bt08XLlx45KIAAAAAAEjv7Jrhvh9PT08FBgY6ckgAAAAAANKlFM9wZ8mSRcePH1e2bNmUOXPmB16N/L/35wYAAAAA4GmT4sA9efJk+fj4SJKmTJliVj0AAAAAADwRUhy4O3TokOy/AQAAAABAUikO3FFRUSke1NfX165iAAAAAAB4UqQ4cPv7+z/wvG1JMgxDFotF8fHxj1wYAAAAAADpWYoD95YtW8ysAwAAAACAJ0qKA3dISIiZdQAAAAAA8ERJceBOTnR0tM6cOaM7d+7YtJcpU+aRigIAAAAAIL2zK3BfunRJnTp10o8//pjscs7hBgAAAAA87VzseVHv3r0VERGhXbt2KWPGjFq3bp3mzZunwoULa9WqVY6uEQAAAACAdMeuGe7Nmzdr5cqVqlChglxcXBQYGKg6derI19dX48aNU8OGDR1dJwAAAAAA6YpdM9w3b95Ujhw5JEmZM2fWpUuXJEmlS5fW3r17HVcdAAAAAADplF2Bu2jRojp27JgkqWzZsvryyy917tw5zZgxQ7ly5XJogQAAAAAApEd2HVLeq1cvhYeHS5KGDx+uevXqaeHChXJ3d9fcuXMdWR8AAAAAAOmSXYG7Xbt21n+XL19ep0+f1tGjR5U/f35ly5bNYcUBAAAAAJBePdJ9uBNlypRJzz77rCOGAgAAAADgiWBX4DYMQ99//722bNmiixcvKiEhwWb5smXLHFIcAAAAAADplV2Bu3fv3vryyy9Vs2ZN5cyZUxaLxdF1AQAAAACQrtkVuBcsWKBly5apQYMGjq4HAAAAAIAngl23BfPz81OBAgUcXQsAAAAAAE8MuwL3iBEjNHLkSN26dcvR9QAAAAAA8ESw65Dy1q1ba9GiRcqRI4eCgoKUIUMGm+V79+51SHEAAAAAAKRXdgXuDh06aM+ePWrXrh0XTQMAAAAAIBl2Be4ffvhB69evV9WqVR1dDwAAAAAATwS7zuHOly+ffH19HV0LAAAAAABPDLsC96RJkzRgwACdOnXKweUAAAAAAPBksOuQ8nbt2ik6OloFCxZUpkyZklw07erVqw4pDgAAAACA9MquwD1lyhQHlwEAAAAAwJMl1YE7NjZWW7du1QcffKDg4GAzagIAAAAAIN1L9TncGTJk0NKlS82oBQAAAACAJ4ZdF01r1qyZVqxY4eBSAAAAAAB4cth1DnfhwoX14YcfaseOHSpfvry8vLxslvfs2dMhxQEAAAAAkF7ZFbi//vpr+fv7a8+ePdqzZ4/NMovFQuAGAAAAADz17ArcYWFhjq4DAAAAAIAnil3ncN/LMAwZhuGIWgAAAAAAeGLYHbjnz5+v0qVLK2PGjMqYMaPKlCmjBQsWOLI2AAAAAADSLbsOKf/kk0/0wQcf6N1331WVKlUkST///LPeeustXb58WX369HFokQAAAAAApDd2Be5p06Zp+vTpat++vbWtSZMmKlmypEaMGEHgBgAAAAA89ew6pDw8PFyVK1dO0l65cmWFh4c/clEAAAAAAKR3dgXuQoUK6bvvvkvSvnjxYhUuXPiRiwIAAAAAIL2z65DykSNHqk2bNtq2bZv1HO4dO3Zo06ZNyQZxAAAAAACeNnbNcLdo0UK7du1StmzZtGLFCq1YsULZsmXT7t279fLLLzu6RgAAAAAA0h27ZrglqXz58vrmm28cWQsAAAAAAE8Mu+/DDQAAAAAA7i9VM9wuLi6yWCwP7GOxWBQXF/dIRQEAAAAAkN6lKnAvX778vst++eUXffrpp0pISHjkogAAAAAASO9SFbibNm2apO3YsWMaNGiQVq9erbZt2+rDDz90WHEAAAAAAKRXdp/D/e+//6pr164qXbq04uLitH//fs2bN0+BgYGOrA8AAAAAgHQp1YE7MjJSAwcOVKFChXTo0CFt2rRJq1evVqlSpcyoDwAAAACAdClVh5RPmDBB48ePV0BAgBYtWpTsIeYAAAAAAECyGIZhpLSzi4uLMmbMqNq1a8vV1fW+/ZYtW+aQ4h4mKipKfn5+ioyMlK+v72NZJwAA9qgyrYrDxtrRY4fDxgIAAKmTmhyaqhnu9u3bP/S2YAAAAAAAIJWBe+7cuSaVAQAAAADAk8Xuq5QDAAAAAID7I3ADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmcHN2AQAAOFr5/vMdMs6ej9s7ZBwAAPB0YoYbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMIFTA/e2bdvUuHFj5c6dWxaLRStWrHBmOQAAAAAAOIxTA/fNmzdVtmxZff75584sAwAAAAAAh3Nz5srr16+v+vXrO7MEAAAAAABM4dTAnVoxMTGKiYmxPo+KinJiNQAAAAAA3F+6umjauHHj5OfnZ33ky5fP2SUBAAAAAJCsdBW4Bw8erMjISOvj7Nmzzi4JAAAAAIBkpatDyj08POTh4eHsMgAAAAAAeKh0NcMNAAAAAEB64dQZ7hs3buivv/6yPg8LC9P+/fuVJUsW5c+f34mVAQAAAADwaJwauH///XfVrFnT+rxv376SpA4dOmju3LlOqgoAAAAAgEfn1MBdo0YNGYbhzBIAAAAAADAF53ADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJnBzdgEAAKRVZz4s7bjBMvs6biwAAJAuELjTuCrTqjhsrB09djhsLAAAAADAg3FIOQAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJnBzdgFpSfn+8x0yzp6P2ztkHAAAAABA+sUMNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYII0Ebg///xzBQUFydPTUxUrVtTu3budXRIAAAAAAI/E6YF78eLF6tu3r4YPH669e/eqbNmyqlu3ri5evOjs0gAAAAAAsJvTA/cnn3yirl27qlOnTipRooRmzJihTJkyafbs2c4uDQAAAAAAuzk1cN+5c0d79uxR7dq1rW0uLi6qXbu2fvnllyT9Y2JiFBUVZfMAAAAAACAtcnPmyi9fvqz4+HjlzJnTpj1nzpw6evRokv7jxo3TyJEjTatnz8ftHTLOmQ9LO2QcSdox7KDDxtpaPcQh4xx87j2HjCNJkRfmOWSc5sXfdsg4klR86IsOGystKt9/vkPGWe7zsUPGkaT8aXA/D9m21SHjwDkc9ftcctQ40g6HjcTv85RaHLvNYWONGDHCYWM5Cr/PUyYt7udDv/neIeM8DdjPU4b9PO1y+iHlqTF48GBFRkZaH2fPnnV2SQAAAAAAJMupM9zZsmWTq6urLly4YNN+4cIFBQQEJOnv4eEhDw+Px1UeAAAAAAB2c+oMt7u7u8qXL69NmzZZ2xISErRp0yZVqlTJiZUBAAAAAPBonDrDLUl9+/ZVhw4dVKFCBT3//POaMmWKbt68qU6dOjm7NAAAAAAA7Ob0wN2mTRtdunRJw4YN0/nz51WuXDmtW7cuyYXUAAAAAABIT5weuCXp3Xff1bvvvuvsMhzGkVcuBAAAAACkT+nqKuUAAAAAAKQXBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEbs4uAAAAwAwjRoxwdgkAgKccM9wAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACdycXQCebkO/+d4h4xwZs9kh4zwN9nzc3iHjnPnwY4eMA+DJwO9zAGbg7xakdxbDMAxnF2GvqKgo+fn5KTIyUr6+vs4uBwAAAADwhEtNDuWQcgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABG7OLuBRGIYhSYqKinJyJQAAAACAp0Fi/kzMow+SrgP39evXJUn58uVzciUAAAAAgKfJ9evX5efn98A+FiMlsTyNSkhI0L///isfHx9ZLBZnl/NUiIqKUr58+XT27Fn5+vo6uxzAFOzneBqwn+NpwH6OpwH7+eNnGIauX7+u3Llzy8XlwWdpp+sZbhcXF+XNm9fZZTyVfH19+UDjicd+jqcB+zmeBuzneBqwnz9eD5vZTsRF0wAAAAAAMAGBGwAAAAAAExC4kSoeHh4aPny4PDw8nF0KYBr2czwN2M/xNGA/x9OA/TxtS9cXTQMAAAAAIK1ihhsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbpklISHB2CQAAAADgNARumOKjjz7Su+++q9jYWGeXAgAAAABOQeCGKfLmzasZM2bogw8+IHQDAJLFnUnxJEncn9mvAdyLwA2HMwxD7dq105IlS/TJJ5/o/fff1+3bt51dFgAgDTl8+LAsFoskafbs2fr999+dXBHwaK5du6aYmBhdv35dEsEbTzb275QjcMOh7v3whYSEaPz48fr44481ceJE3blzx4mVAWkL1zjA0+yPP/5Qw4YNNXnyZPXv319vv/22smTJ4uyyALstWLBATZs21bPPPqtGjRppxYoV1i+UgCfFDz/8oFWrVkmSLBYLoTuF3JxdAJ4sif+5LF26VP369VOtWrWUP39+DRs2TNevX9fo0aOVIUMGJ1cJOFdCQoJcXO5+37ly5Ur99ddfypEjh8qXL68SJUo4uTrAfFmyZFHnzp01evRoxcfH6/DhwypQoIDi4uLk5safJkhfli1bpm7dumnixImKjo5WWFiYmjdvrsGDB6tv377KmjWrs0sEHtn333+v1q1bK0+ePIqLi1Pz5s2toZsvlx6M/9XgcMeOHdMbb7yhcePGqXPnzoqMjNSKFSv09ttvS5JGjRold3d3J1cJOIdhGNawPXDgQM2fP18lS5ZUeHi4AgMD1a1bNzVr1sy5RQImy5s3r/LkyaPr168rd+7cWrlypfr06SM3NzfFx8fL1dXV2SUCKbZ27Vq99tpreuedd6xtlStXVvv27RUbG6sPP/xQnp6eTqwQeDT79u3TxIkT9cYbbyg+Pl7vv/++DMNQixYtCN0pQOCGw0VFRSlLliyqW7eu3N3dlT17dnXt2lXx8fF6++235e/vr969eytjxozOLhV47BL/Q/r000/17bffavny5XrhhRc0ZcoUDRo0yHoOYJs2bSSJ/8TwxEg8siNxn65evbq2b9+u9evXa8aMGbp9+7YGDx5M2Ea6YhiGwsPDlTt3bkn/d7pQu3bt5ObmprZt26po0aLq0qULv8+Rbrm6uiowMFC9evWSJE2ePFkffPCBJBG6U4BzuOFwnp6eCgsL099//y3p//7zadCggXLkyKGhQ4fqo48+cmaJgFPduHFDhw8f1nvvvacXXnhBK1as0IgRI9S7d295enpq7NixWr58uSTxnxeeCPeeRvHnn3/qt99+U6ZMmVSxYkW98847atmypebNm6cJEyZYXzNu3DgdOHDAWSUDD5R47mril0dLlizR4cOHrV8qGYahV155RcOHD9ewYcN0+vRpfp8j3Un8G75MmTKaOHGiSpYsqZIlS+rdd99VpUqV9MEHH+j777+XdPezcOvWLWeWm2ZZDM52xyNI/Dbrv4cAvvbaazpz5ow++eQTPf/885Luhow+ffqocuXKqlSpkooVK+assgGnO378uLy8vBQZGanGjRurR48e6t27txYtWqSuXbsqT548mjp1qurVq+fsUoFHcu+sx9ChQ7VkyRIlJCQoNjZWzZs3V//+/eXi4qLPP/9cixYtUpUqVXT58mX9+eef+vvvv5nxRpoWFxenGzduqHXr1nJ3d9fUqVNVsGBB6/UIduzYoRYtWmjdunUqV66cs8sF7JK4P9/79/6BAwf06aef6pdfftGYMWPUpEkTvfjiixowYIAaNmzo5IrTFma4YbfEP6I2bdqkgQMHqm/fvjp8+LAk6e2335afn5969uypNWvW6MCBAxo9erRCQ0P18ssvE7bx1IiPj0+2vUCBAsqTJ4+2b9+uXLlyqUuXLpLuHrYVEhKiLl266KWXXnqcpQKmSAzbn3zyib7++mt9+eWX+uuvv/Tiiy9q/vz5On36tAICAvTOO++oX79+OnfunHx9ffXXX3/J1dWVK/ojzZozZ44aNmwof39/denSRVFRUerXr5+OHTtmvfhf3rx55e/vz+1RkW7NnTtX9evXV1xcnFxdXa1Hd5QtW1Y9e/ZUlSpVNGTIEBUrVkwnT57kb5dkELhhN4vFog0bNqhu3bo6deqUFi5cqDZt2mjevHmqWrWq3n//fRUrVkxNmzZVy5Yt9c033+i7776Tv7+/s0sHTPfvv/9KkvWb4E8//VTvvPOOunTpovDwcOsfY4Zh6PLly/r9998VGxurhQsXqlKlStZZv/sFdiC9MAxDcXFx2r59uwYPHqyaNWtq9erVWrZsmcaMGaNKlSopJiZGOXPmVPfu3bVx40b973//U4YMGRQXF2c9FB1ISwzDUGxsrK5cuaLw8HC1adNGHTt21M2bN9WgQQPNnz9f3333nd566y35+flZj/YD0hPDMHTnzh1FRkbqn3/+sbbdG7pfffVVnTp1StmzZ9epU6esv7vxfzikHKmWOLN98eJFjRw5UmXLllW3bt0k3T2U/OjRo3r33XfVvn17ubm56dixYzIMQ5kzZ1bOnDmdXD1gvsGDB2vGjBnatWuXihQpohEjRmjq1KmqX7++fv/9d926dUsLFy5U9erVtWfPHvXr109///233Nzc5OXlpb179ypDhgxcgARPhISEBN25c0e1atXS559/ruvXr6tBgwaaOHGi3nzzTcXExGjmzJmqUKGCXnjhBes+z/6PtCS5/TEyMlJly5ZVo0aN9Nlnn0mSfv31Vy1cuFCLFy9WUFCQsmfPrhUrVihDhgxcgR9p3oP286ZNm2rq1Kk2yyIiItSyZUuFh4frwIEDcnNz4/aOyeBrY6SaxWLR7t271bx5c+3atUuFCxe2Lps3b56KFy+uadOmac6cObpx44aKFi2qYsWKEbbx1OjXr59KlCihpk2b6tChQzpz5ow2bNig//3vfzp69KieffZZtWrVSqGhoSpfvrymTJmiiRMnasCAAdq3b5/122HCBtKj/x4C7uLiIk9PTwUGBqp58+aqX7++Pv/8c7355puS7v4xt3TpUv3xxx82+zz7P9KS5PZHPz8/ffzxx9qyZYt++eUXSdILL7ygadOm6eDBg9qyZYvWrFlj/Z1O2EZa96D9fOPGjdq9e7fNsn/++UdZs2bV/v37CdsPQOCGXYoVKyaLxaK9e/dq//791kNLMmTIoPnz56tMmTIaN26c9cqFwNMkW7ZsWrNmjXx9fVW/fn0dOHBA3t7eku6Gj5UrV6pSpUpq3bq1tm7dqnLlyql169Z66623rBcl4T8spEf3Xo38jz/+0JEjRxQZGSnp7n3nc+TIoQIFCqh9+/YyDEPXrl1Tx44dFRcXpzfeeMOZpQMPNXbsWL366qv64YcfrG1ly5aVu7u7fvvtN0myHkqbI0cOeXl5yWKxKCEhgd/pSDcetJ//+uuvkv7vi9VSpUpp8eLF1i+V2M+TR+BGivz3zANfX1+tXbtWL774ohYsWKDVq1dbzzV1dXXV119/rTp16igkJMQZ5QJOlzlzZv34448qXbq09u3bp0uXLkn6v/+kVqxYoapVq6pmzZrat2+fzWuZBUF6lRi2BwwYoObNm+uZZ57RW2+9pR9//NF6gZ3Y2FjlzZtXISEhqlevni5cuKAtW7bI1dWVaxYgTStXrpxOnz6tESNGqGrVqtq5c6eKFCmi3r17a9iwYTpz5ow1cNw7U8h1CJCepGQ/T7z93b0I2/fHOdx4qMTzOXbv3q1ffvlFt2/fVrly5VS3bl1dv35dTZo00a1btzRkyBA1bNiQsICn0r0ze/e6du2aGjRooKtXr2rVqlUqWrSozTlSgwYN0pgxY/jcIF27d/9fu3atevXqpenTp+vKlSuaNWuW4uPj1bt3bzVp0kTnzp3T7Nmz5erqqly5cql9+/ZydXVldgTpws2bN3XgwAF99NFHOn78uPLmzauWLVtq4cKFaty4sfr168fvc6R77OeOReBGiixdulRvv/22nnnmGfn5+WnJkiUaM2aMBg8ebA3dsbGx6tWrl5o3b86HEE+Ve8PG6tWrde7cOQUFBalQoUIqVKiQIiMjVadOHUVFRWnlypVJQrckLqaDJ8KGDRu0atUqFShQQH379pV099Dy4cOHKyIiQm+//bZatWqV5HXs/0gP/vvF6urVq7V161Z9/vnniomJUadOnfT11187sULg0bGfOx6BG8m6NwwcPnxYderU0fvvv6/u3bvr7NmzCg4OVt++fTVu3Di5uroqKipK1atXV/bs2bV8+XLr+arA02TgwIH64osvVKBAAZ05c0alS5dW586d1bFjR0VGRqpu3bq6ceOGFi9erJIlSzq7XMChTp06pYYNGyosLExvvfWWPvnkE+uyxNB98+ZNvfLKK+rcubMTKwUezX8Dyb59+7R+/Xq99957HKWBJwb7ueNwUglsrF69WpKsF/mQpEuXLqlYsWLq3r27wsLCVLlyZXXt2lUTJkyQq6urjh49Kl9fX/3888+aNWsWYRtPjXvPN/3tt9+0ceNGrV+/XgcOHNBPP/2kokWLatq0afr222/l5+enH3/8Ubdv39aYMWOcWDXgGP/9vj4oKEgzZszQM888o23btumnn36yLitTpow+/PBD3b59W/v373/MlQIp8999+n5zUveGEMMw9Mwzz2jQoEHWqzQDaRn7+eNH4IbVyZMn1bRpU7Vr107S/33Qbt26pYsXL2r37t2qWbOmGjRoYL3f5M8//6yRI0fq9OnT8vb2VmBgoNPqBx6Xw4cPS/q/i5uNHz9eM2bMUPHixfXCCy9IkipUqKDevXsrODhYK1asUGxsrDJnzqx9+/ZpwYIFTqsdcISEhATrUVDnz59XdHS04uPjVa1aNY0ePVoeHh6aMWOGNm/ebH1N6dKlNWfOHE2ZMsVJVQPJSwwcifv033//bfP8Qf7bh5k/pFXs585D4IZVcHCwVq1apXXr1qlDhw7W9kKFCil79ux66aWXVK1aNX355ZfWoLFy5UpFRkbKx8fHWWUDj1WfPn3UsWNHbdu2zdp2/fp1zZkzRzt37tS5c+es7SVLllSLFi20dOlSnT17VpLk4+PD1ZiR7iV+ITty5EjVrl1btWrV0nvvvadbt26pZs2aGjlypM6fP6/PP/9cW7Zssb6uYMGCcnFxSXKvbsCZ7j2qb9y4cXr//fdT9Lp7ZwY5QxNpHfu58xC4YeXi4qL69etr3rx5Wr58udq3by/pbuCuV6+ePDw8lCdPHh0+fFhHjhzRgAED9PXXX2vChAnKkiWLk6sHHo+uXbsqJiZG48ePV2hoqCRp9OjRmjp1qk6dOqW5c+fqypUr1v4FCxZUoUKFkhx+xQWikB7dG5S/+eYbffbZZ+rbt6+effZZ/fLLL2ratKmio6NVu3ZtjRw5UpcuXdKIESO0d+9em3G4TRLSgiFDhliP2EvcJ69evarixYtL0gO/GLr3WjerV6+2+WIJSEvYz52P//Eg6f++sYqKilLDhg21aNEirVq1Sm3btpV0956qXbp00ZYtW1S2bFm9/vrrWrdunTZv3qxSpUo5s3TgsYmPj1eJEiW0ZMkSnTlzRhMmTLAeMtujRw+NHj1aw4cP17hx47R161YdOnRIw4cPl4+PjwoVKuTk6oFHc+8FdNasWaN///1Xn376qTp37qxPP/1U/fv317Vr19SkSRNr6B4wYIBKlCihcuXKObd44D/++ecfHTx4UN9++63mzJljbT916pT1C9L7fTF0bwiZMWOGmjZtyiG2SJPYz9MIA0+1hIQE6783btxo1KtXz4iNjTXu3LljrFmzxvDz8zNee+01a5/Tp08boaGhxtGjR42LFy86o2TAqeLi4gzDMIxjx44ZpUqVMurXr29s2rTJunzs2LGGxWIxLBaL0aFDB6N58+bGnTt3DMMwjPj4eKfUDDyK+vXrGwcOHLA+/+2334wiRYoYvr6+xvLly63td+7cMZYuXWo899xzxksvvWTcuHHDZhz2f6Q1hw8fNjp06GBUrlzZmDVrlmEYhtG0aVNj5MiRhmEkv8/GxsZa/z1jxgzD39/f+P777x9PwYAd2M+djxnup9Qnn3yilStX2pzPsXv3bnl7e8vNzU0ZMmRQgwYNtHDhQv3www/Wme78+fMrJCRERYsWVfbs2Z25CcBjc+/hVomHghcpUsR6bvbHH39snekePHiwpk2bJkkqX768Zs+erQwZMig+Pp7DaJHunD59WmXKlFGxYsWsbQULFtS7776rLFmyaNasWdb2DBkyqHHjxho8eLCOHj2qIUOGSPq/I6jY/5FWJP5OL168uAYOHKiCBQtq1qxZWrhwoYKCgpQzZ06dPHlSp0+f1oULF3T+/Hn98ssvkv7vYlFffvmlBgwYoFmzZqlFixZO2xbgftjP0xBnJ348fteuXTNeeeUVw8vLy1i3bp21vWfPnkbbtm1t+sbHxxtr1qwxsmXLZjRr1uxxlwo43b3f/B45csT45ZdfjKioKOPWrVuGYRjG0aNHjVKlShn16tWzmekeNWqUYbFYjClTphjXrl173GUDDjdp0iRjy5YthmEYRlRUlPHFF18YpUuXNjp27GjT786dO0ZoaKj1aBAgLbn3d/qFCxcMw7h7xNLrr79uVKxY0bBYLIavr69RuHBhI2fOnEaOHDmMHDlyGE2aNLEeFfjFF18Yfn5+zPghzWI/T1sI3E+pEydOGF27djX8/f2N1atXG4ZhGH369DHeeOMNwzAMa5gwjLuHlSxbtszInz+/ce7cOafUCzjDvadcDB061ChSpIiRNWtWo2zZssbkyZON8+fPG4ZxN4iXLl3aaNiwobF27VrrayZMmGBYLBbjiy++sBkLSG8uX75sNGzY0PD39zd27NhhGIZhREREGJ999plRrlw5o1OnTsm+jtCNtOTeEPLhhx8azZs3N/bs2WMYhmEcOnTIeP31140XXnjB6NmzpxEZGWlcuHDBOHDggHH8+HHrvvz3338bQUFBxpIlS5yyDcDDsJ+nPQTup8y9H8KdO3caAwcONPz9/Y3t27cbU6dONfr372/cvn3biIiIsPY7c+aMYRhGkvPxgKfFqFGjjFy5chk//vijYRiG0aRJEyMwMNAYOnSoER4ebhjG3ZnuHDlyGH379rUJGZMnTzYOHz7slLoBeyX3BdHBgweNdv+vvTuPq7rO9zj+OiAgCLivqORuoOOGZkoyWV7GxjVNKxLDZRwjFUpAvIpg7qnFwJgo4pJeNbdBGXccc00dAklJpXJrXLBCzAUUOPcPH/wuZN6pe0POgffz8eDxOPyW8/ge/fA7v893+fzeeMNcq1Yt86FDh8xm8/8k3Z06dTL379//CbdS5P8mPDzcXLduXfPq1avN3377rbE9IyPD7O/vb+7atat55cqVj5xXdG0vuu6LWDLFueUwmc16oFpFYS72wPu9e/cSEhJCcHAwR44cYd26ddjb2+Pq6kphYSG5ubk4Oztz//59nJycOHz4MNWrVy/jTyDy5GVkZDBmzBhCQ0Pp27cve/bsYdCgQTzzzDOcO3eO4cOH89Zbb1GvXj0uXbqEm5sbtra25Ofnq5qnWKXi1cjNDzvmjd9PnTrFrFmz2LNnD3/729/o3r07OTk5LF68mDNnzrBs2TKt1RaLlpKSwpAhQ1iyZAkvvPCCsb0o7s+cOcPcuXM5fPgwCxcupE+fPsYx5mJVm0UsmeLcsuhusIIonmyvW7eO119/HYAqVaowY8YMKleuTHx8PK+99hrjx4/nwoULPHjwAJPJRMuWLZVsS4XVoEEDxo8fT8+ePTl48CDDhg1j/vz5/OlPf8LX15dVq1aRnZ3NtGnTaNy4MfDw8WFKtsUaFU+2Fy9ezIEDBzCZTHTp0oUJEybQpk0b/vM//xOz2czLL7/Mli1b6NatG2+//TZOTk5GIU4l3WKpvv/+e8xmM+3atTO2FXUqPXjwgNatWzNx4kSaNWtG7969S5yrJESsheLcsuiOsAIxmUxs3LiR119/nc2bN7N+/XpOnz7NoEGDGD16NA8ePGDlypUMHjy4RG+YSEVWrVo1/vCHP1ClShVWrlzJyy+/zMiRIwF46qmnuHz5MoWFhdSsWdM4p6iSuYi1KUqUJ02axMcff8zgwYNxcXEhLCyMGzduMGPGDDw9PZkyZQq2trZ4e3tz8uRJ2rZtC1BiNFzEEjk4OHDlyhUuXLhArVq1jFkcJpOJ5ORkqlWrRteuXfH09AQedqDqmi7WRnFuWfStWEGYTCa2bNnCkCFDWLZsGQMGDOD27dtcuXIFAE9PT9555x2GDh2Kj48Pu3fvLuMWi1gOFxcXAH744Qfu3LlDfn4+ADk5OSxYsIDY2FhMJhNaoSPlwdq1a9m4cSObNm0iOjoaLy8vCgoKmDVrFmPHjgUefmdMnDiRiIgIPDw8jHM1MiKWovjjHItzd3ena9euLFy4kPT0dEwmkzHqN2/ePLZt21bieCUhYskU59ZBa7grkB07dpCdnW1MJx8/fjw3b95k1apVxjFJSUmkpKTw6quv0qpVq7JqqohFCgkJYdeuXTRv3pyrV6+Sk5PDF198ga2trabRSrlQUFBAXFwcubm5vPPOO/z973/njTfeYMaMGTg6OjJq1CjCw8OZOXNmifNUs0AsSfHr8Y4dO7h9+zZ5eXm88cYbAKxYsYKlS5fi6OiIn58ftra2fPzxx2RlZZGSkqJYFqugOLceSrgroKIpJbNmzWLr1q0cPnwYW1tbpk+fzvbt20lKSqJWrVpl3UwRi1G8gMjkyZO5fv06NjY2fPTRR1SqVElTscRq/VxxnFu3bnHjxg2cnZ3x9fXFz8+PkJAQTp06hY+PD9nZ2cyaNYtJkyaVUatFHq94TIeHh7N27VqqV6/OjRs3aNu2LR9//DG1atUiMTGRxMRENmzYQJs2bahfvz7r16/Hzs5O13SxeIpz66KEuwIq+iP961//SkxMDGfOnCEqKooZM2Zw7NgxOnbsWNZNFLE4j/ti0sieWKvioyNZWVnUrFmzRIwfO3aM4cOHs2vXLtzd3fn666+ZNWsWw4YN47nnntONmli0+fPns2DBArZt24aXlxdLly5lzJgx+Pj4sG7dOurWrQs8jH0nJyeqVKmCyWTSNV2siuLcOmj+YwXWpk0batSowdtvv83s2bP57LPPlGxLhfG4vsbHbS9KLn66XkpfWGKtipLtyMhI+vfvT+fOnVm9ejXXr18HHtYuOHfuHGvWrOHLL79k3Lhx3LhxAx8fH+PRdyKWoqCgwHh9/fp1Tp06RUxMDF5eXiQmJhISEsL06dO5ePEifn5+XL58GYA6derg7Oxs1OHQNV0smeLcOmmEuwI7duwYzz77LLa2thw/fpwOHTqUdZNEnojiI3sZGRnY2Nhgb29P06ZNH9lfXPEpXOfOnaN+/fpGQTURa7Ry5UrCw8OJiopi+/btZGZm8sc//pHAwEAaN27M/PnzCQ8P56mnnqJatWocOXIEOzs7PadVLNa5c+do2bIlW7Zswdvbm4sXL/LKK68wceJEAgMDiY6OJjg4mHbt2rF7925q165d1k0W+dUU59ZFI9wVWPv27Zk+fTqnTp1Ssi0VRvHHFkVERPD666/z+9//noCAAGJiYoCHI38/HckunmDExMQwdOhQsrOzn2zjRf6ffhrXeXl5REREMHr0aLZs2YKfnx979uwhJiaG69evM3HiRL788ktWr17NsWPHsLOzIz8/X8m2WIwtW7Ywbdo0AIKCgggLCyM/P5+BAwdSu3ZtDh48iIeHh1Ew1sXFhZEjR+Lp6UmNGjXKsukiv5ji3LppPkEF5uDgQHh4uNbhSYVSlChERUWxePFi/uu//gs3Nzfmzp3LhAkTuHPnDpMmTTKSbhsbmxLJdlxcHBEREXz00Uc0bty4LD+KyK9SvLNpzZo1XL9+ndTUVHx9fY1jwsPDAdiwYQMmk4mxY8fSvHlzmjdvDjxM2DUVUSxFXl4eX331FXPmzOHTTz8lJSWFo0ePlojRc+fOcfHiRapWrcqPP/5IYmIiv//97wkODgb0/GGxfIrzcsAsIlIBFBYWGq//+c9/mrt06WLev3+/2Ww2m3fu3Gl2cXExDxw40FylShXzvHnzjGMfPHhgvF68eLHZ1dXVvGnTpifXcJHfQEFBgfE6JCTE7Orqam7Tpo3Z1tbW3LVrV/P58+dLHD9nzhyzm5ubOSYm5gm3VOTXyc3NNXfr1s1sMpnMgYGBxvb8/Hyz2Ww2f/nll+aaNWua3d3dzS1btjS3adOmxHVdxBoozq2buqlFpNwrvib7zJkz/O53v2PAgAF07tyZffv28eabbzJ//nyGDBnC4MGDCQsLMx59VNSDHBcXR2hoKAkJCbz88stl+XFEfrWi+D937hzfffcd+/bto3379sTHx7Nq1SqmTJnCzJkzcXd3ByAsLIwGDRoY0xNFLEnxa/qDBw/o2bMnXbp0YeXKldSuXZtp06Zha2vL/fv3ad26NZ999hnr16/HycmJcePG6XGOYhUU5+WHiqaJSLlm/smzKj/77DMSExOpXLky9vb2jBw5EmdnZ95//33s7e0JDAwkPT2dqlWrsm3bNkwmExs2bMDf3581a9Yo2RartX79eiZPnkz9+vXZtm0b1atXBx52Jq1evRp3d3dmzZr1yFIJ3bCJJSmehGzYsAE3Nzc6duxIYWEhixYtYsaMGQQHBxvrXeFhcUwPDw/jd8W0WDrFefmiomkiUq4VJdvHjx/n0KFDzJkzB1dXV+zt7cnLyyMtLY28vDzs7e25e/cuWVlZBAYGkpSUZJzbvn17tm3bpmRbrFphYSGNGjUiIyODe/fuGdvHjBnDsGHD+Pbbb/nzn/9sPBasiG7YxFKYi9UhmDRpEuPHj+fs2bPcu3cPJycnAgICmDJlCh9++CFTpkzhzp07vPTSS7z//vsl3kcxLZZMcV7+aIRbRMq9RYsWceTIEe7fv8/atWuxtbU1eo/nzp1LTEwMvXr1IjMzk7t373LixAlsbW0xm80lvvhErF1SUhKRkZE4OjqyZs2aEqPZH3zwAZmZmcTGxirmxaLNnTuXhQsXkpSURPv27bGzszP25eXlsWTJEkJCQmjUqBGOjo6kpKSUOEbEGijOyw8l3CJS7s2bN4/JkyfTqFEj9uzZY1RcBvj666/ZuHEj+/btw83Njbi4OOzs7DQVS8qV4ksr/va3vxETE0NhYSGrVq2iUaNGjxz3uGfRi5S1vLw8hg4dyrPPPktYWBiXLl0iIyODuLg4nn76afz8/PD09CQzM5PTp0/Tt29fbG1tyc/PV4V9sRqK8/JFCbeIlCvJyck8//zz2NjYEBUVRb169RgzZgyLFi1i6tSpjBo1inHjxtGwYcPHvoe+sKQ8Kp50b9myhdjYWEwmE/Hx8Tz11FM/e5yIJTGbzdy+fZtevXrRtm1bunfvzpYtW7h9+zYAubm5eHh4EBsbi4ODg3GeOlDFmijOyx91X4tIuXH16lXefvttunbtyvjx45k9ezZdu3YF4K233mLSpEmsWbOGZcuWceXKFeO8wsJC47XZbFayLeWSyWSiqI994MCBjB8/nqysLBYsWPDIcSJlzWw2l7g2F3FxcSEoKIj9+/czadIkOnToQFRUFMnJyTz77LPk5OSUSEJAa1nFcinOKwbdVYpIuVG3bl1WrlyJr68vp06d4tChQ7Rr14579+7h6OhISEgIZrPZWKP65ptv0qhRoxJTZ5VsSHlWlHSbTCb69+9P9erV8fb2LutmiZSQk5ND1apVjetxbGwsmZmZFBQUMG3aNF599VW8vb0xmUy4ubkZ550+fZomTZqUVbNFfhXFecWhEW4RsXpFvcM2NjZUqlSJGjVq0KBBA4KDg8nNzcXR0ZHc3FwAQkNDGTduHJGRkezZs6csmy3ym3jcyrDHbS8+0t2jRw+t1RaLEh4eTqNGjcjKyjJ+j4yM5MKFC+zduxdPT09SU1Np2LAhbm5u5OTksGvXLvr27cvly5f5y1/+Ajw+/kUsgeK8YtG3rIhYteLFnU6dOkW9evVISUlh1apV/Pjjj/Ts2ZO8vDwqV65sfDGFhISwYcMGhg8fXpZNF/l/KywsNEZHMjIyOHPmDN988w2AUfzs3zl37hw//vhjqbZT5Jfy9/enbdu2PPfcc1y+fNlINBITEzlw4ADdunXD19eXzz//HIBvvvmGOXPmYDKZSE1NpVKlShQUFGi2klg0xXnFoqJpImK1iifbU6dOZceOHcycOZNevXpRWFjI/v37mThxIs7Ozuzdu5fKlSszYsQIfHx8jGRbRUbEWhUvbhYREcHWrVu5du0arVq1YvDgwYwbNw7gkYrjxc+LiYkhISGBxMTEEo8IEylLX331FX5+fly6dInGjRuzevVqWrRoAcDNmzcJCAjgyJEj7Nixg44dO5KZmUmzZs2wsbFR0UuxGorzikMj3CJitYqSiClTphAfH09UVBSdO3c2ppb37NmT6Ohobt26RZMmTfDx8SE5ORk/Pz/jPZRsi7UqSpqjoqJYvHgx8+fP5x//+AdNmjRhwoQJzJkzB3j4d1I00l082Y6LiyMiIoKwsDAl21Lmis/GaN68OWvWrMHLy4vU1FTy8vKMY6pVq8by5cvx9vbGy8uLs2fP0qJFCyPOlYSIJVOcV0z63xIRq3b69Gk++eQTVqxYga+vL7du3SIzM5ODBw/SunVrfHx8SExMJCEhgcLCQpKTk42pWEq2xRoVT5pTUlLYvn07GzZswMfHh127drF582YGDBjAjBkzsLW1JSQk5JERkbi4OEJDQ1m+fDkvv/xyWX4ckRKzMI4ePYqbmxvNmzdnwYIFZGdnM2DAAI4cOUKdOnUwm81Uq1aNpUuX0rJlS5o3b268j+oRiCVTnFdcmlIuIlbt5MmTDB06lISEBPLz8/nkk0/Yv38/2dnZ1K5dm/fee4++ffuWOEfJtlir4jdsZ86coVmzZsyfP58JEybw2Wef4efnR1RUFEOGDGHw4MHs27ePSZMmMWvWLOM9ipLthIQEBg0aVFYfRQQoGdOTJ08mKSmJadOm0bt3b5ycnMjMzMTf358bN25w+PBh6tat+8gyCU2vFUunOK/Y1EUiIlbj5wpAtWrVChsbG0aNGsWLL74IwOzZszl69Cj5+flcu3btkXOUbIs1MpvNxs1XeHg4Y8eO5d69e7z77rs4OTmxZs0ahgwZwptvvkm1atVo1aoV3bt3Jz093SgYuGHDBoKCgli+fLmSbbEIRTE9bdo0EhISWLBgAb6+vjg5OQHQokUL1q1bR82aNenRowdXrlx5ZIRPSYhYOsV5xab/ORGxCsV7ek+cOGFUZ+7SpQupqakkJSVRu3ZtvL29jeNcXV1/UZVmEWtQNI38+PHjHDp0iPnz5+Pq6gpAXl4eaWlpdO7cGXt7e+7evUtWVhaBgYG8+uqrxnu0b9+ebdu2GZ1TIpbgm2++YdOmTcTFxdGrVy++++47vvrqK3bv3s1TTz3FkCFD2LhxI88//zzBwcGsX7++rJss8qspzisuJdwiYvGKj+yFhYWxdu1aTCYT169f57XXXmPq1KnGaN2dO3e4efMmo0ePJjc3l1GjRpVl00V+U4sWLeLIkSPUr18fLy8v4GFnlIODA0OGDCEmJoaAgAAyMzO5e/cur7zyCvDwb8hsNtOiRQujCq6IpahUqRL29vbk5OSwd+9e1q5dy+eff05eXh53794lOzubMWPGsH//furXr1/WzRX5P1GcV1yaUi4iFq9oZC82NpaEhATWrVvH7t27SUpKYufOnYSFhXHx4kUA4uPj6d+/P7dv3+bYsWPY2tpSUFBQls0X+c3cvn2bdevWceLECc6fPw/8z1TFokeBXblyhZYtW5aIf5PJpEI7YhF+btZRvXr1qFevHh9++CG+vr64uroyZ84cjhw5QosWLfjhhx8AaNiwoa7pYhUU51KcRrhFxGqcOHGCQYMG0a1bN8xmM61atWLHjh306NGDp59+munTpzN8+HBcXV3x9/fH1tZWRUbEaiUnJ/P8889jY2NDVFQU9erVIzQ0FGdnZ6ZOncrSpUsZN24cDRs2BKBZs2aEhYURFhZmvIfiXyxJ8aVBp0+fxt7eHrPZTMuWLdm8eTPHjh3D2dmZTp06Gefcu3fvkbobqsMhlkxxLj+lKuUiYpGKP/oI4MGDB/Tu3ZuGDRuyYsUKCgsLyc/Px97enoULF7J48WKOHj1KzZo1jXNUjVys1dWrV+nZsycuLi507dqVJUuWcOzYMdq1awfA+++/T3R0NKNHj2b06NE0aNAAKHmj99O/IZGyVDweIyMj2bhxI3fv3sXe3p7w8HCGDx9uHHv79m2jBsHVq1f55z//qY4jsQqKc/k5ml8mIhanqCAaPCwykpWVhZ2dHf7+/mzcuJHk5GRsbGyws7MDwMHBgVq1auHi4lLifZRsi7WqW7cuK1euJDMzk/j4eA4dOkS7du24d+8eACEhIYwfP55ly5axbNkyLl++DJR8PquSbbEkxZOQRYsW8cEHH7Br1y68vLwICAggLi7OOHbVqlX4+/tz//59Tpw4QaVKlTS9VqyC4lx+jhJuEbE4xZ9V2a9fPzw8PIyptCNGjCAwMJCdO3dSWFhITk4OSUlJuLm5GQm4iLUqWvdnY2NDpUqVqFGjBg0aNCA4OJjc3FwcHR3Jzc0FIDQ0lHHjxhEZGcmePXvKstkiv0hKSgqffvop69ato1evXpw7d46///3v/PGPf2Ts2LEsXboUgJEjR/LOO++we/du7OzsyM/PVweqWA3FufyUppSLiMUoPh12w4YNBAcHExsbS3p6Ojt37qRx48Z07dqVf/3rX3zwwQc0bdoUW1tbHBwcOHHiBHZ2dppGK1arePyfOnWKGjVq4OTkREZGBm+99RZOTk784x//wMHBoUScb968mf79++tGTSzOT6/H3377LWvWrCEoKIjDhw/zxhtvEBERwbBhwxg4cCB79+5l7ty5hISEGOdoaZBYOsW5/DtKuEXE4hw4cIBNmzbRrl07RowYAcDWrVuJiYmhevXqjB49mjp16hiFR4YOHaoCaWLViifbU6dOZceOHcycOZNevXpRWFjI/v37mThxIs7Ozuzdu5fKlSszYsQIfHx8jDWBumETS1I8Hr/++mucnZ2pW7euEetvvvkmTk5OREdHY2dnx5///GdSUlKoXLkyBw4cUMepWAXFufwSmlIuIhbl2rVrjBgxghUrVnDr1i1je79+/Rg/fjzff/89ixYtIi8vjz/96U+8/vrrxuMzlGyLtSpKtqdMmUJ8fDxRUVF07tzZmFres2dPoqOjuXXrFk2aNMHHx4fk5GT8/PyM91CyLZbgo48+Ii0tzYjH8PBw+vfvj6enJ6GhoaSkpABw8uRJqlSpgp2dHffu3ePGjRtERkZy8OBBTCYTGg8SS6Y4l19DI9wiYnHS09N55ZVXcHd3Z8GCBbRt29bYt337dsLCwujTpw+zZ88uw1aK/LZOnz7NwIEDiYmJwdfXl1u3bnH9+nUOHjxI69at6datG+fPnychIYHCwkKioqKMIjtKtsUSnD9/nh49etC7d29CQ0ON5RBFS4O2b99OgwYNmDJlCocOHWLixIkEBASQlpbGgwcPOHHiBLa2tloaJBZNcS6/lhJuEbFIJ0+eJCAgAC8vLyZMmICnp6ex78iRIzzzzDNKMqRcOXnyJEOHDiUhIYH8/Hw++eQT9u/fT3Z2NrVr1+a9996jb9++Jc5Rsi2WJi0tjVGjRvHcc89hY2ODh4cHI0eOBCApKYkFCxZQvXp1Xn31Vb777ju2bt2Km5sbixcvxs7OTjEtVkFxLr+GppSLiEVq164dy5YtIyUlhejoaDIyMox93bp1M6aRi1ijomrkxbVq1QobGxtGjRrFiy++CMDs2bM5evQo+fn5XLt27ZFzdMMmlqZ9+/YsWbKEQ4cOsXz5cn788UdjX58+fXjnnXe4desWn3zyCe3atWPnzp0sW7ZMVZrFqijO5ddQwi0iFqtDhw7Ex8eTlpbGtGnTOH/+fIn9+sISa1S8QNqJEyc4duwYx48fp3LlyqSmpvLee++xd+9e/vKXv9C3b18aN26Mq6vrzybpIpaoY8eOJCQkUL16dbZv384XX3xh7Ovbty/BwcGcPXuWbdu2GdvNZrPqcIhVUZzLL6Up5SJi8Y4fP87ixYuJj483EhURa1R8zV5YWBhr167FZDJx/fp1XnvtNaZOnUrTpk0BuHPnDjdv3mT06NFcu3bNWPcnYi20NEgqAsW5/DtKuEXEKhQlKsVHB0WsVWxsLFFRUSQmJlKzZk0uX77MsGHD8Pb2Zv78+bi7uxMdHc3HH3+Mk5MTycnJWvcnVik1NZVRo0bRqVMngoKC8PDwKLFfMS3lgeJc/jdKuEXEaqiip5QXw4cPx9HRkcWLFxtxnZaWRo8ePQgKCmL69OncvHmTLVu24O/vr+fMi1VLTU1lzJgxuLu7M2/ePJo0aVLWTRL5zSnO5XE0TCQiVkPJtlijn/ZrP3jwgH/961/k5uYa++/fv0/79u2JjIxk3bp1fP/991SrVo2AgAA9Z16sXocOHYiNjcXFxQV3d/eybo5IqVCcy+Mo4RYRESklhYWFRkfRN998Q1ZWFnZ2dvj7+7Nx40aSk5OxsbHBzs4OAAcHB2rVqoWLi0uJ99FURLF2Xbp0YdmyZdjY2KgAoJRbinP5OUq4RURESklRvYHJkyfTr18/PDw8CA0NxdnZmREjRhAYGMjOnTspLCwkJyeHpKQk3NzcjARcpDwxmUyYzWbV4ZByTXEuP6X5aSIiIr+x4sX9NmzYwKpVq4iNjSU9PZ2dO3dy6dIlunbtSt++fenTpw9NmzbF1tYWBwcHTpw4YdywaRmFlDeKaakIFOdSnIqmiYiIlJIDBw6wadMm2rVrx4gRIwDYunUrMTExVK9endGjR1OnTh2OHTuGs7MzQ4cOVYE0ERGRckQJt4iISCm4du0a3t7e3Lhxg6ioKIKCgox927Zt48MPP8TV1ZXw8HC6dOli7NPjY0RERMoPLS4QEREpBfXq1WPz5s3Uq1eP7du388UXXxj7+vbty7vvvstXX33Fli1bSpynZFtERKT80Ai3iIhIKTp58iQBAQF4eXkxYcIEPD09jX1HjhzhmWeeUZItIiJSTinhFhERKWWpqamMGjWKTp06ERQUhIeHR4n9mkYuIiJSPinhFhEReQJSU1MZM2YM7u7uzJs3jyZNmpR1k0RERKSUaQ23iIjIE9ChQwdiY2NxcXHB3d29rJsjIiIiT4BGuEVERJ6goudrF39Wt4iIiJRPSrhFRESesKKkW0RERMo3da2LiIg8YUq2RUREKgYl3CIiIiIiIiKlQAm3iIiIiIiISClQwi0iIiIiIiJSCpRwi4iIiIiIiJQCJdwiIiIiIiIipUAJt4iISDl14cIFTCYTaWlpZd0UERGRCkkJt4iIiAUzmUz/609kZGRZN1FEREQeo1JZN0BEREQe7+rVq8br9evXExERwdmzZ41tzs7OZdEsERER+QU0wi0iImLB6tWrZ/xUrVoVk8lk/F6nTh0WLlxIw4YNcXBwoH379uzcufOx71VQUMCIESNo3bo1ly5dAiAxMZGOHTtSuXJlmjZtSlRUFPn5+cY5JpOJ+Ph4Bg4ciJOTEy1atGDr1q3G/uzsbPz8/KhduzaOjo60aNGC5cuXl94/iIiIiBVRwi0iImKloqOjWbBgAfPnzyc9PR1fX1/69etHZmbmI8fm5eXxyiuvkJaWxsGDB2ncuDEHDx7E39+fCRMmkJGRQVxcHCtWrGDmzJklzo2KimLIkCGkp6fz0ksv4efnxw8//ADA1KlTycjIYMeOHXz55Zd89NFH1KpV64l8fhEREUtnMpvN5rJuhIiIiPx7K1asICgoiJs3bwLg5uZGYGAgkydPNo7p0qULnTt35q9//SsXLlygSZMmHDx4kMjISPLy8khKSqJq1aoAvPjii7zwwguEh4cb569evZrQ0FCuXLkCPBzhnjJlCu+99x4Ad+7cwdnZmR07dvCHP/yBfv36UatWLRISEp7Qv4KIiIj10BpuERERK3Tr1i2uXLlC9+7dS2zv3r07J0+eLLHttddeo2HDhuzbtw9HR0dj+8mTJzl8+HCJEe2CggJyc3O5e/cuTk5OAPzud78z9lepUgVXV1eysrIAGDt2LIMGDeLzzz/nP/7jPxgwYADdunX7zT+viIiINdKUchERkXLupZdeIj09naNHj5bYfvv2baKiokhLSzN+vvjiCzIzM6lcubJxnJ2dXYnzTCYThYWFAPTu3ZuLFy8SHBzMlStXeOGFF5g4cWLpfygREREroIRbRETECrm6utKgQQMOHz5cYvvhw4fx8PAosW3s2LHMmTOHfv368emnnxrbO3bsyNmzZ2nevPkjPzY2v/wWoXbt2gwfPpzVq1fz4YcfsmTJkv/fhxMRESknNKVcRETESoWEhDBt2jSaNWtG+/btWb58OWlpaaxZs+aRY8eNG0dBQQF9+vRhx44deHt7ExERQZ8+fWjcuDGDBw/GxsaGkydPcurUKWbMmPGL2hAREUGnTp3w9PQ01og//fTTv/VHFRERsUpKuEVERKzU+PHjycnJ4d133yUrKwsPDw+2bt1KixYtfvb4oKAgCgsLeemll9i5cye+vr4kJSUxffp05s6di52dHa1bt2bUqFG/uA329vaEh4dz4cIFHB0dee6551i3bt1v9RFFRESsmqqUi4iIiIiIiJQCreEWERERERERKQVKuEVERERERERKgRJuERERERERkVKghFtERERERESkFCjhFhERERERESkFSrhFRERERERESoESbhEREREREZFSoIRbREREREREpBQo4RYREREREREpBUq4RUREREREREqBEm4RERERERGRUvDflWCDx5sY4scAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAMGCAYAAAAA9YxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZXklEQVR4nOzdd3gU1f/28XuTkARS6aGEJHQITUHpBASkC1JVkKKCokiVrhQREQUBUUFFmvJFpRcRkBJQVECaSBdDEUMnCRAIJJnnD57sjzUBks0Om4X367r2utgzZ898Jjsbcu+ZYjEMwxAAAAAAAHAoN2cXAAAAAADAg4jADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAFlc3bp1VbduXevzY8eOyWKxaPbs2fe1jq5duyo0NPS+rjMznFlvWu/RqFGjZLFYnFKPo1gsFo0aNcrZZdw3oaGhat68ubPLuK+c9fvFlYSGhqpr167OLgOAiyBwA3B5s2fPlsVikbe3t06dOpVqed26dVWuXDknVPZwSXkf7vVITwjev3+/Ro0apWPHjpled4olS5aoSZMmypMnjzw9PVWwYEG1b99eGzZsuG813Mmnn35KAEqn0NDQdO2H/DwzJzIy0ubnmS1bNhUtWlSdO3fW33//7dB1sf8DcGUezi4AABwlISFB7733nqZOnersUkwVEhKia9euKVu2bM4uxUadOnX01Vdf2bS99NJLevzxx9WjRw9rm6+v7z3H2r9/v0aPHq26deuaPkttGIZeeOEFzZ49W4888oj69++voKAgRUdHa8mSJapfv762bNmiGjVqmFrH3Xz66afKkycPs2rpMHnyZF25csX6fNWqVZo/f74mTZqkPHnyWNud+X4+SHr37q3HHntMN2/e1M6dO/X555/r+++/1969e1WwYEGHrIP9H4ArI3ADeGBUqlRJX3zxhYYOHeqwP/T+yzAMXb9+XdmzZzdl/PRImc3PaooWLaqiRYvatL3yyisqWrSoOnXq5KSq7m3ixImaPXu2+vbtqw8//NDmsO/hw4frq6++kofHg/ffZWJiopKTk+Xp6ensUuxy9epV+fj4pGpv1aqVzfPTp09r/vz5atWqlUudEuEqateurbZt20qSunXrppIlS6p3796aM2eOhg4dmuZr7vTeAcCDiEPKATwwhg0bpqSkJL333nv37JuYmKgxY8aoWLFi8vLyUmhoqIYNG6aEhASbfinncK5Zs0ZVqlRR9uzZ9dlnn1kPp/zuu+80evRoFSpUSH5+fmrbtq1iY2OVkJCgvn37Kl++fPL19VW3bt1SjT1r1iw98cQTypcvn7y8vFS2bFlNmzbtnrX/9xzL/x7aebfDt3/44QfVrl1bPj4+8vPzU7NmzbRv375U61i6dKnKlSsnb29vlStXTkuWLLlnXem1a9cuNWnSRP7+/vL19VX9+vX122+/WZfPnj1b7dq1kyTVq1fPui2RkZGSpGXLlqlZs2YqWLCgvLy8VKxYMY0ZM0ZJSUkZruXatWsaN26cSpcurQkTJqR5jvXzzz+vxx9/3Pr877//Vrt27ZQrVy7lyJFD1apV0/fff5/hdUvp2wdCQ0O1b98+bdq0yfqzuP2c/piYGPXt21fBwcHy8vJS8eLFNX78eCUnJ1v7pOwzEyZM0OTJk637/f79+3Xjxg2NGDFClStXVkBAgHx8fFS7dm1t3LjRrm1K2R+//fZbDRs2TEFBQfLx8dFTTz2lkydPpuq/detWNW7cWAEBAcqRI4ciIiK0ZcsWmz4p57/v379fzz33nHLmzKlatWrZVZ+U/s9/WubMmSMPDw8NHDjQrm3466+/1LVrVwUGBiogIEDdunVTfHz8Pdf7008/qV27dipSpIi8vLwUHBysfv366dq1azb9unbtKl9fX506dUqtWrWSr6+v8ubNqzfeeCPVZyQmJkZdu3ZVQECAAgMD1aVLF8XExNyzlrt54oknJElRUVE2253We5ee9+Fe+396P4/Xr1/XqFGjVLJkSXl7e6tAgQJq3bq1jh49au1z9epVDRgwwPpZKlWqlCZMmCDDMDL1MwHwcHvwvrIH8NAKCwtT586d9cUXX2jIkCF3neV+6aWXNGfOHLVt21YDBgzQ1q1bNW7cOB04cCBVuDx06JCeffZZvfzyy+revbtKlSplXTZu3Dhlz55dQ4YM0V9//aWpU6cqW7ZscnNz06VLlzRq1Cj99ttvmj17tsLCwjRixAjra6dNm6bw8HA99dRT8vDw0IoVK/Tqq68qOTlZr732Wrq3u0yZMqkO5Y6JiVH//v2VL18+a9tXX32lLl26qFGjRho/frzi4+M1bdo01apVS7t27bKG87Vr16pNmzYqW7asxo0bpwsXLqhbt24qXLhwumu6k3379ql27dry9/fXoEGDlC1bNn322WeqW7euNm3apKpVq6pOnTrq3bu3PvroIw0bNkxlypSxbqd0K5D7+vqqf//+8vX11YYNGzRixAjFxcXpgw8+yFA9P//8sy5evKi+ffvK3d39nv3PnDmjGjVqKD4+Xr1791bu3Lk1Z84cPfXUU1q4cKGefvrpDK0/PfvA5MmT9frrr8vX11fDhw+XJOXPn1+SFB8fr4iICJ06dUovv/yyihQpol9++UVDhw5VdHS0Jk+ebLO+WbNm6fr16+rRo4e8vLyUK1cuxcXFacaMGXr22WfVvXt3Xb58WV9++aUaNWqkbdu2qVKlShnaphRjx46VxWLR4MGDdfbsWU2ePFkNGjTQ7t27rUeIbNiwQU2aNFHlypU1cuRIubm5Wb+E+Omnn2y+6JCkdu3aqUSJEnr33XczFYIy8vm/3eeff65XXnlFw4YN0zvvvGPXNrRv315hYWEaN26cdu7cqRkzZihfvnwaP378XWtesGCB4uPj1bNnT+XOnVvbtm3T1KlT9c8//2jBggU2fZOSktSoUSNVrVpVEyZM0Lp16zRx4kQVK1ZMPXv2lHTraJ2WLVvq559/1iuvvKIyZcpoyZIl6tKliz0/UquUAJs7d26b9rTeu/S8D3fb/9P7eUxKSlLz5s21fv16PfPMM+rTp48uX76sH3/8UX/++aeKFSsmwzD01FNPaePGjXrxxRdVqVIlrVmzRgMHDtSpU6c0adKkTP1cADzEDABwcbNmzTIkGdu3bzeOHj1qeHh4GL1797Yuj4iIMMLDw63Pd+/ebUgyXnrpJZtx3njjDUOSsWHDBmtbSEiIIclYvXq1Td+NGzcakoxy5coZN27csLY/++yzhsViMZo0aWLTv3r16kZISIhNW3x8fKptadSokVG0aFGbtoiICCMiIsL6PCoqypBkzJo1K82fR3JystG8eXPD19fX2Ldvn2EYhnH58mUjMDDQ6N69u03f06dPGwEBATbtlSpVMgoUKGDExMRY29auXWtISrUN9+Lj42N06dLF+rxVq1aGp6encfToUWvbv//+a/j5+Rl16tSxti1YsMCQZGzcuDHVmGn93F5++WUjR44cxvXr161tXbp0uWe9U6ZMMSQZS5YsSdf29O3b15Bk/PTTT9a2y5cvG2FhYUZoaKiRlJRkGEba79HIkSON//63m959IDw83GYfSDFmzBjDx8fHOHz4sE37kCFDDHd3d+PEiRM29fj7+xtnz5616ZuYmGgkJCTYtF26dMnInz+/8cILL9i0SzJGjhyZqo7bpXw2ChUqZMTFxVnbv/vuO0OSMWXKFMMwbu2nJUqUMBo1amQkJydb+8XHxxthYWFGw4YNrW0pP7tnn332rutOywcffGBIMqKiogzDyPjnv1mzZoZh3NpXLBaLMWbMGOtye7bhvz/Tp59+2sidO/c9tyOtfWXcuHGGxWIxjh8/bm3r0qWLIcl4++23bfo+8sgjRuXKla3Ply5dakgy3n//fWtbYmKiUbt27bv+fkmR8j7PnDnTOHfunPHvv/8a33//vREaGmpYLBZj+/btNtv93/cuI+/Dnfb/9H4eZ86caUgyPvzww1RjpLxvKT+Pd955x2Z527ZtDYvFYvz111/WtpCQEJvfawBwNxxSDuCBUrRoUT3//PP6/PPPFR0dnWafVatWSZL69+9v0z5gwABJSnU4YlhYmBo1apTmWJ07d7a5eFnVqlWtF+G6XdWqVXXy5EklJiZa224/Dzw2Nlbnz59XRESE/v77b8XGxt5rU+9ozJgxWrlypWbPnq2yZctKkn788UfFxMTo2Wef1fnz560Pd3d3Va1a1Xr4cHR0tHbv3q0uXbooICDAOmbDhg2tY9krKSlJa9euVatWrWzO9S5QoICee+45/fzzz4qLi7vnOLf/3C5fvqzz58+rdu3aio+P18GDBzNUU8r6/Pz80tV/1apVevzxx20OZ/b19VWPHj107Ngx7d+/P0Prz+w+sGDBAtWuXVs5c+a0eV8bNGigpKQkbd682aZ/mzZtlDdvXps2d3d363ncycnJunjxohITE1WlShXt3LkzQ9tzu86dO9v8XNu2basCBQpYP3+7d+/WkSNH9Nxzz+nChQvW2q9evar69etr8+bNNofFS7euCZBZGf38S9L777+vPn36aPz48XrzzTet7Y7Yhtq1a+vChQv33Pdv31euXr2q8+fPq0aNGjIMQ7t27UrVP6313H718FWrVsnDw8M64y3d2hdef/31u9bxXy+88ILy5s2rggULqlmzZrp69armzJmjKlWq3LUee96H/0rv53HRokXKkydPmtuWchrJqlWr5O7urt69e6eqxzAM/fDDD/esBwDSwiHlAB44b775pr766iu99957mjJlSqrlx48fl5ubm4oXL27THhQUpMDAQB0/ftymPSws7I7rKlKkiM3zlJAaHBycqj05OVmxsbHWQy23bNmikSNH6tdff011DmdsbKxN4E2v1atXa/To0Ro6dKjatGljbT9y5Iik/zu/8r/8/f0lybrtJUqUSNWnVKlSmQpg586dU3x8vM0h+SnKlCmj5ORknTx5UuHh4XcdZ9++fXrzzTe1YcOGVCElo19UpGz35cuX09X/+PHjqlq1aqr2lMPdjx8/nqFb0GV2Hzhy5Ij++OOPVCE6xdmzZ22e32lfnjNnjiZOnKiDBw/q5s2b9+yfHv/dhywWi4oXL2691VvKPnm3Q5hjY2OVM2dOh9STIqOf/02bNun777/X4MGDbc7bluzbhv/+zkhZdunSJev+mJYTJ05oxIgRWr58uS5dupRqHbfz9vZOtU/kzJnT5nXHjx9XgQIFUt01IK3P592MGDFCtWvXlru7u/LkyaMyZcqkeZHB/753GX0f0pLez+PRo0dVqlSpu1788Pjx4ypYsGCqL99uHwsA7EHgBvDASbkq9ueff64hQ4bcsV9aF8hKy92uSH6n837v1G78/3MXjx49qvr166t06dL68MMPFRwcLE9PT61atUqTJk1KNSuWHlFRUerYsaMaNmxoPb80Rcp4X331lYKCglK91lWuwh0TE6OIiAj5+/vr7bffVrFixeTt7a2dO3dq8ODBGf65lS5dWpK0d+/eVFe3Npsj9oHk5GQ1bNhQgwYNSnN5yZIlbZ6ntS9//fXX6tq1q1q1aqWBAwcqX758cnd317hx42wuKOVoKdv3wQcf3PE88f+GQUfeHSC9n//w8HDFxMToq6++0ssvv2wTHO3Zhnv9bkhLUlKSGjZsqIsXL2rw4MEqXbq0fHx8dOrUKXXt2jXVvpKe6xE4Svny5dWgQYN79rvTe5fe9wEAXJVr/IUFABn05ptv6uuvv07zQkQhISFKTk7WkSNHrLMX0q0L8MTExCgkJMT0+lasWKGEhAQtX77cZsbL3itDX7t2Ta1bt1ZgYKDmz58vNzfbM4aKFSsmScqXL99d/zhO2faUmbvbHTp0yK7aUuTNm1c5cuRIc5yDBw/Kzc3NemTAnf4Ij4yM1IULF7R48WLVqVPH2p5yReSMqlWrlnLmzKn58+dr2LBh9wwqISEhd6w/ZXl6ZWQfuNPPo1ixYrpy5Uq6As+dLFy4UEWLFtXixYtt1jNy5Ei7x5RS70OGYeivv/5ShQoVJP3fPunv75+p+jMqo5//PHnyaOHChapVq5bq16+vn3/+2XpBxvu1DXv37tXhw4c1Z84cde7c2dr+448/2j1mSEiI1q9frytXrth8KZDZz3lG1p/e9+FO+396P4/FihXT1q1bdfPmTZtTgP471rp163T58mWbWW57PtsAcDvO4QbwQCpWrJg6deqkzz77TKdPn7ZZ1rRpU0lKdQXnDz/8UJLUrFkz0+tLCXa3z2rFxsZq1qxZdo33yiuv6PDhw1qyZInN4aspGjVqJH9/f7377rs2hwynOHfunKRb51NXqlRJc+bMsTlM9ccff8zw+cn/5e7urieffFLLli2zHlYs3foD+3//+59q1aplPaQ25R69/71FUVo/txs3bujTTz+1q6YcOXJo8ODBOnDggAYPHpzmLOPXX3+tbdu2Sbq172zbtk2//vqrdfnVq1f1+eefKzQ0NEPnuWdkH/Dx8Unzdk3t27fXr7/+qjVr1qRaFhMTY3PNgIzUsXXrVptttMfcuXNtDtVfuHChoqOj1aRJE0lS5cqVVaxYMU2YMEFXrlxJ9fqUfdLR7Pn8Fy5cWOvWrdO1a9fUsGFDXbhwQdL924a03iPDMNI8ZSa9mjZtqsTERJvb0CUlJWnq1Kn2F5rB9Uvpex/utP+n9/PYpk0bnT9/Xh9//HGqMVJ+pk2bNlVSUlKqPpMmTZLFYrHutwCQUcxwA3hgDR8+XF999ZUOHTpkc15wxYoV1aVLF33++efWQ5S3bdumOXPmqFWrVqpXr57ptT355JPy9PRUixYt9PLLL+vKlSv64osvlC9fvjte7O1Ovv/+e82dO1dt2rTRH3/8oT/++MO6zNfXV61atZK/v7+mTZum559/Xo8++qieeeYZ5c2bVydOnND333+vmjVrWv/QHDdunJo1a6ZatWrphRde0MWLFzV16lSFh4enGSoy4p133tGPP/6oWrVq6dVXX5WHh4c+++wzJSQk6P3337f2q1Spktzd3TV+/HjFxsbKy8tLTzzxhGrUqKGcOXOqS5cu6t27tywWi7766qtM3SJq4MCB2rdvnyZOnKiNGzeqbdu2CgoK0unTp7V06VJt27ZNv/zyiyRpyJAhmj9/vpo0aaLevXsrV65cmjNnjqKiorRo0aJURxbcTUb2gcqVK2vatGl65513VLx4ceXLl09PPPGEBg4cqOXLl6t58+bq2rWrKleurKtXr2rv3r1auHChjh07pjx58ty1jubNm2vx4sV6+umn1axZM0VFRWn69OkqW7Zspt7vXLlyqVatWurWrZvOnDmjyZMnq3jx4urevbskyc3NTTNmzFCTJk0UHh6ubt26qVChQjp16pQ2btwof39/rVixwu7134m9n//ixYtr7dq1qlu3rho1aqQNGzbI39//vmxD6dKlVaxYMb3xxhs6deqU/P39tWjRolTncmdEixYtVLNmTQ0ZMkTHjh1T2bJltXjx4kxdsDEjMvI+3Gn/T+/nsXPnzpo7d6769++vbdu2qXbt2rp69arWrVunV199VS1btlSLFi1Ur149DR8+XMeOHVPFihW1du1aLVu2TH379rUezQAAGeaEK6MDgEPdfluw/0q5Rc7ttwUzDMO4efOmMXr0aCMsLMzIli2bERwcbAwdOtTmtlKGYXtboNul3BJnwYIF6aol5dY4586ds7YtX77cqFChguHt7W2EhoYa48ePt96+JuUWRoZx79uCpawzrcd/b4u1ceNGo1GjRkZAQIDh7e1tFCtWzOjatavx+++/2/RbtGiRUaZMGcPLy8soW7assXjx4nTdZuu//ntbMMMwjJ07dxqNGjUyfH19jRw5chj16tUzfvnll1Sv/eKLL4yiRYsa7u7uNrcI27Jli1GtWjUje/bsRsGCBY1BgwYZa9asSXUbsYzWu3DhQuPJJ580cuXKZXh4eBgFChQwOnToYERGRtr0O3r0qNG2bVsjMDDQ8Pb2Nh5//HFj5cqVNn3Se1uw9O4Dp0+fNpo1a2b4+fkZkmz2h8uXLxtDhw41ihcvbnh6ehp58uQxatSoYUyYMMF6y7qUej744INU252cnGy8++67RkhIiOHl5WU88sgjxsqVK9P8+SkDtwWbP3++MXToUCNfvnxG9uzZjWbNmtncvirFrl27jNatWxu5c+c2vLy8jJCQEKN9+/bG+vXrU/3sbv/8pNd/bwtmGJn7/G/dutV6G7uUW3VlZhtSPr+315eW/fv3Gw0aNDB8fX2NPHnyGN27dzf27NmTaj/r0qWL4ePjk+r1ae1/Fy5cMJ5//nnD39/fCAgIMJ5//nlj165dGbot2H9/B95pvWm9d+l9H+62/6fn82gYt26rNnz4cOu6goKCjLZt29rcovDy5ctGv379jIIFCxrZsmUzSpQoYXzwwQc2t3wzDG4LBiBjLIaRiWkBAACA20RGRqpevXpasGCB2rZt6+xyAABwKs7hBgAAAADABARuAAAAAABMQOAGAAAAAMAEnMMNAAAAAIAJmOEGAAAAAMAEBG4AAAAAAEzg4ewCMiM5OVn//vuv/Pz8ZLFYnF0OAAAAAOABZxiGLl++rIIFC8rN7e5z2C4duP/9918FBwc7uwwAAAAAwEPm5MmTKly48F37uHTg9vPzk3RrQ/39/Z1cDQAAAADgQRcXF6fg4GBrHr0blw7cKYeR+/v7E7gBAAAAAPdNek5r5qJpAAAAAACYgMANAAAAAIAJCNwAAAAAAJjApc/hBgAAAIAHRXJysm7cuOHsMh562bJlk7u7u0PGInADAAAAgJPduHFDUVFRSk5OdnYpkBQYGKigoKB0XRjtbgjcAAAAAOBEhmEoOjpa7u7uCg4OlpsbZ/46i2EYio+P19mzZyVJBQoUyNR4BG4AAAAAcKLExETFx8erYMGCypEjh7PLeehlz55dknT27Fnly5cvU4eX89UJAAAAADhRUlKSJMnT09PJlSBFyhcfN2/ezNQ4BG4AAAAAyAIye74wHMdR7wWBGwAAAAAAExC4AQAAAAAuY9SoUapUqZKzy0gXAjcAAAAAPOC6du0qi8Uii8UiT09PFS9eXG+//bYSExMzNWarVq0cV+QDiKuUAwAAAMBDoHHjxpo1a5YSEhK0atUqvfbaa8qWLZuGDh1q0+/GjRtcwM1BmOEGAAAAgIeAl5eXgoKCFBISop49e6pBgwZavny5daZ67NixKliwoEqVKiVJ2rt3r5544gllz55duXPnVo8ePXTlyhVJtw7rnjNnjpYtW2adOY+MjLzn61LMnDlT4eHh8vLyUoECBdSrVy/rshMnTqhly5by9fWVv7+/2rdvrzNnztyfH5KDEbgBAAAA4CGUPXt23bhxQ5K0fv16HTp0SD/++KNWrlypq1evqlGjRsqZM6e2b9+uBQsWaN26ddZg/MYbb6h9+/Zq3LixoqOjFR0drRo1atzzdZI0bdo0vfbaa+rRo4f27t2r5cuXq3jx4pKk5ORktWzZUhcvXtSmTZv0448/6u+//1aHDh3u/w/IATikHAAAAAAeIoZhaP369VqzZo1ef/11nTt3Tj4+PpoxY4b1UPIvvvhC169f19y5c+Xj4yNJ+vjjj9WiRQuNHz9e+fPnV/bs2ZWQkKCgoCDr2HPmzLnn69555x0NGDBAffr0sb7usccek3Qr+O/du1dRUVEKDg6WJM2dO1fh4eHavn27tZ+rYIYbAAAAAB4CK1eulK+vr7y9vdWkSRN16NBBo0aNkiSVL1/e5rztAwcOqGLFitbQLEk1a9ZUcnKyDh06dMd13Ot1Z8+e1b///qv69evf8fXBwcHWsC1JZcuWVWBgoA4cOGDvpjsNM9wAAAAA8BCoV6+epk2bJk9PTxUsWFAeHv8XB28PyGbKnj37fVlPVsEMNwAAAAA8BHx8fFS8eHEVKVLEJmynpUyZMtqzZ4+uXr1qbduyZYvc3NysF1Xz9PRUUlJShl7n5+en0NBQrV+//o7rPXnypE6ePGlt279/v2JiYlS2bNkMb7OzEbgBAAAAADY6duwob29vdenSRX/++ac2btyo119/Xc8//7zy588vSQoNDdUff/yhQ4cO6fz587p582a6Xjdq1ChNnDhRH330kY4cOaKdO3dq6tSpkqQGDRqofPny6tixo3bu3Klt27apc+fOioiIUJUqVZz287AXgRsAAAAAYCNHjhxas2aNLl68qMcee0xt27ZV/fr19fHHH1v7dO/eXaVKlVKVKlWUN29ebdmyJV2v69KliyZPnqxPP/1U4eHhat68uY4cOSJJslgsWrZsmXLmzKk6deqoQYMGKlq0qL799tv7/jNwBIthGIazi7BXXFycAgICFBsbK39/f2eXAwAAAAAZdv36dUVFRSksLEze3t7OLge6+3uSkRzKDDcAAAAAACYgcAMAAAAAYAICNwAAAAAAJuA+3AAA3Ac1p9Z02FhbXt/isLEAAIB5nDrDPWrUKFksFptH6dKlnVkSAAAAAAAO4fQZ7vDwcK1bt876/F43YAcAAAAAwBU4Pd16eHgoKCjI2WUAAAAAAOBQTr9o2pEjR1SwYEEVLVpUHTt21IkTJ+7YNyEhQXFxcTYPAAAAAACyIqcG7qpVq2r27NlavXq1pk2bpqioKNWuXVuXL19Os/+4ceMUEBBgfQQHB9/nigEAAAAASB+nBu4mTZqoXbt2qlChgho1aqRVq1YpJiZG3333XZr9hw4dqtjYWOvj5MmT97liAAAAAADSx+nncN8uMDBQJUuW1F9//ZXmci8vL3l5ed3nqgAAAADg/qs8cO59Xd+ODzpnqH/dunVVqVIlTZ482aZ99uzZ6tu3r2JiYhQfH68xY8bou+++06lTp+Tn56eyZcuqf//+atmypXWcTZs2SZI8PT2VJ08ePfroo+rWrZtat26dar0bN27UBx98oK1bt+ratWsKDQ1VkyZN1L9/fxUqVMi+jTeJ08/hvt2VK1d09OhRFShQwNmlAAAAAAAy6ZVXXtHixYs1depUHTx4UKtXr1bbtm114cIFm37du3dXdHS0jh49qkWLFqls2bJ65pln1KNHD5t+n332mRo0aKCgoCAtWrRI+/fv1/Tp0xUbG6uJEyfez01LF6fOcL/xxhtq0aKFQkJC9O+//2rkyJFyd3fXs88+68yyAAAAAAAOsHz5ck2ZMkVNmzaVJIWGhqpy5cqp+uXIkcN696rChQurWrVqKl26tF544QW1b99eDRo00D///KPevXurd+/emjRpkvW1oaGhqlOnjmJiYu7LNmWEU2e4//nnHz377LMqVaqU2rdvr9y5c+u3335T3rx5nVkWAAAAAMABgoKCtGrVqjteGPtuunTpopw5c2rx4sWSpAULFujGjRsaNGhQmv0DAwMzU6opnDrD/c033zhz9QAAAAAAE33++efq2LGjcufOrYoVK6pWrVpq27atatasec/Xurm5qWTJkjp27JikW7eU9vf3d6lTkLPUOdwAAAAAgAdHnTp19Pfff2v9+vVq27at9u3bp9q1a2vMmDHper1hGLJYLKn+7SoI3AAAAACADPP391dsbGyq9piYGAUEBFifZ8uWTbVr19bgwYO1du1avf322xozZoxu3Lhx1/GTkpJ05MgRhYWFSZJKliyp2NhYRUdHO3ZDTETgBgAAAABkWKlSpbRz585U7Tt37lTJkiXv+LqyZcsqMTFR169fv+v4c+bM0aVLl9SmTRtJUtu2beXp6an3338/zf5Z8aJpWeo+3AAAAAAA19CzZ099/PHH6t27t1566SV5eXnp+++/1/z587VixQpJt+6x/eyzz6pKlSrKnTu39u/fr2HDhqlevXry9/e3jhUfH6/Tp08rMTFR//zzj5YsWaJJkyapZ8+eqlevniQpODhYkyZNUq9evRQXF6fOnTsrNDRU//zzj+bOnStfX98sd2swAjcAAAAAZEE7Pujs7BLuqmjRotq8ebOGDx+uBg0a6MaNGypdurQWLFigxo0bS5IaNWqkOXPmaNiwYYqPj1fBggXVvHlzjRgxwmasL774Ql988YU8PT2VO3duVa5cWd9++62efvppm36vvvqqSpYsqQkTJujpp5/WtWvXFBoaqubNm6t///73bdvTy2IYhuHsIuwVFxengIAAxcbG2nw7AgBAVlNz6r2vxppeW17f4rCxAADOd/36dUVFRSksLEze3t7OLge6+3uSkRzKOdwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmMDD2QUAAAAAAFI78Xb5+7q+IiP23tf1PQyY4QYAAAAAZFjdunXVt2/fVO2zZ89WYGCgJCk+Pl5Dhw5VsWLF5O3trbx58yoiIkLLli2zGcdischiscjLy0uFChVSixYttHjxYpsxU/rc6XHs2DGTtzjjCNwAAAAAAFO88sorWrx4saZOnaqDBw9q9erVatu2rS5cuGDTr3v37oqOjtbRo0e1aNEilS1bVs8884x69OghSerQoYOio6Otj+rVq1tfk/IIDg52xibeFYeUAwAAAABMsXz5ck2ZMkVNmzaVJIWGhqpy5cqp+uXIkUNBQUGSpMKFC6tatWoqXbq0XnjhBbVv314NGjRQ9uzZrf09PT1tXpNVMcMNAAAAADBFUFCQVq1apcuXL2f4tV26dFHOnDltDi13NQRuAAAAAIApPv/8c/3yyy/KnTu3HnvsMfXr109btmxJ12vd3NxUsmTJLHludnoRuAEAAAAApqhTp47+/vtvrV+/Xm3bttW+fftUu3ZtjRkzJl2vNwxDFovF5CrNQ+AGAAAAAGSYv7+/YmNjU7XHxMQoICDA+jxbtmyqXbu2Bg8erLVr1+rtt9/WmDFjdOPGjbuOn5SUpCNHjigsLMzhtd8vBG4AAAAAQIaVKlVKO3fuTNW+c+dOlSxZ8o6vK1u2rBITE3X9+vW7jj9nzhxdunRJbdq0yXStzsJVygEAAAAAGdazZ099/PHH6t27t1566SV5eXnp+++/1/z587VixQpJt+6x/eyzz6pKlSrKnTu39u/fr2HDhqlevXry9/e3jhUfH6/Tp08rMTFR//zzj5YsWaJJkyapZ8+eqlevnrM2MdMI3AAAAACQBRUZsdfZJdxV0aJFtXnzZg0fPlwNGjTQjRs3VLp0aS1YsECNGzeWJDVq1Ehz5szRsGHDFB8fr4IFC6p58+YaMWKEzVhffPGFvvjiC3l6eip37tyqXLmyvv32Wz399NPO2DSHsRiGYTi7CHvFxcUpICBAsbGxNt+OAACQ1dScWtNhY215PX1XdwUAuIbr168rKipKYWFh8vb2dnY50N3fk4zkUM7hBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEHs4uAAAAAACQWs2pNe/r+ra8vuW+ru9hwAw3AAAAAMAu586dU8+ePVWkSBF5eXkpKChIjRo10tixY2WxWO76iIyM1OzZs63P3dzcVKBAAXXo0EEnTpywWU/dunXVt29fm7YpU6bIy8tL33zzzX3c4oxhhhsAAAAAYJc2bdroxo0bmjNnjooWLaozZ85o/fr1Cg8PV3R0tLVfnz59FBcXp1mzZlnbcuXKpWPHjsnf31+HDh2SYRiKiorSq6++qnbt2mnr1q13XO/IkSM1YcIELVu2TI0bNzZ1GzODwA0AAAAAyLCYmBj99NNPioyMVEREhCQpJCREjz/+eKq+2bNnV0JCgoKCglIts1gs1vYCBQroxRdfVO/evRUXFyd/f3+bvoZhqHfv3vr666/1448/qkaNGiZsmeNwSDkAAAAAIMN8fX3l6+urpUuXKiEhwSFjnj17VkuWLJG7u7vc3d1tliUmJqpTp05auHChNm3alOXDtsQMNwAAAADADh4eHpo9e7a6d++u6dOn69FHH1VERISeeeYZVahQId3jxMbGytfXV4ZhKD4+XpLUu3dv+fj42PT74osvJEl79uxR6dKlHbchJmKGGwAAAABglzZt2ujff//V8uXL1bhxY0VGRurRRx/V7Nmz0z2Gn5+fdu/erd9//10TJ07Uo48+qrFjx6bqV6tWLfn6+uqtt95SYmKiA7fCPARuAAAAAIDdvL291bBhQ7311lv65Zdf1LVrV40cOTLdr3dzc1Px4sVVpkwZ9e/fX9WqVVPPnj1T9StfvrzWr1+vjRs3qkOHDi4RugncAAAAAACHKVu2rK5evWr364cMGaJvv/1WO3fuTLWsUqVKWr9+vTZv3qz27dvr5s2bmSnVdARuAAAAAECGXbhwQU888YS+/vpr/fHHH4qKitKCBQv0/vvvq2XLlnaPGxwcrKefflojRoxIc3nFihW1YcMG/fzzz1k+dHPRNAAAAADIgra8vsXZJdyVr6+vqlatqkmTJuno0aO6efOmgoOD1b17dw0bNixTY/fr10/Vq1fXtm3b0rzNWPny5bVhwwbVr19f7dq103fffSdPT89MrdMMFsMwDGcXYa+4uDgFBAQoNjY21f3ZAADISmpOremwsbL6H2AAgIy5fv26oqKiFBYWJm9vb2eXA939PclIDuWQcgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABM4OHsAgAAAAAAqW2qE3Ff1xexedN9Xd/DgBluAAAAAECGde3aVRaLJdXD29s7zfbbH5GRkZo9e7YCAwPTHNtisWjp0qX3dXvMwAw3AAAAAMAujRs31qxZs2zaLBaLDMOwPu/Tp4/i4uJs+uXKlUvHjh27X2U6DYEbAAAAAGAXLy8vBQUF3bVP9uzZlZCQcM9+DyIOKQcAAAAAwAQEbgAAAACAXVauXClfX1+bx7vvvpvu18fGxqZ6va+vr4kV318cUg4AAAAAsEu9evU0bdo0m7ZcuXKl+/V+fn7auXNnqvYSJUpkurasgMANAAAAALCLj4+Pihcvbvfr3dzcMvX6rI5DygEAAAAAMAEz3AAAAAAAuyQkJOj06dM2bR4eHsqTJ4+TKspaCNwAAAAAkAVFbN7k7BLuafXq1SpQoIBNW6lSpXTw4EEnVZS1WIzb70juYuLi4hQQEKDY2Fj5+/s7uxwAAO6o5tSaDhtry+tbHDYWAMD5rl+/rqioKIWFhcnb29vZ5UB3f08ykkM5hxsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAE3g4uwAAAAAAQGofD1hxX9fXa2KL+7q+hwEz3AAAAAAAU0VGRspisVgf2bNnV3h4uD7//HNrn9uXp/UYNWqUJGnXrl1q166d8ufPL29vb5UoUULdu3fX4cOHnbR1d0bgBgAAAADcF4cOHVJ0dLT279+vl19+WT179tT69eslSdHR0dbH5MmT5e/vb9P2xhtvaOXKlapWrZoSEhI0b948HThwQF9//bUCAgL01ltvOXnrUiNwAwAAAAAybOXKlQoMDFRSUpIkaffu3bJYLBoyZIi1z0svvaROnTpZn+fLl09BQUEKCwtT7969FRYWpp07d0qSgoKCrI+AgABZLBabNjc3N3Xr1k1NmzbV8uXL1aBBA4WFhalq1aqaMGGCPvvss/v7A0gHAjcAAAAAIMNq166ty5cva9euXZKkTZs2KU+ePIqMjLT22bRpk+rWrZvqtYZhaPXq1Tpx4oSqVq2arvWtWbNG58+f16BBg9JcHhgYmNFNMB2BGwAAAACQYQEBAapUqZI1YEdGRqpfv37atWuXrly5olOnTumvv/5SRESE9TWFCxeWr6+vPD091axZM40cOVJ16tRJ1/qOHDkiSSpdurTDt8UsBG4AAAAAgF0iIiIUGRkpwzD0008/qXXr1ipTpox+/vlnbdq0SQULFlSJEiWs/X/66Sft3r1bu3fv1owZM/Tuu+9q2rRp6VqXYRhmbYZpuC0YAAAAAMAudevW1cyZM7Vnzx5ly5ZNpUuXVt26dRUZGalLly7ZzG5LUlhYmPXQ7/DwcG3dulVjx45Vz54977mukiVLSpIOHjyo6tWrO3xbzMAMNwAAAADALinncU+aNMkarlMCd2RkZJrnb9/O3d1d165dS9e6nnzySeXJk0fvv/9+mstjYmIyUvp9wQw3AAAAAMAuOXPmVIUKFTRv3jx9/PHHkqQ6deqoffv2unnzZqoZ7rNnz+r69etKSEjQtm3b9NVXX6lt27bpWpePj49mzJihdu3a6amnnlLv3r1VvHhxnT9/Xt99951OnDihb775xuHbmBkEbgAAAADIgnpNbOHsEtIlIiJCu3fvts5m58qVS2XLltWZM2dUqlQpm74pzz08PBQcHKyXX35Zo0aNSve6WrZsqV9++UXjxo3Tc889p7i4OAUHB+uJJ57QO++846hNchiL4Ypnnv9/cXFxCggIUGxsrPz9/Z1dDgAAd1Rzak2HjbXl9S0OGwsA4HzXr19XVFSUwsLC5O3t7exyoLu/JxnJoZzDDQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJggywTu9957TxaLRX379nV2KQAAAAAAZFqWCNzbt2/XZ599pgoVKji7FAAAAAAAHMLpgfvKlSvq2LGjvvjiC+XMmdPZ5QAAAAAA4BBOD9yvvfaamjVrpgYNGtyzb0JCguLi4mweAAAAAABkRR7OXPk333yjnTt3avv27enqP27cOI0ePdrkqgAAAAAAyDynBe6TJ0+qT58++vHHH+Xt7Z2u1wwdOlT9+/e3Po+Li1NwcLBZJQIAAACA04zt1Pa+rm/41wsz1L9r166aM2eOJMnDw0O5cuVShQoV9Oyzz6pr165yc7M9oLpRo0Zat26dfvvtNz322GOpxoqJidHSpUsztQ1ZjdMOKd+xY4fOnj2rRx99VB4eHvLw8NCmTZv00UcfycPDQ0lJSale4+XlJX9/f5sHAAAAAMA5GjdurOjoaB07dkw//PCD6tWrpz59+qh58+ZKTEy09jtx4oR++eUX9erVSzNnznRixfeX02a469evr71799q0devWTaVLl9bgwYPl7u7upMoAAAAAAOnh5eWloKAgSVKhQoX06KOPqlq1aqpfv75mz56tl156SZI0a9YsNW/eXD179lS1atX04YcfKnv27M4s/b5w2gy3n5+fypUrZ/Pw8fFR7ty5Va5cOWeVBQAAAADIhCeeeEIVK1bU4sWLJUmGYWjWrFnq1KmTSpcureLFi2vhwowdvu6qnH6VcgAAAADAg6V06dI6duyYJGndunWKj49Xo0aNJEmdOnXSl19+6cTq7h+nXqX8vyIjI51dAgAAAAAgkwzDkMVikSTNnDlTHTp0kIfHrfj57LPPauDAgTp69KiKFSvmzDJNxww3AAAAAMChDhw4oLCwMF28eFFLlizRp59+ar1YdqFChZSYmPhQXDyNwA0AAAAAcJgNGzZo7969atOmjebNm6fChQtrz5492r17t/UxceJEzZ49O827Uz1IstQh5QAAAAAA15GQkKDTp08rKSlJZ86c0erVqzVu3Dg1b95cnTt3VuXKldW2bdtUF8YODg7W0KFDtXr1ajVr1sxJ1ZuPGW4AAAAAgF1Wr16tAgUKKDQ0VI0bN9bGjRv10UcfadmyZdq9e7f27NmjNm3apHpdQECA6tev/8BfPM1iGIbh7CLsFRcXp4CAAMXGxsrf39/Z5QAAcEc1p9Z02FhbXt/isLEAAM53/fp1RUVFKSwsTN7e3s4uB7r7e5KRHMoMNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACD2cXAAAAAABI7cDYDfd1fWWGP3Ff15ciMjJS9erV06VLlxQYGGht79q1q+bMmZOqf6NGjTRkyBDVq1fvruNu3LhRx44dU9++fRUTE5NqucVi0ZIlS9SqVatMbsGdEbgBAAAAAFlS48aNNWvWLJs2Ly8v+fj4KDo62trWp08fxcXF2fTNlSuXjh07dr9KTROHlAMAAAAAMmzlypUKDAxUUlKSJGn37t2yWCwaMmSItc9LL72kTp066fjx42rRooVy5swpHx8fhYeHa9WqVTp27Jh1pjpnzpyyWCzq2rWr9fVeXl4KCgqyeeTMmVOenp42bdmzZ0/V19PT877+PNLCDDcAAAAAIMNq166ty5cva9euXapSpYo2bdqkPHnyKDIy0tpn06ZNGjx4sF577TXduHFDmzdvlo+Pj/bv3y9fX18FBwdr0aJFatOmjQ4dOiR/f39lz57deRvlYMxwAwAAAAAyLCAgQJUqVbIG7MjISPXr10+7du3SlStXdOrUKf3111+KiIjQiRMnVLNmTZUvX15FixZV8+bNVadOHbm7uytXrlySpHz58ikoKEgBAQHWdaxcuVK+vr42j3fffTdDdcbGxqYaw9fX12E/h7thhhsAAAAAYJeIiAhFRkZqwIAB+umnnzRu3Dh99913+vnnn3Xx4kUVLFhQJUqUUO/evdWzZ0+tXbtWDRo0UJs2bVShQoV7jl+vXj1NmzbNpi0loKeXn5+fdu7cmaq9RIkSGRrHHgRuAAAAAIBd6tatq5kzZ2rPnj3Kli2bSpcurbp16yoyMlKXLl1SRESEpFvncjdq1Ejff/+91q5dq3HjxmnixIl6/fXX7zq+j4+Pihcvnqka3dzcMj2G3et2yloBAAAAAC4v5TzuSZMmWcN1SuCOjIxU3bp1rX2Dg4P1yiuvaPHixRowYIC++OILSbJe3Czl4msPEgI3AAAAAMAuOXPmVIUKFTRv3jxruK5Tp4527typw4cPW0N43759tWbNGkVFRWnnzp3auHGjypQpI0kKCQmRxWLRypUrde7cOV25csU6fkJCgk6fPm3zOH/+/H3fTnsRuAEAAAAAdouIiFBSUpI1cOfKlUtly5ZVUFCQSpUqJenW7PVrr72mMmXKqHHjxipZsqQ+/fRTSVKhQoU0evRoDRkyRPnz51evXr2sY69evVoFChSwedSqVeu+b6O9LIZhGM4uwl5xcXEKCAhQbGys/P39nV0OAAB3VHNqTYeNteX1LQ4bCwDgfNevX1dUVJTCwsLk7e3t7HKgu78nGcmhzHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJvBwdgEAAAAAgNRGjRqVpdfXtWtXxcTEaOnSpamWXbt2Te+9957mz5+v48ePy8/PT/Xq1dOoUaMUHh5us87Ro0dLktzc3FSwYEE1adJE7733nnLlymXtFxoaquPHj0uSvL29lT9/fj3++ON65ZVX9MQTT9ise8mSJRo/frwOHDig5ORkFSlSRA0bNtTkyZMztH2OwAw3AAAAAMBhEhIS1KBBA82cOVPvvPOODh8+rFWrVikxMVFVq1bVb7/9ZtM/PDxc0dHROnHihGbNmqXVq1erZ8+eqcZ9++23FR0drUOHDmnu3LkKDAxUgwYNNHbsWGuf9evXq0OHDmrTpo22bdumHTt2aOzYsbp586bp250WZrgBAAAAAA4zefJk/frrr9q1a5cqVqwoSQoJCdGiRYtUtWpVvfjii/rzzz9lsVgkSR4eHgoKCpIkFSpUSO3atdOsWbNSjevn52ftV6RIEdWpU0cFChTQiBEj1LZtW5UqVUorVqxQzZo1NXDgQOvrSpYsqVatWpm81WljhhsAAAAA4DD/+9//1LBhQ2vYTuHm5qZ+/fpp//792rNnT5qvPXbsmNasWSNPT890ratPnz4yDEPLli2TJAUFBWnfvn36888/M7cRDkLgBgAAAAA4zOHDh1WmTJk0l6W0Hz582Nq2d+9e+fr6Knv27AoLC9O+ffs0ePDgdK0rV65cypcvn44dOyZJev311/XYY4+pfPnyCg0N1TPPPKOZM2cqISEhcxtlJwI3AAAAAMChDMNId99SpUpp9+7d2r59uwYPHqxGjRrp9ddfz9C6Ug5P9/Hx0ffff6+//vpLb775pnx9fTVgwAA9/vjjio+Pz/B2ZBaBGwAAAADgMCVLltSBAwfSXJbSXrJkSWubp6enihcvrnLlyum9996Tu7u79crl93LhwgWdO3dOYWFhNu3FihXTSy+9pBkzZmjnzp3av3+/vv32Wzu3yH4EbgAAAACAwzzzzDNat25dqvO0k5OTNWnSJJUtWzbV+d23e/PNNzVhwgT9+++/91zXlClT5ObmdteLooWGhipHjhy6evVqurfBUbhKOQAAAADALrGxsdq9e7dNW6dOnbRs2TK1aNFCEydOVNWqVXXmzBm9++67OnDggNatW2c9BDwt1atXV4UKFfTuu+/q448/trZfvnxZp0+f1s2bNxUVFaWvv/5aM2bM0Lhx41S8eHFJt+7rHR8fr6ZNmyokJEQxMTH66KOPdPPmTTVs2NCUn8HdELgBAAAAAHaJjIzUI488YtP24osvasOGDXr33Xc1bNgwHT9+XH5+fqpXr55+++03lStX7p7j9uvXT127dtXgwYMVHBwsSRoxYoRGjBghT09PBQUFqVq1alq/fr3q1atnfV1ERIQ++eQTde7cWWfOnFHOnDn1yCOPaO3atSpVqpRjNz4dLEZGzmbPYuLi4hQQEKDY2Fj5+/s7uxwAAO6o5tSaDhtry+tbHDYWAMD5rl+/rqioKIWFhcnb29vZ5UB3f08ykkM5hxsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAIAtw4RtIPXCSk5MdMg734QYAAAAAJ8qWLZssFovOnTunvHnzymKxOLukh5ZhGLpx44bOnTsnNzc3eXp6Zmo8AjcAAAAAOJG7u7sKFy6sf/75R8eOHXN2OZCUI0cOFSlSRG5umTsonMANAAAAAE7m6+urEiVK6ObNm84u5aHn7u4uDw8PhxxpQOAGAAAAgCzA3d1d7u7uzi4DDsRF0wAAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBR0ZfcODAAX3zzTf66aefdPz4ccXHxytv3rx65JFH1KhRI7Vp00ZeXl5m1AoAAAAAgMtI9wz3zp071aBBAz3yyCP6+eefVbVqVfXt21djxoxRp06dZBiGhg8froIFC2r8+PFKSEgws24AAAAAALK0dM9wt2nTRgMHDtTChQsVGBh4x36//vqrpkyZookTJ2rYsGGOqBEAAAAAAJeT7sB9+PBhZcuW7Z79qlevrurVq+vmzZuZKgwAAAAAAFeW7kPK0xO2M9MfAAAAAIAHSYYvmpacnKzZs2dr8eLFOnbsmCwWi8LCwtS2bVs9//zzslgsZtQJAAAAAIBLydBtwQzD0FNPPaWXXnpJp06dUvny5RUeHq7jx4+ra9euevrpp82qEwAAAAAAl5KhGe7Zs2dr8+bNWr9+verVq2ezbMOGDWrVqpXmzp2rzp07O7RIAAAAAABcTYZmuOfPn69hw4alCtuS9MQTT2jIkCGaN2+ew4oDAAAAAMBVZShw//HHH2rcuPEdlzdp0kR79uzJdFEAAAAAALi6DAXuixcvKn/+/Hdcnj9/fl26dCnTRQEAAAAA4OoyFLiTkpLk4XHn077d3d2VmJiY6aIAAAAAAHB1GbpommEY6tq1q7y8vNJcnpCQ4JCiAAAAAABwdRkK3F26dLlnH65QDgAAAABABgP3rFmzzKoDAAAAAIAHSobO4b6T48ePa//+/UpOTnbEcAAAAAAAuLwMBe6ZM2fqww8/tGnr0aOHihYtqvLly6tcuXI6efKkQwsEAAAAAMAVZShwf/7558qZM6f1+erVqzVr1izNnTtX27dvV2BgoEaPHu3wIgEAAAAAcDUZOof7yJEjqlKlivX5smXL1LJlS3Xs2FGS9O6776pbt26OrRAAAAAAABeUoRnua9euyd/f3/r8l19+UZ06dazPixYtqtOnTzuuOgAAAAAAXFSGAndISIh27NghSTp//rz27dunmjVrWpefPn1aAQEBjq0QAAAAAAAXlOH7cL/22mvat2+fNmzYoNKlS6ty5crW5b/88ovKlSvn8CIBAAAAAHA1GQrcgwYNUnx8vBYvXqygoCAtWLDAZvmWLVv07LPPOrRAAAAAAABckcUwDMPZRdgrLi5OAQEBio2NtTm3HACArKbm1Jr37pROW17f4rCxAABAxmQkh2ZohjsuLi7Ndh8fH7m7u2dkKAAAAAAAHmgZumhaYGCgcubMmeqRPXt2lSpVSl988YVZdQIAAAAA4FIyNMO9cePGNNtjYmK0Y8cODRw4UB4eHum+F/e0adM0bdo0HTt2TJIUHh6uESNGqEmTJhkpCwAAAACALCdDgTsiIuKOy1q2bKnQ0FBNnTo13YG7cOHCeu+991SiRAkZhqE5c+aoZcuW2rVrl8LDwzNSGgAAAAAAWUqGDim/l4iICP3111/p7t+iRQs1bdpUJUqUUMmSJTV27Fj5+vrqt99+c2RZAAAAAADcdxma4b6X2NhYBQQE2PXapKQkLViwQFevXlX16tXT7JOQkKCEhATr8ztdxA0AAAAAAGdz2Az3zZs39cEHH6hq1aoZet3evXvl6+srLy8vvfLKK1qyZInKli2bZt9x48YpICDA+ggODnZE6QAAAAAAOFyGZrhbt26dZntsbKz27dsni8Win376KUMFlCpVSrt371ZsbKwWLlyoLl26aNOmTWmG7qFDh6p///7W53FxcYRuAAAAAECWlKHAfafDxYODg9WmTRt17Ngxw4eUe3p6qnjx4pKkypUra/v27ZoyZYo+++yzVH29vLzk5eWVofEBAAAAAHCGDAXuWbNmmVWHVXJyss152gAAAAAAuCKHXjQto4YOHaomTZqoSJEiunz5sv73v/8pMjJSa9ascWZZAAAAAABkWrovmta4ceN03a7r8uXLGj9+vD755JN79j179qw6d+6sUqVKqX79+tq+fbvWrFmjhg0bprcsAAAAAACypHTPcLdr105t2rRRQECAWrRooSpVqqhgwYLy9vbWpUuXtH//fv38889atWqVmjVrpg8++OCeY3755ZeZKh4AAAAAgKwq3YH7xRdfVKdOnbRgwQJ9++23+vzzzxUbGytJslgsKlu2rBo1aqTt27erTJkyphUMAAAAAIAryNA53F5eXurUqZM6deok6dbtwK5du6bcuXMrW7ZsphQIAAAAAIArytRF0wICAjJ8GzAAAAAAAB4G6b5oGgAAAAAASD8CNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGCCdF+lPGfOnLJYLOnqe/HiRbsLAgAAAADgQZDuwD158mQTywAAAAAA4MGS7sDdpUsXM+sAAAAAAOCBku7AfSfXr1/XjRs3bNr8/f0zOywAAAAAAC7NroumXb16Vb169VK+fPnk4+OjnDlz2jwAAAAAAHjY2RW4Bw0apA0bNmjatGny8vLSjBkzNHr0aBUsWFBz5851dI0AAAAAALgcuw4pX7FihebOnau6deuqW7duql27tooXL66QkBDNmzdPHTt2dHSdAAAAAAC4FLtmuC9evKiiRYtKunW+dsptwGrVqqXNmzc7rjoAAAAAAFyUXYG7aNGiioqKkiSVLl1a3333naRbM9+BgYEOKw4AAAAAAFdlV+Du1q2b9uzZI0kaMmSIPvnkE3l7e6tfv34aOHCgQwsEAAAAAMAV2XUOd79+/az/btCggQ4ePKgdO3aoePHiqlChgsOKAwAAAADAVWV4hvvmzZuqX7++jhw5Ym0LCQlR69atCdsAAAAAAPx/GQ7c2bJl0x9//GFGLQAAAAAAPDDsOoe7U6dO+vLLLx1dCwAAAAAADwy7zuFOTEzUzJkztW7dOlWuXFk+Pj42yz/88EOHFAcAAAAAgKuyK3D/+eefevTRRyVJhw8ftllmsVgyXxUAAAAAAC7OrsC9ceNGR9cBAAAAAMADxa5zuFP89ddfWrNmja5duyZJMgzDIUUBAAAAAODq7ArcFy5cUP369VWyZEk1bdpU0dHRkqQXX3xRAwYMcGiBAAAAAAC4IrsCd79+/ZQtWzadOHFCOXLksLZ36NBBq1evdlhxAAAAAAC4KrvO4V67dq3WrFmjwoUL27SXKFFCx48fd0hhAAAAAAC4MrtmuK9evWozs53i4sWL8vLyynRRAAAAAAC4OrsCd+3atTV37lzrc4vFouTkZL3//vuqV6+ew4oDAAAAAMBV2XVI+fvvv6/69evr999/140bNzRo0CDt27dPFy9e1JYtWxxdIwAAAAAALseuGe5y5crp8OHDqlWrllq2bKmrV6+qdevW2rVrl4oVK+boGgEAAAAAcDl2zXCfOHFCwcHBGj58eJrLihQpkunCAAAAAABwZXbNcIeFhencuXOp2i9cuKCwsLBMFwUAAAAAgKuzK3AbhiGLxZKq/cqVK/L29s50UQAAAAAAuLoMHVLev39/SbeuSv7WW2/Z3BosKSlJW7duVaVKlRxaIAAAAAAArihDgXvXrl2Sbs1w7927V56entZlnp6eqlixot544w3HVggAAAAAgAvKUODeuHGjJKlbt26aMmWK/P39TSkKAAAAAABXZ9dVymfNmuXoOgAAAAAAeKDYFbgl6ffff9d3332nEydO6MaNGzbLFi9enOnCAAAAAABwZXZdpfybb75RjRo1dODAAS1ZskQ3b97Uvn37tGHDBgUEBDi6RgAAAAAAXI5dgfvdd9/VpEmTtGLFCnl6emrKlCk6ePCg2rdvryJFiji6RgAAAAAAXI5dgfvo0aNq1qyZpFtXJ7969aosFov69eunzz//3KEFAgAAAADgiuwK3Dlz5tTly5clSYUKFdKff/4pSYqJiVF8fLzjqgMAAAAAwEXZddG0OnXq6Mcff1T58uXVrl079enTRxs2bNCPP/6o+vXrO7pGAAAAAABcjl2B++OPP9b169clScOHD1e2bNn0yy+/qE2bNnrzzTcdWiAAAAAAAK7IrsCdK1cu67/d3Nw0ZMgQhxUEAAAAAMCDIN2BOy4uLt2D+vv721UMAAAAAAAPinQH7sDAQFkslrv2MQxDFotFSUlJmS4MAAAAAABXlu7AvXHjRjPrAAAAAADggZLuwB0REWFmHQAAAAAAPFDSHbj/+OOPdA9aoUIFu4oBAAAAAOBBke7AXalSJVksFhmGcdd+nMMNAAAAAEAGAndUVJSZdQAAAAAA8EBJd+AOCQkxsw4AAAAAAB4o6Q7c/3X06FFNnjxZBw4ckCSVLVtWffr0UbFixRxWHAAAAAAArsrNnhetWbNGZcuW1bZt21ShQgVVqFBBW7duVXh4uH788UdH1wgAAAAAgMuxa4Z7yJAh6tevn957771U7YMHD1bDhg0dUhwAAAAAAK7KrhnuAwcO6MUXX0zV/sILL2j//v2ZLgoAAAAAAFdnV+DOmzevdu/enap99+7dypcvX2ZrAgAAAADA5dl1SHn37t3Vo0cP/f3336pRo4YkacuWLRo/frz69+/v0AIBAAAAAHBFdgXut956S35+fpo4caKGDh0qSSpYsKBGjRql3r17O7RAAAAAAABckV2B22KxqF+/furXr58uX74sSfLz83NoYQAAAAAAuLIMncN97do1LV++3BqypVtB28/PT3FxcVq+fLkSEhIcXiQAAAAAAK4mQ4H7888/15QpU9Kczfb399dHH32kGTNmOKw4AAAAAABcVYYC97x589S3b987Lu/bt6/mzJmT2ZoAAAAAAHB5GQrcR44cUcWKFe+4vEKFCjpy5EimiwIAAAAAwNVlKHAnJibq3Llzd1x+7tw5JSYmZrooAAAAAABcXYYCd3h4uNatW3fH5WvXrlV4eHimiwIAAAAAwNVlKHC/8MILGjNmjFauXJlq2YoVKzR27Fi98MILDisOAAAAAABXlaH7cPfo0UObN2/WU089pdKlS6tUqVKSpIMHD+rw4cNq3769evToYUqhAAAAAAC4kgzNcEvS119/rW+++UYlS5bU4cOHdejQIZUqVUrz58/X/PnzzagRAAAAAACXk6EZ7hTt27dX+/btHV0LAAAAAAAPjAzPcAMAAAAAgHsjcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmSPdVylu3bp3uQRcvXmxXMQAAAAAAPCjSPcMdEBBgffj7+2v9+vX6/fffrct37Nih9evXKyAgwJRCAQAAAABwJeme4Z41a5b134MHD1b79u01ffp0ubu7S5KSkpL06quvyt/f3/FVAgAAAADgYuw6h3vmzJl64403rGFbktzd3dW/f3/NnDnTYcUBAAAAAOCq7ArciYmJOnjwYKr2gwcPKjk5OdNFAQAAAADg6tJ9SPntunXrphdffFFHjx7V448/LknaunWr3nvvPXXr1s2hBQIAAAAA4IrsCtwTJkxQUFCQJk6cqOjoaElSgQIFNHDgQA0YMMChBQIAAAAA4IrsCtxubm4aNGiQBg0apLi4OEniYmkAAAAAANzGrnO4pVvnca9bt07z58+XxWKRJP3777+6cuWKw4oDAAAAAMBV2TXDffz4cTVu3FgnTpxQQkKCGjZsKD8/P40fP14JCQmaPn26o+sEAAAAAMCl2DXD3adPH1WpUkWXLl1S9uzZre1PP/201q9f77DiAAAAAABwVXbNcP/000/65Zdf5OnpadMeGhqqU6dOOaQwAAAAAABcmV0z3MnJyUpKSkrV/s8//8jPzy/TRQEAAAAA4OrsCtxPPvmkJk+ebH1usVh05coVjRw5Uk2bNnVUbQAAAAAAuCy7DimfOHGiGjVqpLJly+r69et67rnndOTIEeXJk0fz5893dI0AAAAAALgcu2a4CxcurD179mj48OHq16+fHnnkEb333nvatWuX8uXLl+5xxo0bp8cee0x+fn7Kly+fWrVqpUOHDtlTEgAAAAAAWYpdM9yS5OHhoY4dO6pjx452r3zTpk167bXX9NhjjykxMVHDhg3Tk08+qf3798vHx8fucQEAAAAAcDa7Are7u7vq1KmjRYsWKVeuXNb2M2fOqGDBgmleUC0tq1evtnk+e/Zs5cuXTzt27FCdOnXsKQ0AAAAAgCzBrkPKDcNQQkKCqlSpon379qVaZq/Y2FhJsgnxt0tISFBcXJzNAwAAAACArMiuwG2xWLRo0SK1aNFC1atX17Jly2yW2SM5OVl9+/ZVzZo1Va5cuTT7jBs3TgEBAdZHcHCwXesCAAAAAMBsds9wu7u7a8qUKZowYYI6dOigd955J1Oz26+99pr+/PNPffPNN3fsM3ToUMXGxlofJ0+etHt9AAAAAACYye6LpqXo0aOHSpQooXbt2mnz5s12jdGrVy+tXLlSmzdvVuHChe/Yz8vLS15eXvaWCgAAAADAfWPXDHdISIjc3d2tz+vVq6fffvstwzPOhmGoV69eWrJkiTZs2KCwsDB7ygEAAAAAIMuxa4Y7KioqVVvx4sW1a9cunTlzJt3jvPbaa/rf//6nZcuWyc/PT6dPn5YkBQQEKHv27PaUBgAAAABAlmDXDPedeHt7KyQkJN39p02bptjYWNWtW1cFChSwPr799ltHlgUAAAAAwH2X7hnuXLly6fDhw8qTJ49y5sx516uRX7x4MV1jZuYiawAAAAAAZGXpDtyTJk2Sn5+fJGny5Mlm1QMAAAAAwAMh3YG7S5cuaf4bAAAAAACklu7AHRcXl+5B/f397SoGAAAAAIAHRboDd2Bg4F3P25ZunZNtsViUlJSU6cIAAAAAAHBl6Q7cGzduNLMOAAAAAAAeKOkO3BEREWbWAQAAAADAAyXdgTst8fHxOnHihG7cuGHTXqFChUwVBQAAAACAq7MrcJ87d07dunXTDz/8kOZyzuEGAAAAADzs3Ox5Ud++fRUTE6OtW7cqe/bsWr16tebMmaMSJUpo+fLljq4RAAAAAACXY9cM94YNG7Rs2TJVqVJFbm5uCgkJUcOGDeXv769x48apWbNmjq4TAAAAAACXYtcM99WrV5UvXz5JUs6cOXXu3DlJUvny5bVz507HVQcAAAAAgIuyK3CXKlVKhw4dkiRVrFhRn332mU6dOqXp06erQIECDi0QAAAAAABXZNch5X369FF0dLQkaeTIkWrcuLHmzZsnT09PzZ4925H1AQAAAADgkuwK3J06dbL+u3Llyjp+/LgOHjyoIkWKKE+ePA4rDgAAAAAAV5Wp+3CnyJEjhx599FFHDAUAAAAAwAPBrsBtGIYWLlyojRs36uzZs0pOTrZZvnjxYocUBwAAAACAq7IrcPft21efffaZ6tWrp/z588tisTi6LgAAAAAAXJpdgfurr77S4sWL1bRpU0fXAwAAAADAA8Gu24IFBASoaNGijq4FAAAAAIAHhl2Be9SoURo9erSuXbvm6HoAAAAAAHgg2HVIefv27TV//nzly5dPoaGhypYtm83ynTt3OqQ4AAAAAABclV2Bu0uXLtqxY4c6derERdMAAAAAAEiDXYH7+++/15o1a1SrVi1H1wMAAAAAwAPBrnO4g4OD5e/v7+haAAAAAAB4YNgVuCdOnKhBgwbp2LFjDi4HAAAAAIAHg12HlHfq1Enx8fEqVqyYcuTIkeqiaRcvXnRIcQAAAAAAuCq7AvfkyZMdXAYAAAAAAA+WDAfumzdvatOmTXrrrbcUFhZmRk0AAAAAALi8DJ/DnS1bNi1atMiMWgAAAAAAeGDYddG0Vq1aaenSpQ4uBQAAAACAB4dd53CXKFFCb7/9trZs2aLKlSvLx8fHZnnv3r0dUhwAAAAAAK7KrsD95ZdfKjAwUDt27NCOHTtsllksFgI3AAAAAOChZ1fgjoqKcnQdAAAAAAA8UOw6h/t2hmHIMAxH1AIAAAAAwAPD7sA9d+5clS9fXtmzZ1f27NlVoUIFffXVV46sDQAAAAAAl2XXIeUffvih3nrrLfXq1Us1a9aUJP3888965ZVXdP78efXr18+hRQIAAAAA4GrsCtxTp07VtGnT1LlzZ2vbU089pfDwcI0aNYrADQAAAAB46Nl1SHl0dLRq1KiRqr1GjRqKjo7OdFEAAAAAALg6uwJ38eLF9d1336Vq//bbb1WiRIlMFwUAAAAAgKuz65Dy0aNHq0OHDtq8ebP1HO4tW7Zo/fr1aQZxAAAAAAAeNnbNcLdp00Zbt25Vnjx5tHTpUi1dulR58uTRtm3b9PTTTzu6RgAAAAAAXI5dM9ySVLlyZX399deOrAUAAAAAgAeG3ffhBgAAAAAAd5ahGW43NzdZLJa79rFYLEpMTMxUUQAAAAAAuLoMBe4lS5bccdmvv/6qjz76SMnJyZkuCgAAAAAAV5ehwN2yZctUbYcOHdKQIUO0YsUKdezYUW+//bbDigMAAAAAwFXZfQ73v//+q+7du6t8+fJKTEzU7t27NWfOHIWEhDiyPgAAAAAAXFKGA3dsbKwGDx6s4sWLa9++fVq/fr1WrFihcuXKmVEfAAAAAAAuKUOHlL///vsaP368goKCNH/+/DQPMQcAAAAAAJLFMAwjvZ3d3NyUPXt2NWjQQO7u7nfst3jxYocUdy9xcXEKCAhQbGys/P3978s6AQCwR82pNR021pbXtzhsLAAAkDEZyaEZmuHu3LnzPW8LBgAAAAAAMhi4Z8+ebVIZAAAAAAA8WOy+SjkAAAAAALgzAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmcGrg3rx5s1q0aKGCBQvKYrFo6dKlziwHAAAAAACHcWrgvnr1qipWrKhPPvnEmWUAAAAAAOBwHs5ceZMmTdSkSRNnlgAAAAAAgCmcGrgzKiEhQQkJCdbncXFxTqwGAAAAAIA7c6mLpo0bN04BAQHWR3BwsLNLAgAAAAAgTS4VuIcOHarY2Fjr4+TJk84uCQAAAACANLnUIeVeXl7y8vJydhkAAAAAANyTS81wAwAAAADgKpw6w33lyhX99ddf1udRUVHavXu3cuXKpSJFijixMgAAAAAAMsepgfv3339XvXr1rM/79+8vSerSpYtmz57tpKoAAAAAAMg8pwbuunXryjAMZ5YAAAAAAIApOIcbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAE3g4uwDcXc2pNR021pbXtzhsLAAAAADA3THDDQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJjAw9kFAACAjNlUJ8Ih40Rs3uSQcQAAQNqY4QYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEWSJwf/LJJwoNDZW3t7eqVq2qbdu2ObskAAAAAAAyxemB+9tvv1X//v01cuRI7dy5UxUrVlSjRo109uxZZ5cGAAAAAIDdnB64P/zwQ3Xv3l3dunVT2bJlNX36dOXIkUMzZ850dmkAAAAAANjNqYH7xo0b2rFjhxo0aGBtc3NzU4MGDfTrr7+m6p+QkKC4uDibBwAAAAAAWZGHM1d+/vx5JSUlKX/+/Dbt+fPn18GDB1P1HzdunEaPHm1aPZUHznXIOEv8PnDIOJK0ZcReh421qU6EQ8bZ+9gbDhlHkmLPzHHIOK3LvOqQcSSpzPAnHDZWVpQV9/MiWXA/j9i8ySHjwDmy4n7uyN/net0xw3w8YIVjBlLW/H3+7c3NDhtr1KhRDhvLUbLifp4Vf59nxb9bhn+90CHjPAzYz9OH/Tzrcvoh5RkxdOhQxcbGWh8nT550dkkAAAAAAKTJqTPcefLkkbu7u86cOWPTfubMGQUFBaXq7+XlJS8vr/tVHgAAAAAAdnPqDLenp6cqV66s9evXW9uSk5O1fv16Va9e3YmVAQAAAACQOU6d4Zak/v37q0uXLqpSpYoef/xxTZ48WVevXlW3bt2cXRoAAAAAAHZzeuDu0KGDzp07pxEjRuj06dOqVKmSVq9enepCagAAAAAAuBKnB25J6tWrl3r16uXsMgAAD4gdH3R2yDgn3nbcVW0BAMDDx6WuUg4AAAAAgKsgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGCCLHFbMAAAsqIiI/Y6uwQAAODCCNwPkYjNmxwyzt4BKxwyDgAAAAA8yDikHAAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAG3BbvNjg86O2ScE29/4JBxAAAAAACuixluAAAAAABMQOAGAAAAAMAEBG4AAAAAAEzAOdwmKDJir7NLAAAAAAA4GYEbGdZrYguHjTW20xyHjQUAAAAAWQmHlAMAAAAAYAJmuAEAeEhxxBIAAOZihhsAAAAAABNYDMMwnF2EveLi4hQQEKDY2Fj5+/s7uxwAAAAAwAMuIzmUGW4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQezi4gMwzDkCTFxcU5uRIAAAAAwMMgJX+m5NG7cenAffnyZUlScHCwkysBAAAAADxMLl++rICAgLv2sRjpieVZVHJysv7991/5+fnJYrE4u5yHQlxcnIKDg3Xy5En5+/s7uxzAFOzneBiwn+NhwH6OhwH7+f1nGIYuX76sggULys3t7mdpu/QMt5ubmwoXLuzsMh5K/v7+fKDxwGM/x8OA/RwPA/ZzPAzYz++ve81sp+CiaQAAAAAAmIDADQAAAACACQjcyBAvLy+NHDlSXl5ezi4FMA37OR4G7Od4GLCf42HAfp61ufRF0wAAAAAAyKqY4QYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOCGaZKTk51dAgAAAAA4DYEbpnjvvffUq1cv3bx509mlAAAAAIBTELhhisKFC2v69Ol66623CN0AgDRxZ1I8SFL2Z/ZrALcjcMPhDMNQp06dtGDBAn344Yd68803df36dWeXBQDIQvbv3y+LxSJJmjlzpn7//XcnVwRkzqVLl5SQkKDLly9LInjjwcb+nX4EbjjU7R++iIgIjR8/Xh988IEmTJigGzduOLEyIGvhGgd4mP3xxx9q1qyZJk2apIEDB+rVV19Vrly5nF0WYLevvvpKLVu21KOPPqrmzZtr6dKl1i+UgAfF999/r+XLl0uSLBYLoTudPJxdAB4sKf+5LFq0SAMGDFD9+vVVpEgRjRgxQpcvX9Y777yjbNmyOblKwLmSk5Pl5nbr+85ly5bpr7/+Ur58+VS5cmWVLVvWydUB5suVK5deeOEFvfPOO0pKStL+/ftVtGhRJSYmysODP03gWhYvXqwePXpowoQJio+PV1RUlFq3bq2hQ4eqf//+yp07t7NLBDJt4cKFat++vQoVKqTExES1bt3aGrr5cunu+F8NDnfo0CG99NJLGjdunF544QXFxsZq6dKlevXVVyVJY8aMkaenp5OrBJzDMAxr2B48eLDmzp2r8PBwRUdHKyQkRD169FCrVq2cWyRgssKFC6tQoUK6fPmyChYsqGXLlqlfv37y8PBQUlKS3N3dnV0ikG6rVq3Sc889p9dee83aVqNGDXXu3Fk3b97U22+/LW9vbydWCGTOrl27NGHCBL300ktKSkrSm2++KcMw1KZNG0J3OhC44XBxcXHKlSuXGjVqJE9PT+XNm1fdu3dXUlKSXn31VQUGBqpv377Knj27s0sF7ruU/5A++ugjffPNN1qyZImqVaumyZMna8iQIdZzADt06CBJ/CeGB0bKkR0p+3SdOnX0008/ac2aNZo+fbquX7+uoUOHErbhUgzDUHR0tAoWLCjp/04X6tSpkzw8PNSxY0eVKlVKL774Ir/P4bLc3d0VEhKiPn36SJImTZqkt956S5II3enAOdxwOG9vb0VFRenvv/+W9H//+TRt2lT58uXT8OHD9d577zmzRMCprly5ov379+uNN95QtWrVtHTpUo0aNUp9+/aVt7e33n33XS1ZskSS+M8LD4TbT6P4888/tX37duXIkUNVq1bVa6+9prZt22rOnDl6//33ra8ZN26c9uzZ46ySgbtKOXc15cujBQsWaP/+/dYvlQzD0DPPPKORI0dqxIgROn78OL/P4XJS/oavUKGCJkyYoPDwcIWHh6tXr16qXr263nrrLS1cuFDSrc/CtWvXnFlulmUxONsdmZDybdZ/DwF87rnndOLECX344Yd6/PHHJd0KGf369VONGjVUvXp1lS5d2lllA053+PBh+fj4KDY2Vi1atNDrr7+uvn37av78+erevbsKFSqkKVOmqHHjxs4uFciU22c9hg8frgULFig5OVk3b95U69atNXDgQLm5uemTTz7R/PnzVbNmTZ0/f15//vmn/v77b2a8kaUlJibqypUrat++vTw9PTVlyhQVK1bMej2CLVu2qE2bNlq9erUqVark7HIBu6Tsz7f/vb9nzx599NFH+vXXXzV27Fg99dRTeuKJJzRo0CA1a9bMyRVnLcxww24pf0StX79egwcPVv/+/bV//35J0quvvqqAgAD17t1bK1eu1J49e/TOO+8oMjJSTz/9NGEbD42kpKQ024sWLapChQrpp59+UoECBfTiiy9KunXYVkREhF588UU9+eST97NUwBQpYfvDDz/Ul19+qc8++0x//fWXnnjiCc2dO1fHjx9XUFCQXnvtNQ0YMECnTp2Sv7+//vrrL7m7u3NFf2RZs2bNUrNmzRQYGKgXX3xRcXFxGjBggA4dOmS9+F/hwoUVGBjI7VHhsmbPnq0mTZooMTFR7u7u1qM7KlasqN69e6tmzZoaNmyYSpcuraNHj/K3SxoI3LCbxWLR2rVr1ahRIx07dkzz5s1Thw4dNGfOHNWqVUtvvvmmSpcurZYtW6pt27b6+uuv9d133ykwMNDZpQOm+/fffyXJ+k3wRx99pNdee00vvviioqOjrX+MGYah8+fP6/fff9fNmzc1b948Va9e3Trrd6fADrgKwzCUmJion376SUOHDlW9evW0YsUKLV68WGPHjlX16tWVkJCg/Pnzq2fPnlq3bp3+97//KVu2bEpMTLQeig5kJYZh6ObNm7pw4YKio6PVoUMHde3aVVevXlXTpk01d+5cfffdd3rllVcUEBBgPdoPcCWGYejGjRuKjY3VP//8Y227PXQ/++yzOnbsmPLmzatjx45Zf3fj/3BIOTIsZWb77NmzGj16tCpWrKgePXpIunUo+cGDB9WrVy917txZHh4eOnTokAzDUM6cOZU/f34nVw+Yb+jQoZo+fbq2bt2qkiVLatSoUZoyZYqaNGmi33//XdeuXdO8efNUp04d7dixQwMGDNDff/8tDw8P+fj4aOfOncqWLRsXIMEDITk5WTdu3FD9+vX1ySef6PLly2ratKkmTJigl19+WQkJCfr8889VpUoVVatWzbrPs/8jK0lrf4yNjVXFihXVvHlzffzxx5Kk3377TfPmzdO3336r0NBQ5c2bV0uXLlW2bNm4Aj+yvLvt5y1bttSUKVNslsXExKht27aKjo7Wnj175OHhwe0d08DXxsgwi8Wibdu2qXXr1tq6datKlChhXTZnzhyVKVNGU6dO1axZs3TlyhWVKlVKpUuXJmzjoTFgwACVLVtWLVu21L59+3TixAmtXbtW//vf/3Tw4EE9+uijateunSIjI1W5cmVNnjxZEyZM0KBBg7Rr1y7rt8OEDbii/x4C7ubmJm9vb4WEhKh169Zq0qSJPvnkE7388suSbv0xt2jRIv3xxx82+zz7P7KStPbHgIAAffDBB9q4caN+/fVXSVK1atU0depU7d27Vxs3btTKlSutv9MJ28jq7rafr1u3Ttu2bbNZ9s8//yh37tzavXs3YfsuCNywS+nSpWWxWLRz507t3r3bemhJtmzZNHfuXFWoUEHjxo2zXrkQeJjkyZNHK1eulL+/v5o0aaI9e/bI19dX0q3wsWzZMlWvXl3t27fXpk2bVKlSJbVv316vvPKK9aIk/IcFV3T71cj/+OMPHThwQLGxsZJu3Xc+X758Klq0qDp37izDMHTp0iV17dpViYmJeumll5xZOnBP7777rp599ll9//331raKFSvK09NT27dvlyTrobT58uWTj4+PLBaLkpOT+Z0Ol3G3/fy3336T9H9frJYrV07ffvut9Usl9vO0EbiRLv8988Df31+rVq3SE088oa+++korVqywnmvq7u6uL7/8Ug0bNlRERIQzygWcLmfOnPrhhx9Uvnx57dq1S+fOnZP0f/9JLV26VLVq1VK9evW0a9cum9cyCwJXlRK2Bw0apNatW+uRRx7RK6+8oh9++MF6gZ2bN2+qcOHCioiIUOPGjXXmzBlt3LhR7u7uXLMAWVqlSpV0/PhxjRo1SrVq1dIvv/yikiVLqm/fvhoxYoROnDhhDRy3zxRyHQK4kvTs5ym3v7sdYfvOOIcb95RyPse2bdv066+/6vr166pUqZIaNWqky5cv66mnntK1a9c0bNgwNWvWjLCAh9LtM3u3u3Tpkpo2baqLFy9q+fLlKlWqlM05UkOGDNHYsWP53MCl3b7/r1q1Sn369NG0adN04cIFzZgxQ0lJSerbt6+eeuopnTp1SjNnzpS7u7sKFCigzp07y93dndkRuISrV69qz549eu+993T48GEVLlxYbdu21bx589SiRQsNGDCA3+dweeznjkXgRrosWrRIr776qh555BEFBARowYIFGjt2rIYOHWoN3Tdv3lSfPn3UunVrPoR4qNweNlasWKFTp04pNDRUxYsXV/HixRUbG6uGDRsqLi5Oy5YtSxW6JXExHTwQ1q5dq+XLl6to0aLq37+/pFuHlo8cOVIxMTF69dVX1a5du1SvY/+HK/jvF6srVqzQpk2b9MknnyghIUHdunXTl19+6cQKgcxjP3c8AjfSdHsY2L9/vxo2bKg333xTPXv21MmTJxUWFqb+/ftr3Lhxcnd3V1xcnOrUqaO8efNqyZIl1vNVgYfJ4MGD9emnn6po0aI6ceKEypcvrxdeeEFdu3ZVbGysGjVqpCtXrujbb79VeHi4s8sFHOrYsWNq1qyZoqKi9Morr+jDDz+0LksJ3VevXtUzzzyjF154wYmVApnz30Cya9curVmzRm+88QZHaeCBwX7uOJxUAhsrVqyQJOtFPiTp3LlzKl26tHr27KmoqCjVqFFD3bt31/vvvy93d3cdPHhQ/v7++vnnnzVjxgzCNh4at59vun37dq1bt05r1qzRnj179OOPP6pUqVKaOnWqvvnmGwUEBOiHH37Q9evXNXbsWCdWDTjGf7+vDw0N1fTp0/XII49o8+bN+vHHH63LKlSooLffflvXr1/X7t2773OlQPr8d5++05zU7SHEMAw98sgjGjJkiPUqzUBWxn5+/xG4YXX06FG1bNlSnTp1kvR/H7Rr167p7Nmz2rZtm+rVq6emTZta7zf5888/a/To0Tp+/Lh8fX0VEhLitPqB+2X//v2S/u/iZuPHj9f06dNVpkwZVatWTZJUpUoV9e3bV2FhYVq6dKlu3rypnDlzateuXfrqq6+cVjvgCMnJydajoE6fPq34+HglJSWpdu3aeuedd+Tl5aXp06drw4YN1teUL19es2bN0uTJk51UNZC2lMCRsk///fffNs/v5r99mPlDVsV+7jwEbliFhYVp+fLlWr16tbp06WJtL168uPLmzasnn3xStWvX1meffWYNGsuWLVNsbKz8/PycVTZwX/Xr109du3bV5s2brW2XL1/WrFmz9Msvv+jUqVPW9vDwcLVp00aLFi3SyZMnJUl+fn5cjRkuL+UL2dGjR6tBgwaqX7++3njjDV27dk316tXT6NGjdfr0aX3yySfauHGj9XXFihWTm5tbqnt1A850+1F948aN05tvvpmu190+M8gZmsjq2M+dh8ANKzc3NzVp0kRz5szRkiVL1LlzZ0m3Anfjxo3l5eWlQoUKaf/+/Tpw4IAGDRqkL7/8Uu+//75y5crl5OqB+6N79+5KSEjQ+PHjFRkZKUl65513NGXKFB07dkyzZ8/WhQsXrP2LFSum4sWLpzr8igtEwRXdHpS//vprffzxx+rfv78effRR/frrr2rZsqXi4+PVoEEDjR49WufOndOoUaO0c+dOm3G4TRKygmHDhlmP2EvZJy9evKgyZcpI0l2/GLr9WjcrVqyw+WIJyErYz52P//Eg6f++sYqLi1OzZs00f/58LV++XB07dpR0656qL774ojZu3KiKFSvq+eef1+rVq7VhwwaVK1fOmaUD901SUpLKli2rBQsW6MSJE3r//feth8y+/vrreueddzRy5EiNGzdOmzZt0r59+zRy5Ej5+fmpePHiTq4eyJzbL6CzcuVK/fvvv/roo4/0wgsv6KOPPtLAgQN16dIlPfXUU9bQPWjQIJUtW1aVKlVybvHAf/zzzz/au3evvvnmG82aNcvafuzYMesXpHf6Yuj2EDJ9+nS1bNmSQ2yRJbGfZxEGHmrJycnWf69bt85o3LixcfPmTePGjRvGypUrjYCAAOO5556z9jl+/LgRGRlpHDx40Dh79qwzSgacKjEx0TAMwzh06JBRrlw5o0mTJsb69euty999913DYrEYFovF6NKli9G6dWvjxo0bhmEYRlJSklNqBjKjSZMmxp49e6zPt2/fbpQsWdLw9/c3lixZYm2/ceOGsWjRIuOxxx4znnzySePKlSs247D/I6vZv3+/0aVLF6NGjRrGjBkzDMMwjJYtWxqjR482DCPtffbmzZvWf0+fPt0IDAw0Fi5ceH8KBuzAfu58zHA/pD788EMtW7bM5nyObdu2ydfXVx4eHsqWLZuaNm2qefPm6fvvv7fOdBcpUkQREREqVaqU8ubN68xNAO6b2w+3SjkUvGTJktZzsz/44APrTPfQoUM1depUSVLlypU1c+ZMZcuWTUlJSRxGC5dz/PhxVahQQaVLl7a2FStWTL169VKuXLk0Y8YMa3u2bNnUokULDR06VAcPHtSwYcMk/d8RVOz/yCpSfqeXKVNGgwcPVrFixTRjxgzNmzdPoaGhyp8/v44eParjx4/rzJkzOn36tH799VdJ/3exqM8++0yDBg3SjBkz1KZNG6dtC3An7OdZiLMTP+6/S5cuGc8884zh4+NjrF692treu3dvo2PHjjZ9k5KSjJUrVxp58uQxWrVqdb9LBZzu9m9+Dxw4YPz6669GXFycce3aNcMwDOPgwYNGuXLljMaNG9vMdI8ZM8awWCzG5MmTjUuXLt3vsgGHmzhxorFx40bDMAwjLi7O+PTTT43y5csbXbt2tel348YNIzIy0no0CJCV3P47/cyZM4Zh3Dpi6fnnnzeqVq1qWCwWw9/f3yhRooSRP39+I1++fEa+fPmMp556ynpU4KeffmoEBAQw44csi/08ayFwP6SOHDlidO/e3QgMDDRWrFhhGIZh9OvXz3jppZcMwzCsYcIwbh1WsnjxYqNIkSLGqVOnnFIv4Ay3n3IxfPhwo2TJkkbu3LmNihUrGpMmTTJOnz5tGMatIF6+fHmjWbNmxqpVq6yvef/99w2LxWJ8+umnNmMBrub8+fNGs2bNjMDAQGPLli2GYRhGTEyM8fHHHxuVKlUyunXrlubrCN3ISm4PIW+//bbRunVrY8eOHYZhGMa+ffuM559/3qhWrZrRu3dvIzY21jhz5oyxZ88e4/Dhw9Z9+e+//zZCQ0ONBQsWOGUbgHthP896CNwPmds/hL/88osxePBgIzAw0Pjpp5+MKVOmGAMHDjSuX79uxMTEWPudOHHCMAwj1fl4wMNizJgxRoECBYwffvjBMAzDeOqpp4yQkBBj+PDhRnR0tGEYt2a68+XLZ/Tv398mZEyaNMnYv3+/U+oG/l97dx5XdZ3vcfx1QEAQcF9Ryd1Ax91ITSbLy9i4pmlFYm7jmKlQAuJVBHMPLQfGRBGX9IrhMigjuOCYa+oQ4EIqlVvjgpViLqDAuX/44Hch807dG3EOvJ+PB4/H4becx/foh9/5fb7L5/d/9VMdRCdPnjS/8cYb5lq1apkPHjxoNpv/J+nu1KmTecCAAb9xK0X+b0JCQsx169Y1r1u3zvzNN98Y2zMzM81+fn5mLy8v85o1ax47r+jaXnTdF7FkinPLYTKb9UC1isJc7IH3e/bsITAwkICAAA4fPkxcXBz29va4urpSWFhIbm4uzs7OPHjwACcnJw4dOkT16tXL+BOI/PYyMzMZN24cQUFB9OvXj927dzN48GCeeeYZzp07x4gRI3jrrbeoV68ely5dws3NDVtbW/Lz81XNU6xS8Wrk5kcd88bvp06dYu7cuezevZu//e1vdO/enZycHJYtW8aZM2dYuXKl1mqLRUtNTWXo0KEsX76cF154wdheFPdnzpxhwYIFHDp0iMWLF9O3b1/jGHOxqs0ilkxxbll0N1hBFE+24+LieP311wGoUqUKs2fPpnLlysTExPDaa68xadIkLly4wMOHDzGZTLRs2VLJtlRYDRo0YNKkSfTq1YsDBw4wfPhwIiIi+NOf/oSPjw9r167l5s2bzJw5k8aNGwOPHh+mZFusUfFke9myZezfvx+TyUTXrl2ZPHkybdq04T//8z8xm828/PLLbN26lW7duvH222/j5ORkFOJU0i2W6rvvvsNsNtOuXTtjW1Gn0sOHD2ndujVTpkyhWbNm9OnTp8S5SkLEWijOLYvuCCsQk8nEpk2beP3119myZQsbN27k9OnTDB48mLFjx/Lw4UPWrFnDkCFDSvSGiVRk1apV4w9/+ANVqlRhzZo1vPzyy4wePRqAp556isuXL1NYWEjNmjWNc4oqmYtYm6JEeerUqXz88ccMGTIEFxcXgoODuXHjBrNnz8bT05Pp06dja2tLjx49yMjIoG3btgAlRsNFLJGDgwNXrlzhwoUL1KpVy5jFYTKZSElJoVq1anh5eeHp6Qk86kDVNV2sjeLcsuhbsYIwmUxs3bqVoUOHsnLlSgYOHMidO3e4cuUKAJ6enrzzzjsMGzYMb29vdu3aVcYtFrEcLi4uAHz//ffcvXuX/Px8AHJycli0aBFRUVGYTCa0QkfKgw0bNrBp0yY2b97MkiVL6Ny5MwUFBcydO5fx48cDj74zpkyZQmhoKB4eHsa5GhkRS1H8cY7Fubu74+XlxeLFizlx4gQmk8kY9Vu4cCHbt28vcbySELFkinProDXcFUhSUhI3b940ppNPmjSJW7dusXbtWuOYxMREUlNTefXVV2nVqlVZNVXEIgUGBrJz506aN2/O1atXycnJ4eTJk9ja2moarZQLBQUFREdHk5ubyzvvvMPf//533njjDWbPno2joyNjxowhJCSEOXPmlDhPNQvEkhS/HiclJXHnzh3y8vJ44403AFi9ejUrVqzA0dERX19fbG1t+fjjj8nOziY1NVWxLFZBcW49lHBXQEVTSubOncu2bds4dOgQtra2zJo1ix07dpCYmEitWrXKupkiFqN4AZFp06Zx/fp1bGxs+Oijj6hUqZKmYonV+qniOLdv3+bGjRs4Ozvj4+ODr68vgYGBnDp1Cm9vb27evMncuXOZOnVqGbVa5MmKx3RISAgbNmygevXq3Lhxg7Zt2/Lxxx9Tq1YtEhISSEhIID4+njZt2lC/fn02btyInZ2druli8RTn1kUJdwVU9Ef617/+lcjISM6cOUN4eDizZ8/m6NGjdOzYsaybKGJxnvTFpJE9sVbFR0eys7OpWbNmiRg/evQoI0aMYOfOnbi7u/PVV18xd+5chg8fznPPPacbNbFoERERLFq0iO3bt9O5c2dWrFjBuHHj8Pb2Ji4ujrp16wKPYt/JyYkqVapgMpl0TReroji3Dpr/WIG1adOGGjVq8PbbbzNv3jw+++wzJdtSYTypr/FJ24uSix+vl9IXlliromQ7LCyMAQMG0KVLF9atW8f169eBR7ULzp07x/r16/niiy+YOHEiN27cwNvb23j0nYilKCgoMF5fv36dU6dOERkZSefOnUlISCAwMJBZs2Zx8eJFfH19uXz5MgB16tTB2dnZqMOha7pYMsW5ddIIdwV29OhRnn32WWxtbTl27BgdOnQo6yaJ/CaKj+xlZmZiY2ODvb09TZs2fWx/ccWncJ07d4769esbBdVErNGaNWsICQkhPDycHTt2kJWVxR//+EcmTJhA48aNiYiIICQkhKeeeopq1apx+PBh7Ozs9JxWsVjnzp2jZcuWbN26lR49enDx4kVeeeUVpkyZwoQJE1iyZAkBAQG0a9eOXbt2Ubt27bJussgvpji3LhrhrsDat2/PrFmzOHXqlJJtqTCKP7YoNDSU119/nd///veMHDmSyMhI4NHI349HsosnGJGRkQwbNoybN2/+to0X+X/6cVzn5eURGhrK2LFj2bp1K76+vuzevZvIyEiuX7/OlClT+OKLL1i3bh1Hjx7Fzs6O/Px8JdtiMbZu3crMmTMB8Pf3Jzg4mPz8fAYNGkTt2rU5cOAAHh4eRsFYFxcXRo8ejaenJzVq1CjLpov8bIpz66b5BBWYg4MDISEhWocnFUpRohAeHs6yZcv4r//6L9zc3FiwYAGTJ0/m7t27TJ061Ui6bWxsSiTb0dHRhIaG8tFHH9G4ceOy/Cgiv0jxzqb169dz/fp10tLS8PHxMY4JCQkBID4+HpPJxPjx42nevDnNmzcHHiXsmoooliIvL48vv/yS+fPn8+mnn5KamsqRI0dKxOi5c+e4ePEiVatW5YcffiAhIYHf//73BAQEAHr+sFg+xXk5YBYRqQAKCwuN1//85z/NXbt2Ne/bt89sNpvNycnJZhcXF/OgQYPMVapUMS9cuNA49uHDh8brZcuWmV1dXc2bN2/+7Rou8isoKCgwXgcGBppdXV3Nbdq0Mdva2pq9vLzM58+fL3H8/PnzzW5ububIyMjfuKUiv0xubq65W7duZpPJZJ4wYYKxPT8/32w2m81ffPGFuWbNmmZ3d3dzy5YtzW3atClxXRexBopz66ZuahEp94qvyT5z5gy/+93vGDhwIF26dGHv3r28+eabREREMHToUIYMGUJwcLDx6KOiHuTo6GiCgoKIjY3l5ZdfLsuPI/KLFcX/uXPn+Pbbb9m7dy/t27cnJiaGtWvXMn36dObMmYO7uzsAwcHBNGjQwJieKGJJil/THz58SK9evejatStr1qyhdu3azJw5E1tbWx48eEDr1q357LPP2LhxI05OTkycOFGPcxSroDgvP1Q0TUTKNfOPnlX52WefkZCQQOXKlbG3t2f06NE4Ozvz/vvvY29vz4QJEzhx4gRVq1Zl+/btmEwm4uPj8fPzY/369Uq2xWpt3LiRadOmUb9+fbZv30716tWBR51J69atw93dnblz5z62VEI3bGJJiich8fHxuLm50bFjRwoLC1m6dCmzZ88mICDAWO8Kj4pjenh4GL8rpsXSKc7LFxVNE5FyrSjZPnbsGAcPHmT+/Pm4urpib29PXl4e6enp5OXlYW9vz71798jOzmbChAkkJiYa57Zv357t27cr2RarVlhYSKNGjcjMzOT+/fvG9nHjxjF8+HC++eYb/vznPxuPBSuiGzaxFOZidQimTp3KpEmTOHv2LPfv38fJyYmRI0cyffp0PvzwQ6ZPn87du3d56aWXeP/990u8j2JaLJnivPzRCLeIlHtLly7l8OHDPHjwgA0bNmBra2v0Hi9YsIDIyEh69+5NVlYW9+7d4/jx49ja2mI2m0t88YlYu8TERMLCwnB0dGT9+vUlRrM/+OADsrKyiIqKUsyLRVuwYAGLFy8mMTGR9u3bY2dnZ+zLy8tj+fLlBAYG0qhRIxwdHUlNTS1xjIg1UJyXH0q4RaTcW7hwIdOmTaNRo0bs3r3bqLgM8NVXX7Fp0yb27t2Lm5sb0dHR2NnZaSqWlCvFl1b87W9/IzIyksLCQtauXUujRo0eO+5Jz6IXKWt5eXkMGzaMZ599luDgYC5dukRmZibR0dE8/fTT+Pr64unpSVZWFqdPn6Zfv37Y2tqSn5+vCvtiNRTn5YsSbhEpV1JSUnj++eexsbEhPDycevXqMW7cOJYuXcqMGTMYM2YMEydOpGHDhk98D31hSXlUPOneunUrUVFRmEwmYmJieOqpp37yOBFLYjabuXPnDr1796Zt27Z0796drVu3cufOHQByc3Px8PAgKioKBwcH4zx1oIo1UZyXP+q+FpFy4+rVq7z99tt4eXkxadIk5s2bh5eXFwBvvfUWU6dOZf369axcuZIrV64Y5xUWFhqvzWazkm0pl0wmE0V97IMGDWLSpElkZ2ezaNGix44TKWtms7nEtbmIi4sL/v7+7Nu3j6lTp9KhQwfCw8NJSUnh2WefJScnp0QSAlrLKpZLcV4x6K5SRMqNunXrsmbNGnx8fDh16hQHDx6kXbt23L9/H0dHRwIDAzGbzcYa1TfffJNGjRqVmDqrZEPKs6Kk22QyMWDAAKpXr06PHj3KulkiJeTk5FC1alXjehwVFUVWVhYFBQXMnDmTV199lR49emAymXBzczPOO336NE2aNCmrZov8IorzikMj3CJi9Yp6h21sbKhUqRI1atSgQYMGBAQEkJubi6OjI7m5uQAEBQUxceJEwsLC2L17d1k2W+RX8aSVYU/aXnyku2fPnlqrLRYlJCSERo0akZ2dbfweFhbGhQsX2LNnD56enqSlpdGwYUPc3NzIyclh586d9OvXj8uXL/OXv/wFeHL8i1gCxXnFom9ZEbFqxYs7nTp1inr16pGamsratWv54Ycf6NWrF3l5eVSuXNn4YgoMDCQ+Pp4RI0aUZdNF/t8KCwuN0ZHMzEzOnDnD119/DWAUP/t3zp07xw8//FCq7RT5ufz8/Gjbti3PPfccly9fNhKNhIQE9u/fT7du3fDx8eHzzz8H4Ouvv2b+/PmYTCbS0tKoVKkSBQUFmq0kFk1xXrGoaJqIWK3iyfaMGTNISkpizpw59O7dm8LCQvbt28eUKVNwdnZmz549VK5cmVGjRuHt7W0k2yoyItaqeHGz0NBQtm3bxrVr12jVqhVDhgxh4sSJAI9VHC9+XmRkJLGxsSQkJJR4RJhIWfryyy/x9fXl0qVLNG7cmHXr1tGiRQsAbt26xciRIzl8+DBJSUl07NiRrKwsmjVrho2NjYpeitVQnFccGuEWEatVlERMnz6dmJgYwsPD6dKlizG1vFevXixZsoTbt2/TpEkTvL29SUlJwdfX13gPJdtirYqS5vDwcJYtW0ZERAT/+Mc/aNKkCZMnT2b+/PnAo7+TopHu4sl2dHQ0oaGhBAcHK9mWMld8Nkbz5s1Zv349nTt3Ji0tjby8POOYatWqsWrVKnr06EHnzp05e/YsLVq0MOJcSYhYMsV5xaT/LRGxaqdPn+aTTz5h9erV+Pj4cPv2bbKysjhw4ACtW7fG29ubhIQEYmNjKSwsJCUlxZiKpWRbrFHxpDk1NZUdO3YQHx+Pt7c3O3fuZMuWLQwcOJDZs2dja2tLYGDgYyMi0dHRBAUFsWrVKl5++eWy/DgiJWZhHDlyBDc3N5o3b86iRYu4efMmAwcO5PDhw9SpUwez2Uy1atVYsWIFLVu2pHnz5sb7qB6BWDLFecWlKeUiYtUyMjIYNmwYsbGx5Ofn88knn7Bv3z5u3rxJ7dq1ee+99+jXr1+Jc5Rsi7UqfsN25swZmjVrRkREBJMnT+azzz7D19eX8PBwhg4dypAhQ9i7dy9Tp05l7ty5xnsUJduxsbEMHjy4rD6KCFAypqdNm0ZiYiIzZ86kT58+ODk5kZWVhZ+fHzdu3ODQoUPUrVv3sWUSml4rlk5xXrGpi0RErMZPFYBq1aoVNjY2jBkzhhdffBGAefPmceTIEfLz87l27dpj5yjZFmtkNpuNm6+QkBDGjx/P/fv3effdd3FycmL9+vUMHTqUN998k2rVqtGqVSu6d+/OiRMnjIKB8fHx+Pv7s2rVKiXbYhGKYnrmzJnExsayaNEifHx8cHJyAqBFixbExcVRs2ZNevbsyZUrVx4b4VMSIpZOcV6x6X9ORKxC8Z7e48ePG9WZu3btSlpaGomJidSuXZsePXoYx7m6uv6sKs0i1qBoGvmxY8c4ePAgERERuLq6ApCXl0d6ejpdunTB3t6ee/fukZ2dzYQJE3j11VeN92jfvj3bt283OqdELMHXX3/N5s2biY6Opnfv3nz77bd8+eWX7Nq1i6eeeoqhQ4eyadMmnn/+eQICAti4cWNZN1nkF1OcV1xKuEXE4hUf2QsODmbDhg2YTCauX7/Oa6+9xowZM4zRurt373Lr1i3Gjh1Lbm4uY8aMKcumi/yqli5dyuHDh6lfvz6dO3cGHnVGOTg4MHToUCIjIxk5ciRZWVncu3ePV155BXj0N2Q2m2nRooVRBVfEUlSqVAl7e3tycnLYs2cPGzZs4PPPPycvL4979+5x8+ZNxo0bx759+6hfv35ZN1fk/0RxXnFpSrmIWLyikb2oqChiY2OJi4tj165dJCYmkpycTHBwMBcvXgQgJiaGAQMGcOfOHY4ePYqtrS0FBQVl2XyRX82dO3eIi4vj+PHjnD9/HvifqYpFjwK7cuUKLVu2LBH/JpNJhXbEIvzUrKN69epRr149PvzwQ3x8fHB1dWX+/PkcPnyYFi1a8P333wPQsGFDXdPFKijOpTiNcIuI1Th+/DiDBw+mW7dumM1mWrVqRVJSEj179uTpp59m1qxZjBgxAldXV/z8/LC1tVWREbFaKSkpPP/889jY2BAeHk69evUICgrC2dmZGTNmsGLFCiZOnEjDhg0BaNasGcHBwQQHBxvvofgXS1J8adDp06ext7fHbDbTsmVLtmzZwtGjR3F2dqZTp07GOffv33+s7obqcIglU5zLj6lKuYhYpOKPPgJ4+PAhffr0oWHDhqxevZrCwkLy8/Oxt7dn8eLFLFu2jCNHjlCzZk3jHFUjF2t19epVevXqhYuLC15eXixfvpyjR4/Srl07AN5//32WLFnC2LFjGTt2LA0aNABK3uj9+G9IpCwVj8ewsDA2bdrEvXv3sLe3JyQkhBEjRhjH3rlzx6hBcPXqVf75z3+q40isguJcforml4mIxSkqiAaPioxkZ2djZ2eHn58fmzZtIiUlBRsbG+zs7ABwcHCgVq1auLi4lHgfJdtirerWrcuaNWvIysoiJiaGgwcP0q5dO+7fvw9AYGAgkyZNYuXKlaxcuZLLly8DJZ/PqmRbLEnxJGTp0qV88MEH7Ny5k86dOzNy5Eiio6ONY9euXYufnx8PHjzg+PHjVKpUSdNrxSoozuWnKOEWEYtT/FmV/fv3x8PDw5hKO2rUKCZMmEBycjKFhYXk5OSQmJiIm5ubkYCLWKuidX82NjZUqlSJGjVq0KBBAwICAsjNzcXR0ZHc3FwAgoKCmDhxImFhYezevbssmy3ys6SmpvLpp58SFxdH7969OXfuHH//+9/54x//yPjx41mxYgUAo0eP5p133mHXrl3Y2dmRn5+vDlSxGopz+TFNKRcRi1F8Omx8fDwBAQFERUVx4sQJkpOTady4MV5eXvzrX//igw8+oGnTptja2uLg4MDx48exs7PTNFqxWsXj/9SpU9SoUQMnJycyMzN56623cHJy4h//+AcODg4l4nzLli0MGDBAN2picX58Pf7mm29Yv349/v7+HDp0iDfeeIPQ0FCGDx/OoEGD2LNnDwsWLCAwMNA4R0uDxNIpzuXfUcItIhZn//79bN68mXbt2jFq1CgAtm3bRmRkJNWrV2fs2LHUqVPHKDwybNgwFUgTq1Y82Z4xYwZJSUnMmTOH3r17U1hYyL59+5gyZQrOzs7s2bOHypUrM2rUKLy9vY01gbphE0tSPB6/+uornJ2dqVu3rhHrb775Jk5OTixZsgQ7Ozv+/Oc/k5qaSuXKldm/f786TsUqKM7l59CUchGxKNeuXWPUqFGsXr2a27dvG9v79+/PpEmT+O6771i6dCl5eXn86U9/4vXXXzcen6FkW6xVUbI9ffp0YmJiCA8Pp0uXLsbU8l69erFkyRJu375NkyZN8Pb2JiUlBV9fX+M9lGyLJfjoo49IT0834jEkJIQBAwbg6elJUFAQqampAGRkZFClShXs7Oy4f/8+N27cICwsjAMHDmAymdB4kFgyxbn8EhrhFhGLc+LECV555RXc3d1ZtGgRbdu2Nfbt2LGD4OBg+vbty7x588qwlSK/rtOnTzNo0CAiIyPx8fHh9u3bXL9+nQMHDtC6dWu6devG+fPniY2NpbCwkPDwcKPIjpJtsQTnz5+nZ8+e9OnTh6CgIGM5RNHSoB07dtCgQQOmT5/OwYMHmTJlCiNHjiQ9PZ2HDx9y/PhxbG1ttTRILJriXH4pJdwiYpEyMjIYOXIknTt3ZvLkyXh6ehr7Dh8+zDPPPKMkQ8qVjIwMhg0bRmxsLPn5+XzyySfs27ePmzdvUrt2bd577z369etX4hwl22Jp0tPTGTNmDM899xw2NjZ4eHgwevRoABITE1m0aBHVq1fn1Vdf5dtvv2Xbtm24ubmxbNky7OzsFNNiFRTn8ktoSrmIWKR27dqxcuVKUlNTWbJkCZmZmca+bt26GdPIRaxRUTXy4lq1aoWNjQ1jxozhxRdfBGDevHkcOXKE/Px8rl279tg5umETS9O+fXuWL1/OwYMHWbVqFT/88IOxr2/fvrzzzjvcvn2bTz75hHbt2pGcnMzKlStVpVmsiuJcfgkl3CJisTp06EBMTAzp6enMnDmT8+fPl9ivLyyxRsULpB0/fpyjR49y7NgxKleuTFpaGu+99x579uzhL3/5C/369aNx48a4urr+ZJIuYok6duxIbGws1atXZ8eOHZw8edLY169fPwICAjh79izbt283tpvNZtXhEKuiOJefS1PKRcTiHTt2jGXLlhETE2MkKiLWqPiaveDgYDZs2IDJZOL69eu89tprzJgxg6ZNmwJw9+5dbt26xdixY7l27Zqx7k/EWmhpkFQEinP5d5Rwi4hVKEpUio8OilirqKgowsPDSUhIoGbNmly+fJnhw4fTo0cPIiIicHd3Z8mSJXz88cc4OTmRkpKidX9ildLS0hgzZgydOnXC398fDw+PEvsV01IeKM7lf6OEW0Sship6SnkxYsQIHB0dWbZsmRHX6enp9OzZE39/f2bNmsWtW7fYunUrfn5+es68WLW0tDTGjRuHu7s7CxcupEmTJmXdJJFfneJcnkTDRCJiNZRsizX6cb/2w4cP+de//kVubq6x/8GDB7Rv356wsDDi4uL47rvvqFatGiNHjtRz5sXqdejQgaioKFxcXHB3dy/r5oiUCsW5PIkSbhERkVJSWFhodBR9/fXXZGdnY2dnh5+fH5s2bSIlJQUbGxvs7OwAcHBwoFatWri4uJR4H01FFGvXtWtXVq5ciY2NjQoASrmlOJefooRbRESklBTVG5g2bRr9+/fHw8ODoKAgnJ2dGTVqFBMmTCA5OZnCwkJycnJITEzEzc3NSMBFyhOTyYTZbFYdDinXFOfyY5qfJiIi8isrXtwvPj6etWvXEhUVxYkTJ0hOTubSpUt4eXnRr18/+vbtS9OmTbG1tcXBwYHjx48bN2xaRiHljWJaKgLFuRSnomkiIiKlZP/+/WzevJl27doxatQoALZt20ZkZCTVq1dn7Nix1KlTh6NHj+Ls7MywYcNUIE1ERKQcUcItIiJSCq5du0aPHj24ceMG4eHh+Pv7G/u2b9/Ohx9+iKurKyEhIXTt2tXYp8fHiIiIlB9aXCAiIlIK6tWrx5YtW6hXrx47duzg5MmTxr5+/frx7rvv8uWXX7J169YS5ynZFhERKT80wi0iIlKKMjIyGDlyJJ07d2by5Ml4enoa+w4fPswzzzyjJFtERKScUsItIiJSytLS0hgzZgydOnXC398fDw+PEvs1jVxERKR8UsItIiLyG0hLS2PcuHG4u7uzcOFCmjRpUtZNEhERkVKmNdwiIiK/gQ4dOhAVFYWLiwvu7u5l3RwRERH5DWiEW0RE5DdU9Hzt4s/qFhERkfJJCbeIiMhvrCjpFhERkfJNXesiIiK/MSXbIiIiFYMSbhEREREREZFSoIRbREREREREpBQo4RYREREREREpBUq4RUREREREREqBEm4RERERERGRUqCEW0REpJy6cOECJpOJ9PT0sm6KiIhIhaSEW0RExIKZTKb/9ScsLKysmygiIiJPUKmsGyAiIiJPdvXqVeP1xo0bCQ0N5ezZs8Y2Z2fnsmiWiIiI/Awa4RYREbFg9erVM36qVq2KyWQyfq9Tpw6LFy+mYcOGODg40L59e5KTk5/4XgUFBYwaNYrWrVtz6dIlABISEujYsSOVK1emadOmhIeHk5+fb5xjMpmIiYlh0KBBODk50aJFC7Zt22bsv3nzJr6+vtSuXRtHR0datGjBqlWrSu8fRERExIoo4RYREbFSS5YsYdGiRURERHDixAl8fHzo378/WVlZjx2bl5fHK6+8Qnp6OgcOHKBx48YcOHAAPz8/Jk+eTGZmJtHR0axevZo5c+aUODc8PJyhQ4dy4sQJXnrpJXx9ffn+++8BmDFjBpmZmSQlJfHFF1/w0UcfUatWrd/k84uIiFg6k9lsNpd1I0REROTfW716Nf7+/ty6dQsANzc3JkyYwLRp04xjunbtSpcuXfjrX//KhQsXaNKkCQcOHCAsLIy8vDwSExOpWrUqAC+++CIvvPACISEhxvnr1q0jKCiIK1euAI9GuKdPn857770HwN27d3F2diYpKYk//OEP9O/fn1q1ahEbG/sb/SuIiIhYD63hFhERsUK3b9/mypUrdO/evcT27t27k5GRUWLba6+9RsOGDdm7dy+Ojo7G9oyMDA4dOlRiRLugoIDc3Fzu3buHk5MTAL/73e+M/VWqVMHV1ZXs7GwAxo8fz+DBg/n888/5j//4DwYOHEi3bt1+9c8rIiJijTSlXEREpJx76aWXOHHiBEeOHCmx/c6dO4SHh5Oenm78nDx5kqysLCpXrmwcZ2dnV+I8k8lEYWEhAH369OHixYsEBARw5coVXnjhBaZMmVL6H0pERMQKKOEWERGxQq6urjRo0IBDhw6V2H7o0CE8PDxKbBs/fjzz58+nf//+fPrpp8b2jh07cvbsWZo3b/7Yj43Nz79FqF27NiNGjGDdunV8+OGHLF++/P/34URERMoJTSkXERGxUoGBgcycOZNmzZrRvn17Vq1aRXp6OuvXr3/s2IkTJ1JQUEDfvn1JSkqiR48ehIaG0rdvXxo3bsyQIUOwsbEhIyODU6dOMXv27J/VhtDQUDp16oSnp6exRvzpp5/+tT+qiIiIVVLCLSIiYqUmTZpETk4O7777LtnZ2Xh4eLBt2zZatGjxk8f7+/tTWFjISy+9RHJyMj4+PiQmJjJr1iwWLFiAnZ0drVu3ZsyYMT+7Dfb29oSEhHDhwgUcHR157rnniIuL+7U+ooiIiFVTlXIRERERERGRUqA13CIiIiIiIiKlQAm3iIiIiIiISClQwi0iIiIiIiJSCpRwi4iIiIiIiJQCJdwiIiIiIiIipUAJt4iIiIiIiEgpUMItIiIiIiIiUgqUcIuIiIiIiIiUAiXcIiIiIiIiIqVACbeIiIiIiIhIKVDCLSIiIiIiIlIK/hvoG1r0uD38jQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -970,7 +1705,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAMGCAYAAABcf89wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChGElEQVR4nOzde3zO9f/H8ee1zQ7MNqeZw2xzNscijDJETik5JhpyKBGiYirHNH1LiL5IOaWD5FTIIYxySDklp1IbYkNlG8awfX5/9Nv1dbWDa1zbtY8e99vtut263p/35/15fa7D9Lzen4PFMAxDAAAAAADAVFycXQAAAAAAAMg5Aj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AwKGaNm2qpk2bWp/HxsbKYrFowYIFeVpH7969FRwcnKfbvBP5od6mTZuqRo0aTq0hP0v/LL/11lvOLiVPLViwQBaLRbGxsc4uJV9y1t84AJAI9ACQ59L/59jT01OnT5/OsJxQlTfS34dbPewJ2YcPH9a4cePyJPA0bdrUWpuLi4t8fHxUpUoVPfnkk9q4cWOub1+Szpw5o3Hjxmn//v15sr07kR627HkQWO/MuHHjbF7PggULKjQ0VK+88oqSkpIctp3k5GSNGzdO0dHRDhsTAMzKzdkFAMC/VUpKiiZPnqwZM2Y4u5RcFRQUpCtXrqhAgQLOLsVGkyZN9OGHH9q09evXT/Xr19eAAQOsbd7e3rcc6/Dhwxo/fryaNm2aJ7PsZcuWVVRUlCTp8uXLOn78uJYvX67Fixera9euWrx4ca6+3mfOnNH48eMVHBysOnXq5Np2HKFEiRIZ3ucpU6bo999/19SpUzP0xZ2bNWuWvL29denSJW3YsEGTJk3S5s2btX37dlksljsePzk5WePHj5ckm6OBAODfiEAPAE5Sp04dzZ07V5GRkSpdunSubMMwDF29elVeXl65Mr490o9GyG/Kly+v8uXL27Q988wzKl++vHr27Omkquzj6+ubocbJkydryJAh+u9//6vg4GC98cYbTqrOeZKTk1WwYEGbtkKFCmV4rT799FNduHAh37/PZtW5c2cVL15c0t/fqU6dOmn58uXatWuXwsLCMl0ns/cOAHBrHHIPAE4yevRopaamavLkybfse+PGDU2cOFEVKlSQh4eHgoODNXr0aKWkpNj0Cw4O1sMPP6z169erXr168vLy0pw5cxQdHS2LxaLPPvtM48ePV5kyZVS4cGF17txZiYmJSklJ0bBhw+Tv7y9vb2/16dMnw9jz589X8+bN5e/vLw8PD4WGhmrWrFm3rP2f55em12LP4e1fffWVHnjgARUqVEiFCxdWu3btdOjQoQzbWLlypWrUqCFPT0/VqFFDK1asuGVd9tq3b5/atGkjHx8feXt768EHH9SuXbusyxcsWKAuXbpIkpo1a2bdl/TDgVetWqV27dqpdOnS8vDwUIUKFTRx4kSlpqY6rEZJcnV11TvvvKPQ0FDNnDlTiYmJNssXL16sunXrysvLS0WLFtXjjz+uU6dOZTrWnj171KhRI3l5eSkkJESzZ8+2LouOjtZ9990nSerTp491f7M7fzj9UOyjR4+qa9eu8vHxUbFixTR06FBdvXo1Q397ak0/NWXPnj1q0qSJChYsqNGjR9v7cmVw7tw59e3bVyVLlpSnp6dq166thQsX3nI9wzA0YMAAubu7a/ny5be1D4cPH1azZs1UsGBBlSlTRv/5z3/sqtne72T634Vvv/1W9evXl6enp8qXL69FixZl6Hvo0CE1b95cXl5eKlu2rF577TWlpaXZVU9WmjdvLkmKiYmRlP17d6v3ITY21nokxfjx462fv3Hjxln7bN682fp3w8/PT48++qiOHDmSoa7Tp0+rb9++1u9mSEiIBg4cqGvXrln7/Pbbb+rSpYuKFi2qggULqmHDhlqzZs0dvR4A4EjM0AOAk4SEhCgiIkJz587VqFGjsp2l79evnxYuXKjOnTtrxIgR+u677xQVFaUjR45kCK/Hjh1T9+7d9fTTT6t///6qUqWKdVlUVJS8vLw0atQoHT9+XDNmzFCBAgXk4uKiCxcuaNy4cdq1a5cWLFigkJAQjRkzxrrurFmzVL16dT3yyCNyc3PTl19+qWeffVZpaWkaNGiQ3ftdrVq1DIdAJyQkaPjw4fL397e2ffjhh+rVq5datWqlN954Q8nJyZo1a5buv/9+7du3zxr+N2zYoE6dOik0NFRRUVH6888/1adPH5UtW9bumrJy6NAhPfDAA/Lx8dFLL72kAgUKaM6cOWratKm2bt2qBg0aqEmTJhoyZIjeeecdjR49WtWqVbPup/R34Pf29tbw4cPl7e2tzZs3a8yYMUpKStKbb755xzXezNXVVd27d9err76qb7/9Vu3atZMkTZo0Sa+++qq6du2qfv366fz585oxY4aaNGmiffv2yc/PzzrGhQsX1LZtW3Xt2lXdu3fXZ599poEDB8rd3V1PPfWUqlWrpgkTJmjMmDEaMGCAHnjgAUlSo0aNbllf165dFRwcrKioKO3atUvvvPOOLly4YBMsc1Lrn3/+qTZt2ujxxx9Xz549VbJkydt63a5cuaKmTZvq+PHjGjx4sEJCQrR06VL17t1bCQkJGjp0aKbrpaam6qmnntKSJUu0YsWK2369W7durY4dO6pr1676/PPPNXLkSNWsWVNt2rTJtu6cfCePHz+uzp07q2/fvurVq5fmzZun3r17q27duqpevbokKT4+Xs2aNdONGzc0atQoFSpUSO+9994dH+Hz66+/SpKKFStmbcvsvbPnfShRooRmzZqlgQMH6rHHHlPHjh0lSbVq1ZIkff3112rTpo3Kly+vcePG6cqVK5oxY4YaN26svXv3Wv9unDlzRvXr11dCQoIGDBigqlWr6vTp0/r888+VnJwsd3d3nT17Vo0aNVJycrKGDBmiYsWKaeHChXrkkUf0+eef67HHHruj1wUAHMIAAOSp+fPnG5KM77//3vj1118NNzc3Y8iQIdbl4eHhRvXq1a3P9+/fb0gy+vXrZzPOCy+8YEgyNm/ebG0LCgoyJBnr1q2z6btlyxZDklGjRg3j2rVr1vbu3bsbFovFaNOmjU3/sLAwIygoyKYtOTk5w760atXKKF++vE1beHi4ER4ebn0eExNjSDLmz5+f6euRlpZmPPzww4a3t7dx6NAhwzAM4+LFi4afn5/Rv39/m77x8fGGr6+vTXudOnWMUqVKGQkJCda2DRs2GJIy7MOtFCpUyOjVq5f1eYcOHQx3d3fj119/tbadOXPGKFy4sNGkSRNr29KlSw1JxpYtWzKMmdnr9vTTTxsFCxY0rl69am3r1auXXfX+8/PxTytWrDAkGdOnTzcMwzBiY2MNV1dXY9KkSTb9Dh48aLi5udm0h4eHG5KMKVOmWNtSUlKMOnXqGP7+/tbPzvfff5/te/pPY8eONSQZjzzyiE37s88+a0gyDhw4cNu1zp49264abtauXTub13ratGmGJGPx4sXWtmvXrhlhYWGGt7e3kZSUZBjG/z7Lb775pnH9+nWjW7duhpeXl7F+/XrrerezD4sWLbK2paSkGAEBAUanTp1uuR/2fifT/y5s27bN2nbu3DnDw8PDGDFihLVt2LBhhiTju+++s+nn6+trSDJiYmKyrSf9fT527Jhx/vx5IyYmxpgzZ47h4eFhlCxZ0rh8+bLNfv/zvbP3fTh//rwhyRg7dmyGGtI/q3/++ae17cCBA4aLi4sRERFhbYuIiDBcXFyM77//PsMYaWlpNq/HN998Y1128eJFIyQkxAgODjZSU1MNw7j13zgAyE0ccg8ATlS+fHk9+eSTeu+99xQXF5dpn7Vr10qShg8fbtM+YsQIScpw+GdISIhatWqV6VgRERE2F0tr0KCBDMPQU089ZdOvQYMGOnXqlG7cuGFtu3mWLjExUX/88YfCw8P122+/ZTi8OycmTpyo1atXa8GCBQoNDZUkbdy4UQkJCerevbv++OMP68PV1VUNGjTQli1bJElxcXHav3+/evXqJV9fX+uYLVu2tI51u1JTU7VhwwZ16NDB5lz7UqVK6YknntC3335r15W7b37dLl68qD/++EMPPPCAkpOTdfTo0TuqMTPpF/G7ePGiJGn58uVKS0tT165dbV7LgIAAVapUyfpapnNzc9PTTz9tfe7u7q6nn35a586d0549e+6otn/OGj/33HOS/vcZz2mtHh4e6tOnzx3VlL79gIAAde/e3dpWoEABDRkyRJcuXdLWrVtt+l+7dk1dunTR6tWrtXbtWj300EPWZTndB29vb5tz+d3d3VW/fn399ttvt6w7J9/J0NBQ69EU0t8XAKxSpYrNdtauXauGDRuqfv36Nv169Ohxy1puVqVKFZUoUUIhISF6+umnVbFiRa1Zs8bmHPnM3rucvg//lP73oHfv3ipatKi1vVatWmrZsqX1c5aWlqaVK1eqffv2qlevXoZx0i/ct3btWtWvX1/333+/dZm3t7cGDBig2NhYHT58OAevCgDkDg65BwAne+WVV/Thhx9q8uTJmj59eoblJ06ckIuLiypWrGjTHhAQID8/P504ccKmPSQkJMttlStXzuZ5eggODAzM0J6WlqbExETrYbLbt2/X2LFjtXPnTiUnJ9v0T0xMtAnU9lq3bp3Gjx+vyMhIderUydr+yy+/SPrfubf/5OPjI0nWfa9UqVKGPlWqVNHevXtzXFO68+fPKzk52eaUhXTVqlVTWlqaTp06ZT1cOSuHDh3SK6+8os2bN2f4AeBOfgjJyqVLlyRJhQsXlvT3a2kYRqavkaQMV8MvXbq0ChUqZNNWuXJlSX+fv9ywYcPbru2fNVSoUEEuLi7W28XltNYyZcrI3d39tutJd+LECVWqVEkuLrbzHOmnTfzzOxYVFaVLly7pq6++ynCV9ZzuQ9myZTNc+b1IkSL68ccfb1l3Tr6T//zup2/nwoUL1ucnTpxQgwYNMvTL7DuQnWXLlsnHx0cFChRQ2bJlVaFChQx9Mnvvcvo+/FP68qy+s+vXr9fly5d16dIlJSUl3fL2oFm9HjfXwy1GATgbgR4AnCz9qurvvfeeRo0alWU/e2/3lN35rq6urjlqNwxD0t/nwD744IOqWrWq3n77bQUGBsrd3V1r167V1KlTb+uiWTExMerRo4datmyp1157zWZZ+ngffvihAgICMqzr5maOf74SEhIUHh4uHx8fTZgwQRUqVJCnp6f27t2rkSNH3vHFxjLz008/SZL1B6C0tDRZLBZ99dVXmb7P9tyWL7f88zOd01qddfeGVq1aad26dfrPf/6jpk2b2tzFIaf7cKvvXlZy+p283e3cjiZNmlivcp8VZ955AwDuJub4PyIAuMu98sorWrx4caa3GgsKClJaWpp++eUX68yQJJ09e1YJCQkKCgrK9fq+/PJLpaSk6IsvvrCZ6fvn4cP2unLlijp27Cg/Pz998sknGWbk0mf0/P391aJFiyzHSd/39Bn9mx07duy2aktXokQJFSxYMNNxjh49KhcXF+uRDVn92BIdHa0///xTy5cvV5MmTazt6Vf7drTU1FR9/PHHKliwoPUw4QoVKsgwDIWEhFhn2rNz5swZXb582WaW/ueff5Yk6wXFbvde4r/88ovNESTHjx9XWlqaddyc1uooQUFB+vHHH5WWlmbzWUw/JeKf37GGDRvqmWee0cMPP6wuXbpoxYoV1h+Z8mofHP2dlP7ez9z4LuVk+/a8D1l9/tKXZ/WdLV68uAoVKiQvLy/5+PhYf/zKrp6sxrp5ewDgTJxDDwD5QIUKFdSzZ0/NmTNH8fHxNsvatm0rSZo2bZpN+9tvvy1J1itr56b02b2bZ/MSExM1f/782xrvmWee0c8//6wVK1aoSJEiGZa3atVKPj4+ev3113X9+vUMy8+fPy/p7/PZ69Spo4ULF9ocvr5x48Y7Pr/V1dVVDz30kFatWmU9JFz6+4eUjz/+WPfff7/10P/08JuQkJBhDMn2dbt27Zr++9//3lFtmUlNTdWQIUN05MgRDRkyxFpbx44d5erqqvHjx2eYjTUMQ3/++adN240bNzRnzhybeufMmaMSJUqobt26krLe31t59913bZ7PmDFDkqxXc89prY7Stm1bxcfHa8mSJda2GzduaMaMGfL29lZ4eHiGdVq0aKFPP/1U69at05NPPmmdEc+rfXD0d1L6+3XYtWuXdu/ebW07f/68Pvroo9svNIfbt+d9SD8X/5+fv5v/Hty87KefftKGDRusf0tdXFzUoUMHffnll/rhhx8y1JH+mrZt21a7d+/Wzp07rcsuX76s9957T8HBwXd8nQ4AcARm6AEgn3j55Zf14Ycf6tixYzbnZdeuXVu9evXSe++9Zz2Ee/fu3Vq4cKE6dOigZs2a5XptDz30kNzd3dW+fXs9/fTTunTpkubOnSt/f/8sL+aXlTVr1mjRokXq1KmTfvzxR5tzhb29vdWhQwf5+Pho1qxZevLJJ3Xvvffq8ccfV4kSJXTy5EmtWbNGjRs31syZMyX9fT5zu3btdP/99+upp57SX3/9pRkzZqh69erW88lv12uvvaaNGzfq/vvv17PPPis3NzfNmTNHKSkpNvcKr1OnjlxdXfXGG28oMTFRHh4eat68uRo1aqQiRYqoV69eGjJkiCwWiz788MM7Psw5MTFRixcvliQlJyfr+PHjWr58uX799Vc9/vjjmjhxorVvhQoV9NprrykyMlKxsbHq0KGDChcurJiYGK1YsUIDBgzQCy+8YO1funRpvfHGG4qNjVXlypW1ZMkS7d+/X++99571/O8KFSrIz89Ps2fPVuHChVWoUCE1aNAg2+s3SH8fmfDII4+odevW2rlzpxYvXqwnnnhCtWvXvq1aHWXAgAGaM2eOevfurT179ig4OFiff/65tm/frmnTplmvR/BPHTp00Pz58xURESEfHx/NmTMnz/bBkd/JdC+99JI+/PBDtW7dWkOHDrXeti595jy32fs+eHl5KTQ0VEuWLFHlypVVtGhR1ahRQzVq1NCbb76pNm3aKCwsTH379rXets7X19fmXvWvv/66NmzYoPDwcA0YMEDVqlVTXFycli5dqm+//VZ+fn4aNWqUPvnkE7Vp00ZDhgxR0aJFtXDhQsXExGjZsmUZjiwCAKfI02vqAwBsblv3T7169TIkZbgt2fXr143x48cbISEhRoECBYzAwEAjMjLS5rZnhvH37anatWuXYdz029YtXbrUrlrSbz91/vx5a9sXX3xh1KpVy/D09DSCg4ONN954w5g3b16G21nd6rZ16dvM7PHP27Zt2bLFaNWqleHr62t4enoaFSpUMHr37m388MMPNv2WLVtmVKtWzfDw8DBCQ0ON5cuX230buJv987Z1hmEYe/fuNVq1amV4e3sbBQsWNJo1a2bs2LEjw7pz5841ypcvb7i6utrcwm779u1Gw4YNDS8vL6N06dLGSy+9ZKxfvz7Dbe5yctu6m18zb29vo1KlSkbPnj2NDRs2ZLnesmXLjPvvv98oVKiQUahQIaNq1arGoEGDjGPHjtmMXb16deOHH34wwsLCDE9PTyMoKMiYOXNmhvFWrVplhIaGGm5ubre8ZVf65+nw4cNG586djcKFCxtFihQxBg8ebFy5cuWOar0d/7xtnWEYxtmzZ40+ffoYxYsXN9zd3Y2aNWtm2Kebb1t3s//+97+GJOOFF15wyD7Y+1mw9zuZ1d+Ff35XDcMwfvzxRyM8PNzw9PQ0ypQpY0ycONH44IMPcnTbupv/bmQmu/fOnvfBMAxjx44dRt26dQ13d/cMt7D7+uuvjcaNGxteXl6Gj4+P0b59e+Pw4cMZxjhx4oQRERFhlChRwvDw8DDKly9vDBo0yEhJSbH2+fXXX43OnTsbfn5+hqenp1G/fn1j9erVNuNw2zoAzmQxjFy4GgoAAMD/GzdunMaPH6/z58/f8mJpAADAfhwrBAAAAACACRHoAQAAAAAwIQI9AAAAAAAmxDn0AAAAAACYEDP0AAAAAACYEIEeAAAAAAATcnN2AfldWlqazpw5o8KFC8tisTi7HAAAAADAXc4wDF28eFGlS5eWi0vW8/AE+ls4c+aMAgMDnV0GAAAAAOBf5tSpUypbtmyWywn0t1C4cGFJf7+QPj4+Tq4GAAAAAHC3S0pKUmBgoDWPZoVAfwvph9n7+PgQ6AEAAAAAeeZWp31zUTwAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCHOoQcAAACAf4nU1FRdv37d2WX86xUoUECurq53PA6BHgAAAADucoZhKD4+XgkJCc4uBf/Pz89PAQEBt7zwXXYI9AAAAABwl0sP8/7+/ipYsOAdhUjcGcMwlJycrHPnzkmSSpUqddtjEegBAAAA4C6WmppqDfPFihVzdjmQ5OXlJUk6d+6c/P39b/vwey6KBwAAAAB3sfRz5gsWLOjkSnCz9PfjTq5pQKAHAAAAgH8BDrPPXxzxfhDoAQAAAAAwIQI9AAAAAAD/b9y4capTp46zy7ALgR4AAAAAcEd69+4ti8Uii8Uid3d3VaxYURMmTNCNGzfuaMwOHTo4rsi7EFe5BwAAAADcsdatW2v+/PlKSUnR2rVrNWjQIBUoUECRkZE2/a5duyZ3d3cnVXl3YYYeAAAAAHDHPDw8FBAQoKCgIA0cOFAtWrTQF198YZ1pnzRpkkqXLq0qVapIkg4ePKjmzZvLy8tLxYoV04ABA3Tp0iVJfx/2vnDhQq1atco68x8dHX3L9dLNmzdP1atXl4eHh0qVKqXBgwdbl508eVKPPvqovL295ePjo65du+rs2bN58yI5GIEeAAAAAOBwXl5eunbtmiRp06ZNOnbsmDZu3KjVq1fr8uXLatWqlYoUKaLvv/9eS5cu1ddff20N3i+88IK6du2q1q1bKy4uTnFxcWrUqNEt15OkWbNmadCgQRowYIAOHjyoL774QhUrVpQkpaWl6dFHH9Vff/2lrVu3auPGjfrtt9/UrVu3vH+BHIBD7gEAAAAADmMYhjZt2qT169frueee0/nz51WoUCG9//771kPt586dq6tXr2rRokUqVKiQJGnmzJlq37693njjDZUsWVJeXl5KSUlRQECAdeyFCxfecr3XXntNI0aM0NChQ63r3XfffZL+/mHh4MGDiomJUWBgoCRp0aJFql69ur7//ntrP7Nghh4AAAAAcMdWr14tb29veXp6qk2bNurWrZvGjRsnSapZs6bNefNHjhxR7dq1raFckho3bqy0tDQdO3Ysy23car1z587pzJkzevDBB7NcPzAw0BrmJSk0NFR+fn46cuTI7e660zBDDwAAAAC4Y82aNdOsWbPk7u6u0qVLy83tf3Hz5gCem7y8vPJkO/kFM/QAAAAAgDtWqFAhVaxYUeXKlbMJ85mpVq2aDhw4oMuXL1vbtm/fLhcXF+tF89zd3ZWampqj9QoXLqzg4GBt2rQpy+2eOnVKp06dsrYdPnxYCQkJCg0NzfE+OxuBHgAAAACQp3r06CFPT0/16tVLP/30k7Zs2aLnnntOTz75pEqWLClJCg4O1o8//qhjx47pjz/+0PXr1+1ab9y4cZoyZYreeecd/fLLL9q7d69mzJghSWrRooVq1qypHj16aO/evdq9e7ciIiIUHh6uevXqOe31uF0EegAAAABAnipYsKDWr1+vv/76S/fdd586d+6sBx98UDNnzrT26d+/v6pUqaJ69eqpRIkS2r59u13r9erVS9OmTdN///tfVa9eXQ8//LB++eUXSZLFYtGqVatUpEgRNWnSRC1atFD58uW1ZMmSPH8NHMFiGIbh7CLys6SkJPn6+ioxMVE+Pj7OLgcAAAAAcuTq1auKiYlRSEiIPD09nV0O/l9274u9OZQZegAAAAAATMg0gX7WrFmqVauWfHx85OPjo7CwMH311VdZ9l+wYIEsFovNg1+jAAAAAAB3C9Pctq5s2bKaPHmyKlWqJMMwtHDhQj366KPat2+fqlevnuk6Pj4+NvcwtFgseVUuAAAAAAC5yjSBvn379jbPJ02apFmzZmnXrl1ZBnqLxaKAgIC8KA8AgNtyckJNh41VbsxBh40FAADyP9Mccn+z1NRUffrpp7p8+bLCwsKy7Hfp0iUFBQUpMDBQjz76qA4dOnTLsVNSUpSUlGTzAAAAAAAgvzFVoD948KC8vb3l4eGhZ555RitWrFBoaGimfatUqaJ58+Zp1apVWrx4sdLS0tSoUSP9/vvv2W4jKipKvr6+1kdgYGBu7AoAAAAAAHfEVLetu3btmk6ePKnExER9/vnnev/997V169YsQ/3Nrl+/rmrVqql79+6aOHFilv1SUlKUkpJifZ6UlKTAwEBuWwcAyBUccg8AyG3cti5/csRt60xzDr0kubu7q2LFipKkunXr6vvvv9f06dM1Z86cW65boEAB3XPPPTp+/Hi2/Tw8POTh4eGQegEAAAAAyC2mOuT+n9LS0mxm07OTmpqqgwcPqlSpUrlcFQAAAAAAuc80M/SRkZFq06aNypUrp4sXL+rjjz9WdHS01q9fL0mKiIhQmTJlFBUVJUmaMGGCGjZsqIoVKyohIUFvvvmmTpw4oX79+jlzNwAAAAAAcAjTBPpz584pIiJCcXFx8vX1Va1atbR+/Xq1bNlSknTy5Em5uPzvgIMLFy6of//+io+PV5EiRVS3bl3t2LHDrvPtAQAAAODfoO6Li/J0e3vejMhR/969e2vhwoUZ2j08PG55tPaWLVsUGxurYcOGKSEhIcNyi8WiFStWqEOHDjmqKT8xTaD/4IMPsl0eHR1t83zq1KmaOnVqLlYEAAAAAMhtrVu31vz5823aLBaLbr6++9ChQ5WUlGTTr2jRooqNjc2rMp3CNIEeAAAAAPDv4+HhoYCAgGz7eHl5KSUl5Zb97jamvigeAAAAAAD/VgR6AAAAAEC+tXr1anl7e9s8Xn/9dbvXT0xMzLC+t7d3LlacdzjkHgAAAACQbzVr1kyzZs2yaStatKjd6xcuXFh79+7N0F6pUqU7rs3ZCPQAAAAAgHyrUKFCqlix4m2v7+Lickfr52cccg8AAAAAgAkxQw8AAAAAyLdSUlIUHx9v0+bm5qbixYs7qaL8g0APAAAAAP9Se96McHYJt7Ru3TqVKlXKpq1KlSo6evSokyrKPyyGYRjOLiI/S0pKkq+vrxITE+Xj4+PscgAAd5mTE2o6bKxyYw46bCwAwN3j6tWriomJUUhIiDw9PZ1dDv5fdu+LvTmUc+gBAAAAADAhAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhN2cXAAAAAABwjpMTaubp9sqNOZin27vbMUMPAAAAAMiXmjZtqmHDhmVoX7Bggfz8/CRJycnJioyMVIUKFeTp6akSJUooPDxcq1atshnHYrHIYrHIw8NDZcqUUfv27bV8+fJMt7tlyxa1bdtWxYoVU8GCBRUaGqoRI0bo9OnTubGbt41ADwAAAAAwrWeeeUbLly/XjBkzdPToUa1bt06dO3fWn3/+adOvf//+iouL06+//qply5YpNDRUjz/+uAYMGGDTb86cOWrRooUCAgK0bNkyHT58WLNnz1ZiYqKmTJmSl7t2SxxyDwAAAAAwrS+++ELTp09X27ZtJUnBwcGqW7duhn4FCxZUQECAJKls2bJq2LChqlatqqeeekpdu3ZVixYt9Pvvv2vIkCEaMmSIpk6dal03ODhYTZo0UUJCQp7sk72YoQcAAAAAmFZAQIDWrl2rixcv5njdXr16qUiRItZD75cuXapr167ppZdeyrR/+mH++QWBHgAAAABgWu+995527NihYsWK6b777tPzzz+v7du327Wui4uLKleurNjYWEnSL7/8Ih8fH5UqVSoXK3YcAj0AAAAAwLSaNGmi3377TZs2bVLnzp116NAhPfDAA5o4caJd6xuGIYvFkuG/zYBADwAAAADIl3x8fJSYmJihPSEhQb6+vtbnBQoU0AMPPKCRI0dqw4YNmjBhgiZOnKhr165lO35qaqp++eUXhYSESJIqV66sxMRExcXFOXZHcgmBHgAAAACQL1WpUkV79+7N0L53715Vrlw5y/VCQ0N148YNXb16NdvxFy5cqAsXLqhTp06SpM6dO8vd3V3/+c9/Mu2f3y6Kx1XuAQAAAAD50sCBAzVz5kwNGTJE/fr1k4eHh9asWaNPPvlEX375paS/7zHfvXt31atXT8WKFdPhw4c1evRoNWvWTD4+PtaxkpOTFR8frxs3buj333/XihUrNHXqVA0cOFDNmjWTJAUGBmrq1KkaPHiwkpKSFBERoeDgYP3+++9atGiRvL2989Wt6wj0AAAAAPAvVW7MQWeXkK3y5ctr27Ztevnll9WiRQtdu3ZNVatW1dKlS9W6dWtJUqtWrbRw4UKNHj1aycnJKl26tB5++GGNGTPGZqy5c+dq7ty5cnd3V7FixVS3bl0tWbJEjz32mE2/Z599VpUrV9Zbb72lxx57TFeuXFFwcLAefvhhDR8+PM/23R4WwzAMZxeRnyUlJcnX11eJiYk2v+4AAOAIJyfUdNhY+f1/ygAAznH16lXFxMQoJCREnp6ezi4H/y+798XeHMo59AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmJCbswsAAAAAADhH4xmN83R725/bnqfbu9sxQw8AAAAAyJeaNm2qYcOGZWhfsGCB/Pz8JEnJycmKjIxUhQoV5OnpqRIlSig8PFyrVq2yGcdischiscjDw0NlypRR+/bttXz5cpsx0/tk9YiNjc3lPc4ZAj0AAAAAwLSeeeYZLV++XDNmzNDRo0e1bt06de7cWX/++adNv/79+ysuLk6//vqrli1bptDQUD3++OMaMGCAJKlbt26Ki4uzPsLCwqzrpD8CAwOdsYtZ4pB7AAAAAIBpffHFF5o+fbratm0rSQoODlbdunUz9CtYsKACAgIkSWXLllXDhg1VtWpVPfXUU+ratatatGghLy8va393d3ebdfIjZugBAAAAAKYVEBCgtWvX6uLFizlet1evXipSpIjNofdmQqAHAAAAAJjWe++9px07dqhYsWK677779Pzzz2v7dvsuvufi4qLKlSvnu3Pj7UWgBwAAAACYVpMmTfTbb79p06ZN6ty5sw4dOqQHHnhAEydOtGt9wzBksVhyucrcQaAHAAAAAORLPj4+SkxMzNCekJAgX19f6/MCBQrogQce0MiRI7VhwwZNmDBBEydO1LVr17IdPzU1Vb/88otCQkIcXnteINADAAAAAPKlKlWqaO/evRna9+7dq8qVK2e5XmhoqG7cuKGrV69mO/7ChQt14cIFderU6Y5rdQaucg8AAAAAyJcGDhyomTNnasiQIerXr588PDy0Zs0affLJJ/ryyy8l/X2P+e7du6tevXoqVqyYDh8+rNGjR6tZs2by8fGxjpWcnKz4+HjduHFDv//+u1asWKGpU6dq4MCBatasmbN28Y4Q6AEAAADgX2r7c/ZdPM5Zypcvr23btunll19WixYtdO3aNVWtWlVLly5V69atJUmtWrXSwoULNXr0aCUnJ6t06dJ6+OGHNWbMGJux5s6dq7lz58rd3V3FihVT3bp1tWTJEj322GPO2DWHsBiGYTi7iPwsKSlJvr6+SkxMtPl1BwAARzg5oabDxio35qDDxgIA3D2uXr2qmJgYhYSEyNPT09nl4P9l977Ym0M5hx4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABNyc3YB9po1a5ZmzZql2NhYSVL16tU1ZswYtWnTJst1li5dqldffVWxsbGqVKmS3njjDbVt2zaPKgYAAACA/G1rk/A83V74tq15ur27nWlm6MuWLavJkydrz549+uGHH9S8eXM9+uijOnToUKb9d+zYoe7du6tv377at2+fOnTooA4dOuinn37K48oBAAAAAM4SHR0ti8WihIQEm/bevXvLYrFkeLRu3dq6TnaP6OhoLViwQH5+fplu12KxaOXKlbm6b6aZoW/fvr3N80mTJmnWrFnatWuXqlevnqH/9OnT1bp1a7344ouSpIkTJ2rjxo2aOXOmZs+enSc1AwAAAADyr9atW2v+/Pk2bR4eHipUqJDi4uKsbUOHDlVSUpJN36JFi1qPIHcW08zQ3yw1NVWffvqpLl++rLCwsEz77Ny5Uy1atLBpa9WqlXbu3Jnt2CkpKUpKSrJ5AAAAAADy1urVq+Xn56fU1FRJ0v79+2WxWDRq1Chrn379+qlnz546ceKE2rdvryJFiqhQoUKqXr261q5dq9jYWDVr1kySVKRIEVksFvXu3du6voeHhwICAmweRYoUkbu7u02bl5dXhr7u7u55+npkxjQz9JJ08OBBhYWF6erVq/L29taKFSsUGhqaad/4+HiVLFnSpq1kyZKKj4/PdhtRUVEaP368w2oGAAAAAOTcAw88oIsXL2rfvn2qV6+etm7dquLFiys6OtraZ+vWrRo5cqQGDRqka9euadu2bSpUqJAOHz4sb29vBQYGatmyZerUqZOOHTsmHx8feXl5OW+nHMxUM/RVqlTR/v379d1332ngwIHq1auXDh8+7NBtREZGKjEx0fo4deqUQ8cHAAAAANyar6+v6tSpYw3w0dHRev7557Vv3z5dunRJp0+f1vHjxxUeHq6TJ0+qcePGqlmzpsqXL6+HH35YTZo0kaurq4oWLSpJ8vf3V0BAgHx9fa3bWL16tby9vW0er7/+eo7qTExMzDCGt7e3w16H7Jhqht7d3V0VK1aUJNWtW1fff/+9pk+frjlz5mToGxAQoLNnz9q0nT17VgEBAdluw8PDQx4eHo4rGgAAAABwW8LDwxUdHa0RI0bom2++UVRUlD777DN9++23+uuvv1S6dGlVqlRJQ4YM0cCBA7Vhwwa1aNFCnTp1Uq1atW45frNmzTRr1iybtvQfAOxVuHBh7d27N0N7pUqVcjTO7TDVDP0/paWlKSUlJdNlYWFh2rRpk03bxo0bszznHgAAAACQvzRt2lTffvutDhw4oAIFCqhq1apq2rSpoqOjtXXrVoWH/33bvX79+um3337Tk08+qYMHD6pevXqaMWPGLccvVKiQKlasaPPIaaB3cXHJMEb6RHRuM02gj4yM1LZt2xQbG6uDBw8qMjJS0dHR6tGjhyQpIiJCkZGR1v5Dhw7VunXrNGXKFB09elTjxo3TDz/8oMGDBztrFwAAAAAAOZB+Hv3UqVOt4T090EdHR6tp06bWvoGBgXrmmWe0fPlyjRgxQnPnzpUk68Xr0i+udzcxzSH3586dU0REhOLi4uTr66tatWpp/fr1atmypSTp5MmTcnH53+8TjRo10scff6xXXnlFo0ePVqVKlbRy5UrVqFHDWbsAAAAAAMiBIkWKqFatWvroo480c+ZMSVKTJk3UtWtXXb9+3Rryhw0bpjZt2qhy5cq6cOGCtmzZomrVqkmSgoKCZLFYtHr1arVt21ZeXl7Wc9xTUlIyXDjdzc1NxYsXz8O9vH2mCfQffPBBtstvvtJhui5duqhLly65VBEAAAAAmFv4tq3OLuGWwsPDtX//futsfNGiRRUaGqqzZ8+qSpUqkv6efR80aJB+//13+fj4qHXr1po6daokqUyZMho/frxGjRqlPn36KCIiQgsWLJAkrVu3TqVKlbLZXpUqVXT06NE82787YTEMw3B2EflZUlKSfH19lZiYKB8fH2eXAwC4y5ycUNNhY5Ubc9BhYwEA7h5Xr15VTEyMQkJC5Onp6exy8P+ye1/szaGmOYceAAAAAAD8D4EeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYkJuzCwAAAAAAOMfMEV/m6fYGT2mfp9u72zFDDwAAAAAwtejoaFksFuvDy8tL1atX13vvvWftc/PyzB7jxo2TJO3bt09dunRRyZIl5enpqUqVKql///76+eefnbR3WSPQAwAAAADuCseOHVNcXJwOHz6sp59+WgMHDtSmTZskSXFxcdbHtGnT5OPjY9P2wgsvaPXq1WrYsKFSUlL00Ucf6ciRI1q8eLF8fX316quvOnnvMiLQAwAAAADyndWrV8vPz0+pqamSpP3798tisWjUqFHWPv369VPPnj2tz/39/RUQEKCQkBANGTJEISEh2rt3ryQpICDA+vD19ZXFYrFpc3FxUZ8+fdS2bVt98cUXatGihUJCQtSgQQO99dZbmjNnTt6+AHYg0AMAAAAA8p0HHnhAFy9e1L59+yRJW7duVfHixRUdHW3ts3XrVjVt2jTDuoZhaN26dTp58qQaNGhg1/bWr1+vP/74Qy+99FKmy/38/HK6C7mOQA8AAAAAyHd8fX1Vp04da4CPjo7W888/r3379unSpUs6ffq0jh8/rvDwcOs6ZcuWlbe3t9zd3dWuXTuNHTtWTZo0sWt7v/zyiySpatWqDt+X3EKgBwAAAADkS+Hh4YqOjpZhGPrmm2/UsWNHVatWTd9++622bt2q0qVLq1KlStb+33zzjfbv36/9+/fr/fff1+uvv65Zs2bZtS3DMHJrN3INt60DAAAAAORLTZs21bx583TgwAEVKFBAVatWVdOmTRUdHa0LFy7YzM5LUkhIiPXQ+OrVq+u7777TpEmTNHDgwFtuq3LlypKko0ePKiwszOH7khuYoQcAAAAA5Evp59FPnTrVGt7TA310dHSm58/fzNXVVVeuXLFrWw899JCKFy+u//znP5kuT0hIyEnpeYIZegAAAABAvlSkSBHVqlVLH330kWbOnClJatKkibp27arr169nmKE/d+6crl69qpSUFO3evVsffvihOnfubNe2ChUqpPfff19dunTRI488oiFDhqhixYr6448/9Nlnn+nkyZP69NNPHb6Pd4JADwAAAAD/UoOntHd2CbcUHh6u/fv3W2fjixYtqtDQUJ09e1ZVqlSx6Zv+3M3NTYGBgXr66ac1btw4u7f16KOPaseOHYqKitITTzyhpKQkBQYGqnnz5nrttdcctUsOYzHMeOZ/HkpKSpKvr68SExPl4+Pj7HIAAHeZkxNqOmyscmMOOmwsAMDd4+rVq4qJiVFISIg8PT2dXQ7+X3bvi705lHPoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwITdnFwAAAAAAcI5JPTvn6fZeXvx5jvr37t1bCxculCS5ubmpaNGiqlWrlrp3767evXvLxcV2jrpVq1b6+uuvtWvXLt13330ZxkpISNDKlSvvaB/yE2boAQAAAAD5VuvWrRUXF6fY2Fh99dVXatasmYYOHaqHH35YN27csPY7efKkduzYocGDB2vevHlOrDjvEOgBAAAAAPmWh4eHAgICVKZMGd17770aPXq0Vq1apa+++koLFiyw9ps/f74efvhhDRw4UJ988omuXLnivKLzCIEeAAAAAGAqzZs3V+3atbV8+XJJkmEYmj9/vnr27KmqVauqYsWK+vzznB3eb0YEegAAAACA6VStWlWxsbGSpK+//lrJyclq1aqVJKlnz5764IMPnFhd3iDQAwAAAABMxzAMWSwWSdK8efPUrVs3ubn9fd337t27a/v27fr111+dWWKuI9ADAAAAAEznyJEjCgkJ0V9//aUVK1bov//9r9zc3OTm5qYyZcroxo0bd/3F8Qj0AAAAAABT2bx5sw4ePKhOnTrpo48+UtmyZXXgwAHt37/f+pgyZYoWLFig1NRUZ5eba7gPPQAAAAAg30pJSVF8fLxSU1N19uxZrVu3TlFRUXr44YcVERGhunXrqnPnzqpRo4bNeoGBgYqMjNS6devUrl07J1Wfu5ihBwAAAADkW+vWrVOpUqUUHBys1q1ba8uWLXrnnXe0atUq7d+/XwcOHFCnTp0yrOfr66sHH3zwrr44nsUwDMPZReRnSUlJ8vX1VWJionx8fJxdDgDgLnNyQk2HjVVuzEGHjQUAuHtcvXpVMTExCgkJkaenp7PLwf/L7n2xN4cyQw8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCE3ZxcAAAAAAHCOI5M25+n2qr3cPMfrnD9/XmPGjNGaNWt09uxZFSlSRLVr11aTJk30yiuvZLvuli1bFBsbqz59+kiSLBaLSpYsqSZNmujNN99UuXLlrH2bNm2qOnXqaNq0ada26dOn66WXXtLChQv1+OOP57j23EagBwAAAADkW506ddK1a9e0cOFClS9fXmfPntWmTZtUvXp1xcXFWfsNHTpUSUlJmj9/vrWtaNGiio2NlY+Pj44dOybDMBQTE6Nnn31WXbp00XfffZfldseOHau33npLq1atUuvWrXN1H28XgR4AAAAAkC8lJCTom2++UXR0tMLDwyVJQUFBql+/foa+Xl5eSklJUUBAQIZlFovF2l6qVCn17dtXQ4YMUVJSknx8fGz6GoahIUOGaPHixdq4caMaNWqUC3vmGJxDDwAAAADIl7y9veXt7a2VK1cqJSXFIWOeO3dOK1askKurq1xdXW2W3bhxQz179tTnn3+urVu35uswLzFDDwAAAADIp9zc3LRgwQL1799fs2fP1r333qvw8HA9/vjjqlWrlt3jJCYmytvbW4ZhKDk5WZI0ZMgQFSpUyKbf3LlzJUkHDhxQ1apVHbcjuYQZegAAAABAvtWpUyedOXNGX3zxhVq3bq3o6Gjde++9WrBggd1jFC5cWPv379cPP/ygKVOm6N5779WkSZMy9Lv//vvl7e2tV199VTdu3HDgXuQOAj0AAAAAIF/z9PRUy5Yt9eqrr2rHjh3q3bu3xo4da/f6Li4uqlixoqpVq6bhw4erYcOGGjhwYIZ+NWvW1KZNm7RlyxZ169Yt34d60wT6qKgo3XfffSpcuLD8/f3VoUMHHTt2LNt1FixYIIvFYvPw9PTMo4oBAAAAALkhNDRUly9fvu31R40apSVLlmjv3r0ZltWpU0ebNm3Stm3b1LVrV12/fv1OSs1Vpgn0W7du1aBBg7Rr1y5t3LhR169f10MPPXTLN9HHx0dxcXHWx4kTJ/KoYgAAAADAnfjzzz/VvHlzLV68WD/++KNiYmK0dOlS/ec//9Gjjz562+MGBgbqscce05gxYzJdXrt2bW3evFnffvttvg71prko3rp162yeL1iwQP7+/tqzZ4+aNGmS5Xo3354AAAAAAGAe3t7eatCggaZOnapff/1V169fV2BgoPr376/Ro0ff0djPP/+8wsLCtHv37kxvg1ezZk1t3rxZDz74oLp06aLPPvtM7u7ud7RNR7MYhmE4u4jbcfz4cVWqVEkHDx5UjRo1Mu2zYMEC9evXT2XKlFFaWpruvfdevf7666pevXqW46akpNjcDiEpKUmBgYFKTEzMcH9CAADu1MkJNR02VrkxBx02FgDg7nH16lXFxMQoJCSEU5Dzkezel6SkJPn6+t4yh5rmkPubpaWladiwYWrcuHGWYV6SqlSponnz5mnVqlVavHix0tLS1KhRI/3+++9ZrhMVFSVfX1/rIzAwMDd2AQAAAACAO2LKQD9o0CD99NNP+vTTT7PtFxYWpoiICNWpU0fh4eFavny5SpQooTlz5mS5TmRkpBITE62PU6dOObp8AAAAAADumGnOoU83ePBgrV69Wtu2bVPZsmVztG6BAgV0zz336Pjx41n28fDwkIeHx52WCQAAAABArjLNDL1hGBo8eLBWrFihzZs3KyQkJMdjpKam6uDBgypVqlQuVAgAAAAAQN4xzQz9oEGD9PHHH2vVqlUqXLiw4uPjJUm+vr7y8vKSJEVERKhMmTKKioqSJE2YMEENGzZUxYoVlZCQoDfffFMnTpxQv379nLYfAAAAAAA4gmkC/axZsyRJTZs2tWmfP3++evfuLUk6efKkXFz+d9DBhQsX1L9/f8XHx6tIkSKqW7euduzYodDQ0LwqGwAAAACAXGGaQG/P3fWio6Ntnk+dOlVTp07NpYoAAAAAAHAe05xDDwAAAAAA/odADwAAAACACRHoAQAAAAAwIdOcQw8AAAAAcKxx48bl6+317t1bCQkJWrlyZYZlV65c0eTJk/XJJ5/oxIkTKly4sJo1a6Zx48apevXqNtscP368JMnFxUWlS5dWmzZtNHnyZBUtWtTaLzg4WCdOnJAkeXp6qmTJkqpfv76eeeYZNW/e3GbbK1as0BtvvKEjR44oLS1N5cqVU8uWLTVt2rQc7d+dYoYeAAAAAGAqKSkpatGihebNm6fXXntNP//8s9auXasbN26oQYMG2rVrl03/6tWrKy4uTidPntT8+fO1bt06DRw4MMO4EyZMUFxcnI4dO6ZFixbJz89PLVq00KRJk6x9Nm3apG7duqlTp07avXu39uzZo0mTJun69eu5vt//xAw9AAAAAMBUpk2bpp07d2rfvn2qXbu2JCkoKEjLli1TgwYN1LdvX/3000+yWCySJDc3NwUEBEiSypQpoy5dumj+/PkZxi1cuLC1X7ly5dSkSROVKlVKY8aMUefOnVWlShV9+eWXaty4sV588UXrepUrV1aHDh1yea8zYoYeAAAAAGAqH3/8sVq2bGkN8+lcXFz0/PPP6/Dhwzpw4ECm68bGxmr9+vVyd3e3a1tDhw6VYRhatWqVJCkgIECHDh3STz/9dGc74QDM0AMAcJdoPKOxQ8bZ/tx2h4wDAEBu+fnnn9WsWbNMl1WrVs3ap06dOpKkgwcPytvbW6mpqbp69aok6e2337ZrW0WLFpW/v79iY2MlSc8995y++eYb1axZU0FBQWrYsKEeeugh9ejRQx4eHne2YznEDD0AAAAAwHQMw7C7b5UqVbR//359//33GjlypFq1aqXnnnsuR9tKP3y/UKFCWrNmjY4fP65XXnlF3t7eGjFihOrXr6/k5OQc78edINADAAAAAEylcuXKOnLkSKbL0tsrV65sbXN3d1fFihVVo0YNTZ48Wa6urtYr39/Kn3/+qfPnzyskJMSmvUKFCurXr5/ef/997d27V4cPH9aSJUtuc49uD4EeAAAAAGAqjz/+uL7++usM58mnpaVp6tSpCg0NzXB+/c1eeeUVvfXWWzpz5swttzV9+nS5uLhke9G74OBgFSxYUJcvX7Z7HxyBc+gBAAAAAPlWYmKi9u/fb9PWs2dPrVq1Su3bt9eUKVPUoEEDnT17Vq+//rqOHDmir7/+2nqIfGbCwsJUq1Ytvf7665o5c6a1/eLFi4qPj9f169cVExOjxYsX6/3331dUVJQqVqwo6e/72icnJ6tt27YKCgpSQkKC3nnnHV2/fl0tW7bMldcgKwR6AAAAAEC+FR0drXvuucemrW/fvtq8ebNef/11jR49WidOnFDhwoXVrFkz7dq1SzVq1LjluM8//7x69+6tkSNHKjAwUJI0ZswYjRkzRu7u7goICFDDhg21adMmmwvwhYeH691331VERITOnj2rIkWK6J577tGGDRtUpUoVx+78LViMnFxJ4F8oKSlJvr6+SkxMlI+Pj7PLAQDcZU5OqOmwsboXccy/U1zlHgDuLlevXlVMTIxCQkLk6enp7HLw/7J7X+zNoZxDDwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAA/gXS0tKcXQJu4oj3g/vQAwAAAMBdzN3dXS4uLjpz5oxKlCghd3d3WSwWZ5f1r2UYhq5du6bz58/LxcVF7u7utz0WgR4AAAAA7mIuLi4KCQlRXFyczpw54+xy8P8KFiyocuXKycXl9g+cJ9ADAAAAwF3O3d1d5cqV040bN5Samurscv71XF1d5ebmdsdHShDoAQAAAOBfwGKxqECBAipQoICzS4GDcFE8AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AAAAAACbk5uwCAAAA8tKRSZsdNla1l5s7bCwAAHKKGXoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYUI5uW5eWlqatW7fqm2++0YkTJ5ScnKwSJUronnvuUYsWLRQYGJhbdQIAAAAAgJvYNUN/5coVvfbaawoMDFTbtm311VdfKSEhQa6urjp+/LjGjh2rkJAQtW3bVrt27crtmgEAAAAA+Neza4a+cuXKCgsL09y5c9WyZUsVKFAgQ58TJ07o448/1uOPP66XX35Z/fv3d3ixAAAAAADgb3YF+g0bNqhatWrZ9gkKClJkZKReeOEFnTx50iHFAQAAAACAzNl1yP2twvzNChQooAoVKtx2QQAAAAAA4NZydFE8Sfrll1+0atUqxcbGymKxKCQkRB06dFD58uVzoz4AAAAAAJCJHAX6qKgojRkzRmlpafL395dhGDp//rxGjRql119/XS+88EJu1QkAAAAAAG5i933ot2zZoldeeUUvv/yy/vjjD8XFxSk+Pt4a6EeNGqVt27blZq0AAAAAAOD/2T1DP3v2bPXr10/jxo2zaS9atKgmTJig+Ph4zZo1S02aNHF0jQAAAAAA4B/snqHfvXu3nnzyySyXP/nkk7l6D/qoqCjdd999Kly4sPz9/dWhQwcdO3bslustXbpUVatWlaenp2rWrKm1a9fmWo0AAAAAAOQVuwP92bNnFRwcnOXykJAQxcfHO6KmTG3dulWDBg3Srl27tHHjRl2/fl0PPfSQLl++nOU6O3bsUPfu3dW3b1/t27dPHTp0UIcOHfTTTz/lWp0AAAAAAOQFuw+5v3r1qtzd3bNcXqBAAV27ds0hRWVm3bp1Ns8XLFggf39/7dmzJ8vD/KdPn67WrVvrxRdflCRNnDhRGzdu1MyZMzV79uxcqxUAAAAAgNyWo6vcv//++/L29s502cWLFx1SkL0SExMl/X0Of1Z27typ4cOH27S1atVKK1euzHKdlJQUpaSkWJ8nJSXdWaEAAAAAAOQCuwN9uXLlNHfu3Fv2yQtpaWkaNmyYGjdurBo1amTZLz4+XiVLlrRpK1myZLanBkRFRWn8+PEOqxUAAAAAgNxgd6CPjY3NxTJyZtCgQfrpp5/07bffOnzsyMhIm1n9pKQkBQYGOnw7AAAAAADciRwdcp8fDB48WKtXr9a2bdtUtmzZbPsGBATo7NmzNm1nz55VQEBAlut4eHjIw8PDIbUCAAAAAJBb7L7K/c6dO7V69WqbtkWLFikkJET+/v4aMGCAzbnnjmYYhgYPHqwVK1Zo8+bNCgkJueU6YWFh2rRpk03bxo0bFRYWlltlAgAAAACQJ+wO9BMmTNChQ4eszw8ePKi+ffuqRYsWGjVqlL788ktFRUXlSpHS34fZL168WB9//LEKFy6s+Ph4xcfH68qVK9Y+ERERioyMtD4fOnSo1q1bpylTpujo0aMaN26cfvjhBw0ePDjX6gQAAAAAIC/YHej379+vBx980Pr8008/VYMGDTR37lwNHz5c77zzjj777LNcKVKSZs2apcTERDVt2lSlSpWyPpYsWWLtc/LkScXFxVmfN2rUSB9//LHee+891a5dW59//rlWrlyZ7YX0AAAAAAAwA7vPob9w4YLNFeO3bt2qNm3aWJ/fd999OnXqlGOru4lhGLfsEx0dnaGtS5cu6tKlSy5UBAAAAACA89g9Q1+yZEnFxMRIkq5du6a9e/eqYcOG1uUXL15UgQIFHF8hAAAAAADIwO5A37ZtW40aNUrffPONIiMjVbBgQT3wwAPW5T/++KMqVKiQK0UCAAAAAABbdh9yP3HiRHXs2FHh4eHy9vbWwoUL5e7ubl0+b948PfTQQ7lSJAAAAAAAsGV3oC9evLi2bdumxMREeXt7y9XV1Wb50qVL5e3t7fACAQAAAABARnYH+nS+vr6ZthctWvSOiwEAAAAAAPaxO9Dfc889slgsGdp9fX1VuXJlDRs2TNWqVXNocQAAAAAAIHN2B/oOHTpk2p6QkKC9e/eqTp062rx5sxo3buyo2gAAAAAAQBbsDvRjx47NdvnLL7+sMWPGaNOmTXdcFAAAAAAAyJ7dt627lSeeeEIHDx501HAAAAAAACAbDgv0rq6uSktLc9RwAAAAAAAgGw4L9MuXL1doaKijhgMAAAAAANmw+xz6d955J9P2xMRE7dmzR2vWrNFXX33lsMIAAAAAAEDW7A70U6dOzbTdx8dHVapU0bZt2xQWFuawwgAAAAAAQNbsDvQxMTG5WQcAAAAAAMgBh51DDwAAAAAA8o5dgX7y5MlKTk62a8DvvvtOa9asuaOiAAAAAABA9uwK9IcPH1ZQUJCeffZZffXVVzp//rx12Y0bN/Tjjz/qv//9rxo1aqRu3bqpcOHCuVYwAAAAAACw8xz6RYsW6cCBA5o5c6aeeOIJJSUlydXVVR4eHtaZ+3vuuUf9+vVT79695enpmatFAwAAAADwb2f3RfFq166tuXPnas6cOfrxxx914sQJXblyRcWLF1edOnVUvHjx3KwTAAAAAADcxO5An87FxUV16tRRnTp1cqEcAAAAAABgD65yDwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCEchzon3rqKV28eDFD++XLl/XUU085pCgAAAAAAJC9HAf6hQsX6sqVKxnar1y5okWLFjmkKAAAAAAAkD27b1uXlJQkwzBkGIYuXrwoT09P67LU1FStXbtW/v7+uVIkAAAAAACwZXeg9/Pzk8VikcViUeXKlTMst1gsGj9+vEOLAwAAAAAAmbM70G/ZskWGYah58+ZatmyZihYtal3m7u6uoKAglS5dOleKBAAAAAAAtuwO9OHh4ZKkmJgYBQYGysWFC+QDAAAAAOAsdgf6dEFBQbpw4YI++OADHTlyRJIUGhqqPn362MzaAwAAAACA3JPjafZt27YpODhY77zzji5cuKALFy7onXfeUUhIiLZt25YbNQIAAAAAgH/I8Qz9oEGD1K1bN82aNUuurq6S/r7K/bPPPqtBgwbp4MGDDi8SAAAAAADYyvEM/fHjxzVixAhrmJckV1dXDR8+XMePH3docQAAAAAAIHM5DvT33nuv9dz5mx05ckS1a9d2SFEAAAAAACB7dh1y/+OPP1r/e8iQIRo6dKiOHz+uhg0bSpJ27dqld999V5MnT86dKgEAAAAAgA27An2dOnVksVhkGIa17aWXXsrQ74knnlC3bt0cVx0AAAAAAMiUXYE+JiYmt+sAAAAAAAA5YFegDwoKyu06AAAAAABADuT4oniS9OGHH6px48YqXbq0Tpw4IUmaNm2aVq1a5dDiAAAAAABA5nIc6GfNmqXhw4erbdu2SkhIUGpqqiTJz89P06ZNc3R9AAAAAAAgEzkO9DNmzNDcuXP18ssv29yLvl69ejp48KBDiwMAAAAAAJnLcaCPiYnRPffck6Hdw8NDly9fdkhRAAAAAAAgezkO9CEhIdq/f3+G9nXr1qlatWqOqAkAAAAAANyCXVe5v9nw4cM1aNAgXb16VYZhaPfu3frkk08UFRWl999/PzdqBAAAAAAA/5DjQN+vXz95eXnplVdeUXJysp544gmVLl1a06dP1+OPP54bNQIAAAAAgH/IcaCXpB49eqhHjx5KTk7WpUuX5O/v7+i6AAAAAABANm4r0P/xxx+KjY2VxWJRcHCwg0sCAAAAAAC3kqOL4h06dEhNmjRRyZIl1aBBA9WvX1/+/v5q3ry5jh07lls1AgAAAACAf7B7hj4+Pl7h4eEqUaKE3n77bVWtWlWGYejw4cOaO3euHnjgAf30008cfg8AAAAAQB6wO9BPnTpVQUFB2r59uzw9Pa3trVu31sCBA3X//fdr6tSpioqKypVCAQAAAADA/9h9yP3GjRs1cuRImzCfzsvLSy+++KLWr1/v0OIAAAAAAEDm7A70v/32m+69994sl9erV0+//fabQ4oCAAAAAADZszvQX7x4UT4+PlkuL1y4sC5duuSQogAAAAAAQPZydNu6ixcvZnrIvSQlJSXJMAyHFAUAAAAAALJnd6A3DEOVK1fOdrnFYnFIUQAAAAAAIHt2B/otW7bkZh0AAAAAACAH7A704eHhuVkHcujkhJoOG6vcmIMOGwsAAAAAkDfsvigeAAAAAADIPwj0AAAAAACYkKkC/bZt29S+fXuVLl1aFotFK1euzLZ/dHS0LBZLhkd8fHzeFAwAAAAAQC4xVaC/fPmyateurXfffTdH6x07dkxxcXHWh7+/fy5VCAAAAABA3sjRfeidrU2bNmrTpk2O1/P395efn5/jCwIAAAAAwEnsCvQdO3a0e8Dly5ffdjG5pU6dOkpJSVGNGjU0btw4NW7cOMu+KSkpSklJsT5PSkrKixIBAAAAAMgRuw659/X1tT58fHy0adMm/fDDD9ble/bs0aZNm+Tr65trhd6OUqVKafbs2Vq2bJmWLVumwMBANW3aVHv37s1ynaioKJv9DQwMzMOKAQAAAACwj10z9PPnz7f+98iRI9W1a1fNnj1brq6ukqTU1FQ9++yz8vHxyZ0qb1OVKlVUpUoV6/NGjRrp119/1dSpU/Xhhx9muk5kZKSGDx9ufZ6UlESoBwAAAADkOzk+h37evHn69ttvrWFeklxdXTV8+HA1atRIb775pkMLdLT69evr22+/zXK5h4eHPDw88rAiAAAAAAByLsdXub9x44aOHj2aof3o0aNKS0tzSFG5af/+/SpVqpSzywAAAAAA4I7keIa+T58+6tu3r3799VfVr19fkvTdd99p8uTJ6tOnj8MLvNmlS5d0/Phx6/OYmBjt379fRYsWVbly5RQZGanTp09r0aJFkqRp06YpJCRE1atX19WrV/X+++9r8+bN2rBhQ67WCQAAAABAbstxoH/rrbcUEBCgKVOmKC4uTtLfF5978cUXNWLECIcXeLMffvhBzZo1sz5PP9e9V69eWrBggeLi4nTy5Enr8mvXrmnEiBE6ffq0ChYsqFq1aunrr7+2GQMAAAAAADOyGIZh3O7K6bd0y28Xw3OkpKQk+fr6KjExMV/t58kJNR02VrkxBx02FgAgZxz597x7Ecf8O7X9ue0OGSe/OjJps8PGqvZyc4eNBQBAOntzaI7PoZf+Po/+66+/1ieffCKLxSJJOnPmjC5dunR71QIAAAAAgBzJ8SH3J06cUOvWrXXy5EmlpKSoZcuWKly4sN544w2lpKRo9uzZuVEnAAAAAAC4SY5n6IcOHap69erpwoUL8vLysrY/9thj2rRpk0OLAwAAAAAAmcvxDP0333yjHTt2yN3d3aY9ODhYp0+fdlhhAAAAAAAgazmeoU9LS1NqamqG9t9//12FCxd2SFEAAAAAACB7OQ70Dz30kKZNm2Z9brFYdOnSJY0dO1Zt27Z1ZG0AAAAAACALOT7kfsqUKWrVqpVCQ0N19epVPfHEE/rll19UvHhxffLJJ7lRIwAAAAAA+IccB/qyZcvqwIEDWrJkiQ4cOKBLly6pb9++6tGjh81F8gAAAAAAQO7JcaCXJDc3N/Xo0UM9evRwdD0AAAAAAMAOOT6H3tXVVc2aNdNff/1l03727Fm5uro6rDAAAAAAAJC1HAd6wzCUkpKievXq6dChQxmWAQAAAACA3JfjQG+xWLRs2TK1b99eYWFhWrVqlc0yAAAAAACQ+25rht7V1VXTp0/XW2+9pW7duum1115jdh4AAAAAgDx0WxfFSzdgwABVqlRJXbp00bZt2xxVEwAAAAAAuIUcz9AHBQXZXPyuWbNm2rVrl06dOuXQwgAAAAAAQNZyPEMfExOToa1ixYrat2+fzp4965CiAAAAAABA9nI8Q58VT09PBQUFOWo4AAAAAACQDbtm6IsWLaqff/5ZxYsXV5EiRbK9mv0/708PAAAAAAAcz65AP3XqVBUuXFiSNG3atNysBwAAAAAA2MGuQN+rV69M/xsAAAAAADiHXYE+KSnJ7gF9fHxuuxgAAAAAAGAfuwK9n59ftufNS5JhGLJYLEpNTXVIYQAAAAAAIGt2BfotW7bkdh0AAAAAACAH7Ar04eHhuV0HAAAAAADIAbsCfWaSk5N18uRJXbt2zaa9Vq1ad1wUAAAAAADIXo4D/fnz59WnTx999dVXmS7nHHoAAAAAAHKfS05XGDZsmBISEvTdd9/Jy8tL69at08KFC1WpUiV98cUXuVEjAAAAAAD4hxzP0G/evFmrVq1SvXr15OLioqCgILVs2VI+Pj6KiopSu3btcqNOAAAAAABwkxzP0F++fFn+/v6SpCJFiuj8+fOSpJo1a2rv3r2OrQ4AAAAAAGQqx4G+SpUqOnbsmCSpdu3amjNnjk6fPq3Zs2erVKlSDi8QAAAAAABklOND7ocOHaq4uDhJ0tixY9W6dWt99NFHcnd314IFCxxdHwAAAAAAyESOA33Pnj2t/123bl2dOHFCR48eVbly5VS8eHGHFgcAAAAAADJ32/ehT1ewYEHde++9jqgFAAAAAADYKceB3jAMff7559qyZYvOnTuntLQ0m+XLly93WHEAAAAAACBzOQ70w4YN05w5c9SsWTOVLFlSFoslN+oCAAAAAADZyHGg//DDD7V8+XK1bds2N+oBAAAAAAB2yPFt63x9fVW+fPncqAUAAAAAANgpx4F+3LhxGj9+vK5cuZIb9QAAAAAAADvk+JD7rl276pNPPpG/v7+Cg4NVoEABm+V79+51WHEAAAAAACBzOQ70vXr10p49e9SzZ08uigcAAAAAgJPkONCvWbNG69ev1/33358b9QAAAAAAADvk+Bz6wMBA+fj45EYtAAAAAADATjkO9FOmTNFLL72k2NjYXCgHAAAAAADYI8eH3Pfs2VPJycmqUKGCChYsmOGieH/99ZfDigMAAAAAAJnLcaCfNm1aLpQBAAAAAAByIkeB/vr169q6dateffVVhYSE5FZNAAAAAADgFnJ0Dn2BAgW0bNmy3KoFAAAAAADYKccXxevQoYNWrlyZC6UAAAAAAAB75fgc+kqVKmnChAnavn276tatq0KFCtksHzJkiMOKAwAAAAAAmctxoP/ggw/k5+enPXv2aM+ePTbLLBYLgR4AAAAAgDyQ40AfExOTG3UAAAAAAIAcyPE59DczDEOGYTiqFgAAAAAAYKfbCvSLFi1SzZo15eXlJS8vL9WqVUsffviho2sDAAAAAABZyPEh92+//bZeffVVDR48WI0bN5Ykffvtt3rmmWf0xx9/6Pnnn3d4kQAAAAAAwFaOA/2MGTM0a9YsRUREWNseeeQRVa9eXePGjSPQAwAAAACQB3J8yH1cXJwaNWqUob1Ro0aKi4tzSFEAAAAAACB7OQ70FStW1GeffZahfcmSJapUqZJDigIAAAAAANnL8SH348ePV7du3bRt2zbrOfTbt2/Xpk2bMg36AAAAAADA8XI8Q9+pUyd99913Kl68uFauXKmVK1eqePHi2r17tx577LHcqBEAAAAAAPxDjmfoJalu3bpavHixo2sBAAAAAAB2uq370DvLtm3b1L59e5UuXVoWi0UrV6685TrR0dG699575eHhoYoVK2rBggW5XicAAAAAALnN7kDv4uIiV1fXbB9ubrc14W+3y5cvq3bt2nr33Xft6h8TE6N27dqpWbNm2r9/v4YNG6Z+/fpp/fr1uVonAAAAAAC5ze4EvmLFiiyX7dy5U++8847S0tIcUlRW2rRpozZt2tjdf/bs2QoJCdGUKVMkSdWqVdO3336rqVOnqlWrVrlVJgAAAAAAuc7uQP/oo49maDt27JhGjRqlL7/8Uj169NCECRMcWtyd2rlzp1q0aGHT1qpVKw0bNizLdVJSUpSSkmJ9npSUlFvlAQAAAABw227rHPozZ86of//+qlmzpm7cuKH9+/dr4cKFCgoKcnR9dyQ+Pl4lS5a0aStZsqSSkpJ05cqVTNeJioqSr6+v9REYGJgXpQIAAAAAkCM5CvSJiYkaOXKkKlasqEOHDmnTpk368ssvVaNGjdyqL89FRkYqMTHR+jh16pSzSwIAAAAAIAO7D7n/z3/+ozfeeEMBAQH65JNPMj0EP78JCAjQ2bNnbdrOnj0rHx8feXl5ZbqOh4eHPDw88qI8AAAAAABum92BftSoUfLy8lLFihW1cOFCLVy4MNN+y5cvd1hxdyosLExr1661adu4caPCwsKcVBEAAAAAAI5hd6CPiIiQxWLJzVpu6dKlSzp+/Lj1eUxMjPbv36+iRYuqXLlyioyM1OnTp7Vo0SJJ0jPPPKOZM2fqpZde0lNPPaXNmzfrs88+05o1a5y1CwAAAAAAOITdgX7BggW5WIZ9fvjhBzVr1sz6fPjw4ZKkXr16acGCBYqLi9PJkyety0NCQrRmzRo9//zzmj59usqWLav333+fW9YBAAAAAEzP7kCfHzRt2lSGYWS5PLMfHZo2bap9+/blYlUAAAAAAOS927ptHQAAAAAAcC4CPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYkOkC/bvvvqvg4GB5enqqQYMG2r17d5Z9FyxYIIvFYvPw9PTMw2oBAAAAAMgdpgr0S5Ys0fDhwzV27Fjt3btXtWvXVqtWrXTu3Lks1/Hx8VFcXJz1ceLEiTysGAAAAACA3GGqQP/222+rf//+6tOnj0JDQzV79mwVLFhQ8+bNy3Idi8WigIAA66NkyZJ5WDEAAAAAALnDNIH+2rVr2rNnj1q0aGFtc3FxUYsWLbRz584s17t06ZKCgoIUGBioRx99VIcOHcp2OykpKUpKSrJ5AAAAAACQ35gm0P/xxx9KTU3NMMNesmRJxcfHZ7pOlSpVNG/ePK1atUqLFy9WWlqaGjVqpN9//z3L7URFRcnX19f6CAwMdOh+AAAAAADgCKYJ9LcjLCxMERERqlOnjsLDw7V8+XKVKFFCc+bMyXKdyMhIJSYmWh+nTp3Kw4oBAAAAALCPm7MLsFfx4sXl6uqqs2fP2rSfPXtWAQEBdo1RoEAB3XPPPTp+/HiWfTw8POTh4XFHtQIAAAAAkNtMM0Pv7u6uunXratOmTda2tLQ0bdq0SWFhYXaNkZqaqoMHD6pUqVK5VSYAAAAAAHnCNDP0kjR8+HD16tVL9erVU/369TVt2jRdvnxZffr0kSRFRESoTJkyioqKkiRNmDBBDRs2VMWKFZWQkKA333xTJ06cUL9+/Zy5GwAAAAAA3DFTBfpu3brp/PnzGjNmjOLj41WnTh2tW7fOeqG8kydPysXlfwcdXLhwQf3791d8fLyKFCmiunXraseOHQoNDXXWLgAAAAAA4BCmCvSSNHjwYA0ePDjTZdHR0TbPp06dqqlTp+ZBVQAAAAAA5C3TnEMPAAAAAAD+x3Qz9HC8xjMaO2Sc7c9td8g4AAAAAIBbY4YeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATcnN2AYBZHJm02WFjVXu5ucPGAgAAAPDvxAw9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9AAAAAAAmRKAHAAAAAMCECPQAAAAAAJgQgR4AAAAAABMi0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIdMF+nfffVfBwcHy9PRUgwYNtHv37mz7L126VFWrVpWnp6dq1qyptWvX5lGlAAAAAADkHlMF+iVLlmj48OEaO3as9u7dq9q1a6tVq1Y6d+5cpv137Nih7t27q2/fvtq3b586dOigDh066KeffsrjygEAAAAAcCxTBfq3335b/fv3V58+fRQaGqrZs2erYMGCmjdvXqb9p0+frtatW+vFF19UtWrVNHHiRN17772aOXNmHlcOAAAAAIBjmSbQX7t2TXv27FGLFi2sbS4uLmrRooV27tyZ6To7d+606S9JrVq1yrK/JKWkpCgpKcnmAQAAAABAfuPm7ALs9ccffyg1NVUlS5a0aS9ZsqSOHj2a6Trx8fGZ9o+Pj89yO1FRURo/fvydF5yJui8ucthYe9486LCxtjtonK1Nwh00knTwvhccMk7i2YUOGUeSXl78ucPGups58nO+ovCbDhurexEfh4yz/TlHfWOkmSO+dMg4fM7zHn/P7Xe3/z0fN25cvhrHkfh7bj/+npsXn3P78TnPn0wzQ59XIiMjlZiYaH2cOnXK2SUBAAAAAJCBaWboixcvLldXV509e9am/ezZswoICMh0nYCAgBz1lyQPDw95eHjcecEAAAAAAOQi08zQu7u7q27dutq0aZO1LS0tTZs2bVJYWFim64SFhdn0l6SNGzdm2R8AAAAAALMwzQy9JA0fPly9evVSvXr1VL9+fU2bNk2XL19Wnz59JEkREREqU6aMoqKiJElDhw5VeHi4pkyZonbt2unTTz/VDz/8oPfee8+ZuwEAAAAAwB0zVaDv1q2bzp8/rzFjxig+Pl516tTRunXrrBe+O3nypFxc/nfQQaNGjfTxxx/rlVde0ejRo1WpUiWtXLlSNWrUcNYuAAAAAADgEKYK9JI0ePBgDR48ONNl0dHRGdq6dOmiLl265HJVAAAAAADkLdOcQw8AAAAAAP6HQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCECPQAAAAAAJkSgBwAAAADAhAj0AAAAAACYEIEeAAAAAAATItADAAAAAGBCBHoAAAAAAEyIQA8AAAAAgAkR6AEAAAAAMCE3ZxcA5KaXF3/u7BIAAAAAIFcQ6AEAQL6XX3+gHTdunLNLAJBPlBtz0HGDzWjsuLFwVyPQAwAAAEA+sv257c4uASZBoAeQb/FLN/KrPW9GOLsEAAAAWQzDMJxdRH6WlJQkX19fJSYmysfHx9nlAAAAAADucvbmUK5yDwAAAACACRHoAQAAAAAwIQI9AAAAAAAmZJpA/9dff6lHjx7y8fGRn5+f+vbtq0uXLmW7TtOmTWWxWGwezzzzTB5VDAAAAABA7jHNVe579OihuLg4bdy4UdevX1efPn00YMAAffzxx9mu179/f02YMMH6vGDBgrldKgAAAAAAuc4Ugf7IkSNat26dvv/+e9WrV0+SNGPGDLVt21ZvvfWWSpcuneW6BQsWVEBAQF6VCgAAAABAnjDFIfc7d+6Un5+fNcxLUosWLeTi4qLvvvsu23U/+ugjFS9eXDVq1FBkZKSSk5Oz7Z+SkqKkpCSbBwAAAAAA+Y0pZujj4+Pl7+9v0+bm5qaiRYsqPj4+y/WeeOIJBQUFqXTp0vrxxx81cuRIHTt2TMuXL89ynaioKI0fP95htQMAAAAAkBucGuhHjRqlN954I9s+R44cue3xBwwYYP3vmjVrqlSpUnrwwQf166+/qkKFCpmuExkZqeHDh1ufJyUlKTAw8LZrAAAAAAAgNzg10I8YMUK9e/fOtk/58uUVEBCgc+fO2bTfuHFDf/31V47Oj2/QoIEk6fjx41kGeg8PD3l4eNg9JgAAAAAAzuDUQF+iRAmVKFHilv3CwsKUkJCgPXv2qG7dupKkzZs3Ky0tzRrS7bF//35JUqlSpW6rXgAAAAAA8gtTXBSvWrVqat26tfr376/du3dr+/btGjx4sB5//HHrFe5Pnz6tqlWravfu3ZKkX3/9VRMnTtSePXsUGxurL774QhEREWrSpIlq1arlzN0BAAAAAOCOmSLQS39frb5q1ap68MEH1bZtW91///167733rMuvX7+uY8eOWa9i7+7urq+//loPPfSQqlatqhEjRqhTp0768ssvnbULAAAAAAA4jMUwDMPZReRnSUlJ8vX1VWJionx8fJxdDgAAAADgLmdvDjXNDD0AAAAAAPgfAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmBCBHgAAAAAAEyLQAwAAAABgQgR6AAAAAABMiEAPAAAAAIAJEegBAAAAADAhAj0AAAAAACZEoAcAAAAAwIQI9AAAAAAAmJCbswvI7wzDkCQlJSU5uRIAAAAAwL9Bev5Mz6NZIdDfwsWLFyVJgYGBTq4EAAAAAPBvcvHiRfn6+ma53GLcKvL/y6WlpenMmTMqXLiwLBaLs8v5V0hKSlJgYKBOnTolHx8fZ5cD5Ao+5/g34HOOfwM+5/g34HOe9wzD0MWLF1W6dGm5uGR9pjwz9Lfg4uKismXLOruMfyUfHx/+YOCux+cc/wZ8zvFvwOcc/wZ8zvNWdjPz6bgoHgAAAAAAJkSgBwAAAADAhAj0yHc8PDw0duxYeXh4OLsUINfwOce/AZ9z/BvwOce/AZ/z/IuL4gEAAAAAYELM0AMAAAAAYEIEegAAAAAATIhADwAAAACACRHoAQAAAAAwIQI9TCstLc3ZJQAAAACA0xDoYUqTJ0/W4MGDdf36dWeXAgAAAABOQaCHKZUtW1azZ8/Wq6++SqgHAGSJu/PibpL+eeZzDSAdgR6mYxiGevbsqaVLl+rtt9/WK6+8oqtXrzq7LABAPnP48GFZLBZJ0rx58/TDDz84uSLgzly4cEEpKSm6ePGiJII97m58vu1DoIep3PzFDg8P1xtvvKE333xTb731lq5du+bEyoD8hWtM4N/uxx9/VLt27TR16lS9+OKLevbZZ1W0aFFnlwXctg8//FCPPvqo7r33Xj388MNauXKl9Qcr4G6xZs0affHFF5Iki8VCqLeDm7MLAHIi/R+uZcuWacSIEXrwwQdVrlw5jRkzRhcvXtRrr72mAgUKOLlKwLnS0tLk4vL377WrVq3S8ePH5e/vr7p16yo0NNTJ1QF5o2jRonrqqaf02muvKTU1VYcPH1b58uV148YNubnxvz8wl+XLl2vAgAF66623lJycrJiYGHXs2FGRkZEaPny4ihUr5uwSgTv2+eefq2vXripTpoxu3Lihjh07WkM9P15ljX/RYDrHjh1Tv379FBUVpaeeekqJiYlauXKlnn32WUnSxIkT5e7u7uQqAecwDMMa5keOHKlFixapevXqiouLU1BQkAYMGKAOHTo4t0ggD5QtW1ZlypTRxYsXVbp0aa1atUrPP/+83NzclJqaKldXV2eXCNht7dq1euKJJzRo0CBrW6NGjRQREaHr169rwoQJ8vT0dGKFwJ3Zt2+f3nrrLfXr10+pqal65ZVXZBiGOnXqRKi/BQI9TCcpKUlFixZVq1at5O7urhIlSqh///5KTU3Vs88+Kz8/Pw0bNkxeXl7OLhXIc+n/2L3zzjv69NNPtWLFCjVs2FDTpk3TqFGjrOdfduvWTZL4BxJ3lfSjU9I/102aNNE333yj9evXa/bs2bp69aoiIyMJ8zAVwzAUFxen0qVLS/rfKVU9e/aUm5ubevTooSpVqqhv3778TYdpubq6KigoSEOHDpUkTZ06Va+++qokEepvgXPoYTqenp6KiYnRb7/9Jul//7C1bdtW/v7+evnllzV58mRnlgg41aVLl3T48GG98MILatiwoVauXKlx48Zp2LBh8vT01Ouvv64VK1ZIEv8w4q5x86kmP/30k77//nsVLFhQDRo00KBBg9S5c2ctXLhQ//nPf6zrREVF6cCBA84qGchW+rnD6T9OLV26VIcPH7b+aGUYhh5//HGNHTtWY8aM0YkTJ/ibDtNJ///4WrVq6a233lL16tVVvXp1DR48WGFhYXr11Vf1+eefS/r7u3DlyhVnlpsvWQyuNIB8LP2XuH8eHvnEE0/o5MmTevvtt1W/fn1Jf4eY559/Xo0aNVJYWJiqVq3qrLIBp/v5559VqFAhJSYmqn379nruuec0bNgwffLJJ+rfv7/KlCmj6dOnq3Xr1s4uFbhjN8/avPzyy1q6dKnS0tJ0/fp1dezYUS+++KJcXFz07rvv6pNPPlHjxo31xx9/6KefftJvv/3GjD3ytRs3bujSpUvq2rWr3N3dNX36dFWoUMF6PYjt27erU6dOWrdunerUqePscoHbkv55vvn/+Q8cOKB33nlHO3fu1KRJk/TII4+oefPmeumll9SuXTsnV5x/MEOPfCv9f9A2bdqkkSNHavjw4Tp8+LAk6dlnn5Wvr6+GDBmi1atX68CBA3rttdcUHR2txx57jDCPf43U1NRM28uXL68yZcrom2++UalSpdS3b19Jfx/SFh4err59++qhhx7Ky1KBXJMe5t9++2198MEHmjNnjo4fP67mzZtr0aJFOnHihAICAjRo0CCNGDFCp0+flo+Pj44fPy5XV1fuCoF8a/78+WrXrp38/PzUt29fJSUlacSIETp27Jj14o5ly5aVn58ft/CFaS1YsEBt2rTRjRs35Orqaj06pXbt2hoyZIgaN26s0aNHq2rVqvr111/5/5d/INAj37JYLNqwYYNatWql2NhYffTRR+rWrZsWLlyo+++/X6+88oqqVq2qRx99VJ07d9bixYv12Wefyc/Pz9mlA7nuzJkzkmT9Ffudd97RoEGD1LdvX8XFxVn/R88wDP3xxx/64YcfdP36dX300UcKCwuzzlhm9YMAYCaGYejGjRv65ptvFBkZqWbNmunLL7/U8uXLNWnSJIWFhSklJUUlS5bUwIED9fXXX+vjjz9WgQIFdOPGDeuh+kB+YhiGrl+/rj///FNxcXHq1q2bevfurcuXL6tt27ZatGiRPvvsMz3zzDPy9fW1HrEImIlhGLp27ZoSExP1+++/W9tuDvXdu3dXbGysSpQoodjYWOvfbvyNQ+6R76TPzJ87d07jx49X7dq1NWDAAEl/H2p/9OhRDR48WBEREXJzc9OxY8dkGIaKFCmikiVLOrl6IPdFRkZq9uzZ+u6771S5cmWNGzdO06dPV5s2bfTDDz/oypUr+uijj9SkSRPt2bNHI0aM0G+//SY3NzcVKlRIe/fuVYECBbi4DO4aaWlpunbtmh588EG9++67unjxotq2bau33npLTz/9tFJSUvTee++pXr16atiwofVzz3cA+Ulmn8fExETVrl1bDz/8sGbOnClJ2rVrlz766CMtWbJEwcHBKlGihFauXKkCBQpwBwfke9l9zh999FFNnz7dZllCQoI6d+6suLg4HThwQG5ubtx+9B/4SRr5jsVi0e7du9WxY0d99913qlSpknXZwoULVa1aNc2YMUPz58/XpUuXVKVKFVWtWpUwj3+NESNGKDQ0VI8++qgOHTqkkydPasOGDfr444919OhR3XvvverSpYuio6NVt25dTZs2TW+99ZZeeukl7du3z/rLNkEGZvXPQ+RdXFzk6empoKAgdezYUW3atNG7776rp59+WtLf/7O4bNky/fjjjzafe74DyE8y+zz6+vrqzTff1JYtW7Rz505JUsOGDTVjxgwdPHhQW7Zs0erVq61/1wnzyO+y+5x//fXX2r17t82y33//XcWKFdP+/fsJ81kg0CNfqlq1qiwWi/bu3av9+/dbD7spUKCAFi1apFq1aikqKsp61Uvg36R48eJavXq1fHx81KZNGx04cEDe3t6S/g42q1atUlhYmLp27aqtW7eqTp066tq1q5555hnrBWf4xxBmdfPV7H/88UcdOXJEiYmJkqSRI0fK399f5cuXV0REhAzD0IULF9S7d2/duHFD/fr1c2bpwC29/vrr6t69u9asWWNtq127ttzd3fX9999LkvVQY39/fxUqVEgWi0VpaWn8XYdpZPc537Vrl6T//XBbo0YNLVmyxPqjFZ/zjAj0yBf+eeaHj4+P1q5dq+bNm+vDDz/Ul19+aT3X19XVVR988IFatmyp8PBwZ5QLOF2RIkX01VdfqWbNmtq3b5/Onz8v6X//AK5cuVL333+/mjVrpn379tmsywwOzCw9zL/00kvq2LGj7rnnHj3zzDP66quvrBdQun79usqWLavw8HC1bt1aZ8+e1ZYtW+Tq6sp1I5Cv1alTRydOnNC4ceN0//33a8eOHapcubKGDRumMWPG6OTJk9ZAc/NMJ9eBgJnY8zlPvz3jzQjzmeMcejhd+rk0u3fv1s6dO3X16lXVqVNHrVq10sWLF/XII4/oypUrGj16tNq1a0cYwb/SzbOSN7tw4YLatm2rv/76S1988YWqVKlic37aqFGjNGnSJL43ML2bvwNr167V0KFDNWvWLP355596//33lZqaqmHDhumRRx7R6dOnNW/ePLm6uqpUqVKKiIiQq6srszswhcuXL+vAgQOaPHmyfv75Z5UtW1adO3fWRx99pPbt22vEiBH8TYfp8Tl3HAI98oVly5bp2Wef1T333CNfX18tXbpUkyZNUmRkpDXUX79+XUOHDlXHjh35guNf5eYg8+WXX+r06dMKDg5WxYoVVbFiRSUmJqply5ZKSkrSqlWrMoR6SVwoCXeNDRs26IsvvlD58uU1/P/au++oqM6tDeDPgIAgIBZsqIhd0ICKhti4Gg127BpREIRrjBHBUMSoMIo1NgIxoIiVTwwqQYhgQbFhlEsAC6LEnqhgEgQLIOX9/vByMlhyvTfGmYHntxZrzZwy6x3dc2b2W/aZOxfA86n3/v7+ePjwIT799FOMHz/+pfP4GSB18GLnbVxcHI4fP46vv/4aJSUlcHZ2xubNm5XYQqK/jnH+djGhJ6VQTDaysrIwaNAgLFiwADNnzsSdO3dgZmaGuXPnYvny5dDU1ERhYSH69esHY2NjxMTESOuFiWoSX19fbNiwAa1bt8bt27fRpUsXuLi4YNq0aSgoKICdnR0eP36M3bt3w8LCQtnNJXrrbt68iWHDhuHGjRv45JNPsHbtWmlfZVL/5MkTTJo0CS4uLkpsKdFf82LCk56ejoMHD8LLy4uzTKjaYJy/HVxwQ+9UXFwcAEgFXADgwYMH6NixI2bOnIkbN26gV69ecHNzw6pVq6CpqYns7GwYGhri1KlTCA8PZzJPNYbiWt/U1FQcOXIEBw8eRGZmJg4fPowOHTogODgYUVFRqFu3LhISElBcXIylS5cqsdVEb8+LYw6tWrVCaGgounbtihMnTuDw4cPSvvfeew+LFy9GcXExMjIy3nFLid7MizH9unE1xSRHCIGuXbti3rx5UpVvIlXGOH+3mNDTO3Pt2jXY29tjypQpAP74EBcVFSEvLw/nzp1D//79MXToUOleq6dOnYJcLsetW7egr68PU1NTpbWf6F3JysoC8EfxupUrVyI0NBSdOnWCjY0NAMDa2hoeHh4wMzPDd999h9LSUtSrVw/p6enYsWOH0tpO9LZUVFRIM7nu37+Pp0+fory8HH379kVgYCB0dHQQGhqKo0ePSud06dIFW7Zswfr165XUaqJXq0xoKmP6+vXrVZ7/mReP4cglqSrGuXIwoad3xszMDPv370diYiKcnJyk7W3btoWxsTE++ugj9O3bF2FhYVIiExsbi4KCAhgYGCir2UTvlKenJ6ZNm4YTJ05I2x49eoQtW7YgJSUFv/zyi7TdwsICY8eOxd69e3Hnzh0AgIGBASt5U7VQ2ekrl8sxcOBAfPjhh/Dy8kJRURH69+8PuVyO+/fv4+uvv8axY8ek89q0aQMNDY2X7lVPpEyKMxOXL1+OBQsWvNF5iiObXCVLqo5xrhxM6Omd0dDQwJAhQ7Bt2zbExMTA0dERwPOEfvDgwdDR0YGJiQmysrJw+fJl+Pj4YPPmzVi1ahXq16+v5NYTvRtubm4oKSnBypUrkZycDAAIDAxEUFAQbt68ia1bt+K3336Tjm/Tpg3atm370tQ0Fv8idaWYiO/cuRMhISGYO3cuunXrhjNnzsDe3h5Pnz7FwIEDIZfL8eDBAwQEBODHH3+s8jq8jRepgvnz50uzDitj8vfff0enTp0A4E87nhTrDcXFxVXpuCJSJYxz5eK3Hb0Tlb1thYWFGDZsGHbt2oX9+/fDwcEBwPP7CU+fPh3Hjh2DpaUlpk6disTERBw9ehSdO3dWZtOJ3pny8nKYm5sjOjoat2/fxqpVq6TpxLNnz0ZgYCD8/f2xfPlyHD9+HJcuXYK/vz8MDAzQtm1bJbee6K9TLJAUHx+Pu3fv4quvvoKLiwu++uoreHt7Iz8/HyNHjpSSeh8fH5ibm8PKykq5jSd6wc8//4wLFy4gKioKW7ZskbbfvHlT6oR9XceTYpITGhoKe3t7TkEmlcQ4VwGC6G9UUVEhPT5y5IgYPHiwKC0tFc+ePRPx8fGibt26YvLkydIxt27dEsnJySI7O1vk5eUpo8lESlVWViaEEOLKlSuic+fOYsiQISIpKUnav2zZMiGTyYRMJhNOTk5izJgx4tmzZ0IIIcrLy5XSZqK/asiQISIzM1N6npqaKtq3by8MDQ1FTEyMtP3Zs2di7969okePHuKjjz4Sjx8/rvI6/AyQqsnKyhJOTk6iV69eIjw8XAghhL29vZDL5UKIV8dsaWmp9Dg0NFQYGRmJPXv2vJsGE/0PGOfKxRF6+lusXbsWsbGxVdbSnDt3Dvr6+qhVqxa0tLQwdOhQREZG4vvvv5dG6lu2bAlbW1t06NABxsbGynwLRO+M4lS0yqny7du3l9bGf/nll9JIvZ+fH4KDgwEA3bt3R0REBLS0tFBeXs4pxqSWbt26hffeew8dO3aUtrVp0wafffYZ6tevj/DwcGm7lpYWRowYAT8/P2RnZ2P+/PkA/pgFxs8AqYrK63qnTp3g6+uLNm3aIDw8HJGRkWjVqhUaN26Ma9eu4datW8jNzcX9+/dx5swZAH8UAwsLC4OPjw/Cw8MxduxYpb0XotdhnKsIZfcoUPWTn58vJk2aJOrUqSMSExOl7e7u7sLBwaHKseXl5SI+Pl40bNhQjBo16l03lUjpFHutL1++LM6cOSMKCwtFUVGREEKI7Oxs0blzZzF48OAqI/VLliwRMplMrF+/XuTn57/rZhP9LdasWSOOHTsmhBCisLBQbNiwQXTp0kVMmzatynHPnj0TycnJ0owWIlWieF3Pzc0VQjyfdTV16lTx/vvvC5lMJgwNDUW7du1E48aNRaNGjUSjRo3EyJEjpZmNGzZsEHXr1uWIJaksxrnqYEJPf4ucnBzh5uYmjIyMRFxcnBBCCE9PT+Hq6iqEEFKyIsTzKTf79u0TLVu2FL/88otS2kukDIpLUr744gvRvn170aBBA2FpaSnWrVsn7t+/L4R4nuh36dJFDBs2TBw4cEA6Z9WqVUImk4kNGzZUeS0idfTrr7+KYcOGCSMjI3H69GkhhBAPHz4UISEhwsrKSjg7O7/yPCb1pEoUk5zFixeLMWPGiLS0NCGEEJcuXRJTp04VNjY2wt3dXRQUFIjc3FyRmZkprl69KsXy9evXRatWrUR0dLRS3gPRf8I4Vy1M6OmtUvyAp6SkCF9fX2FkZCROnjwpgoKChLe3tyguLhYPHz6Ujrt9+7YQQry0FpKopliyZIlo2rSpSEhIEEIIMXLkSGFqaiq++OILce/ePSHE85H6Ro0aiblz51ZJYNatWyeysrKU0m6iv+JVnVAXLlwQU6ZMEQ0bNhSnTp0SQvyR1Hfv3l3Y29u/41YS/W/8/PxE48aNxc6dO8XPP/8sbc/KyhKOjo7CxsZGbNu27aXzKq/vldd+IlXGOFcNMiF4sz96OypDSSaT4ciRI/D29oanpydSUlIQFRUFbW1tGBoaoqKiAsXFxdDX18ezZ8+gp6eH06dPo169ekp+B0TvXlZWFmbMmAEfHx+MGDEChw8fxtixY/H+++/j6tWrcHJywqeffoomTZrg9u3bMDExgaamJsrKylgJltSWYjV78XxwQXp+8eJFLFu2DIcPH8Z3332H3r17o6CgAKGhocjOzsbmzZu5Vp5UWlpaGiZMmICNGzfiww8/lLZXxn12djZWrlyJ06dPY+3atRg+fLh0jFCo+k2kyhjnqoO/BumtUEzmo6KiMHnyZABAnTp1EBgYiNq1ayM8PBwff/wx3N3dcfPmTZSWlkImk6F9+/ZM5qnGatasGdzd3TFgwACcPHkSU6dOxerVq/HPf/4TdnZ22L59O/Lz8+Hv74+WLVsCeH57OybzpK4Uk/nQ0FCcOHECMpkMPXv2xJw5c9C5c2d88cUXEEJgzJgxiImJQa9evfDZZ59BT09PKrbKpJ5U1W+//QYhBCwtLaVtlZ1WpaWl6NixI7y8vNCmTRsMGTKkyrlMckhdMM5VB38R0lsjk8mwZ88eTJ48Gfv27cPu3btx6dIljB07Fm5ubigtLcW2bdswbty4Kj15RDWZkZERBg8ejDp16mDbtm0YM2YMpk+fDgBo1aoV7ty5g4qKCjRo0EA6p7ISPpE6qkzE582bhx07dmDcuHEwMDCAr68vHjx4gMDAQFhYWGDBggXQ1NREnz59kJmZiS5dugBAldF8IlWko6ODu3fv4ubNm2jYsKE0C0UmkyEpKQlGRkawsbGBhYUFgOedtLyuk7phnKsOfiPSWyGTyRATE4MJEyZg8+bNGDVqFB4/foy7d+8CACwsLDB37lxMnDgRtra2OHTokJJbTKQ6DAwMAAC///47njx5grKyMgBAQUEB1qxZg5CQEMhkMnCFFFUXu3btwp49e7B3714EBQXB2toa5eXlWLZsGWbOnAng+feGl5cXFi1aBHNzc+lcjuyQqlC85agiU1NT2NjYYO3atTh//jxkMpk0arlq1SrExcVVOZ5JDqkyxrnq4xp6emsSEhKQn58vTbd3d3fHw4cPsX37dumY+Ph4pKWlYdKkSejQoYOymkqkkry9vXHw4EG0bdsW9+7dQ0FBAS5cuABNTU1OMaZqo7y8HGFhYSguLsbcuXPx/fffY8qUKQgMDISuri5cXV3h5+eHpUuXVjmPdSNIlShekxMSEvD48WOUlJRgypQpAICtW7di06ZN0NXVhYODAzQ1NbFjxw7k5eUhLS2NsUxqgXGuHpjQ01tXOd1m2bJl2L9/P06fPg1NTU0sXrwYBw4cQHx8PBo2bKjsZhKpDMXiMPPnz0dubi40NDTwzTffoFatWpymRmrtVcWPCgsL8eDBA+jr68POzg4ODg7w9vbGxYsXYWtri/z8fCxbtgzz5s1TUquJXk8xpv38/LBr1y7Uq1cPDx48QJcuXbBjxw40bNgQsbGxiI2NRXR0NDp37oymTZti9+7d0NLS4nWdVB7jXH0woae3rvIC8PXXXyM4OBjZ2dmQy+UIDAzE2bNn0a1bN2U3kUjlvO5Lj6OSpM4UR3fy8vLQoEGDKnF+9uxZODk54eDBgzA1NcW1a9ewbNkyTJ06FX379uUPQVJpq1evxpo1axAXFwdra2ts2rQJM2bMgK2tLaKiotC4cWMAz2NfT08PderUgUwm43Wd1ArjXPVx/ib9bTp37oz69evjs88+w/Lly/HDDz8wmaca43V9pa/bXpm4vLhWjV+GpM4qk/mAgADY29ujR48e2LlzJ3JzcwE8rx9x9epVREZG4vLly5g9ezYePHgAW1tb6faMRKqivLxcepybm4uLFy8iODgY1tbWiI2Nhbe3NxYvXoxbt27BwcEBd+7cAQA0atQI+vr6Ui0UXtdJlTHO1Q9H6Olvc/bsWXzwwQfQ1NTEuXPn0LVrV2U3ieidUByVzMrKgoaGBrS1tdG6deuX9itSnN529epVNG3aVCqYR6Sutm3bBj8/P8jlchw4cAA5OTkYNmwYZs2ahZYtW2L16tXw8/NDq1atYGRkhJSUFGhpafE+xaSyrl69ivbt2yMmJgZ9+vTBrVu3MH78eHh5eWHWrFkICgqCp6cnLC0tcejQIRgbGyu7yUT/Nca5+uAIPf1trKyssHjxYly8eJHJPNUYirfUWrRoESZPnox//OMfcHZ2RnBwMIDno5YvjsQrJi/BwcGYOHEi8vPz323jid6CF2O7pKQEixYtgpubG2JiYuDg4IDDhw8jODgYubm58PLywuXLl7Fz506cPXsWWlpaKCsrYzJPKiMmJgb+/v4AAA8PD/j6+qKsrAyjR4+GsbExTp48CXNzc6kosIGBAaZPnw4LCwvUr19fmU0nemOMc/XFuRD0t9HR0YGfnx/XQFKNUpmEyOVyhIaG4v/+7/9gYmKClStXYs6cOXjy5AnmzZsnJfUaGhpVkvmwsDAsWrQI33zzDVq2bKnMt0L0X1Ps0IqMjERubi7S09NhZ2cnHePn5wcAiI6Ohkwmw8yZM9G2bVu0bdsWwPMOAU7VJFVRUlKCn376CStWrMDx48eRlpaGM2fOVInRq1ev4tatW6hbty4ePXqE2NhY/OMf/4CnpycA3n+bVB/jXM0JIiL6yyoqKqTH//rXv0TPnj1FcnKyEEKIxMREYWBgIEaPHi3q1KkjVq1aJR1bWloqPQ4NDRWGhoZi7969767hRG9JeXm59Njb21sYGhqKzp07C01NTWFjYyNu3LhR5fgVK1YIExMTERwc/I5bSvTfKS4uFr169RIymUzMmjVL2l5WViaEEOLy5cuiQYMGwtTUVLRv31507ty5yrWdSB0wztUXu8CJiP4ixTXx2dnZeO+99zBq1Cj06NEDR48exbRp07B69WpMmDAB48aNg6+vr3Rbrsre77CwMPj4+CAiIgJjxoxR5tsh+p9UfgauXr2KX3/9FUePHoWVlRXCw8Oxfft2LFiwAEuXLoWpqSkAwNfXF82aNZOmbxKpEsXremlpKQYMGICePXti27ZtMDY2hr+/PzQ1NfHs2TN07NgRP/zwA3bv3g09PT3Mnj2btxwltcA4rx5YFI+I6C8QL9yn9YcffkBsbCxq164NbW1tTJ8+Hfr6+vjyyy+hra2NWbNm4fz586hbty7i4uIgk8kQHR0NR0dHREZGMpkntbZ7927Mnz8fTZs2RVxcHOrVqwfgeYfVzp07YWpqimXLlr20nIQ/CEmVKCY50dHRMDExQbdu3VBRUYENGzYgMDAQnp6e0npj4HkBVHNzc+k5Y5pUHeO8+mBRPCKiv6AymT937hxOnTqFFStWwNDQENra2igpKUFGRgZKSkqgra2Np0+fIi8vD7NmzUJ8fLx0rpWVFeLi4pjMk9qrqKhAixYtkJWVhaKiImn7jBkzMHXqVPz888/45JNPpNvWVeIPQlIVQqEOxLx58+Du7o4rV66gqKgIenp6cHZ2xoIFC7B+/XosWLAAT548wdChQ/Hll19WeR3GNKkyxnn1whF6IqK/aMOGDUhJScGzZ8+wa9cuaGpqSj3fK1euRHBwMAYNGoScnBw8ffoUqamp0NTUhBCiypcqUXUQHx+PgIAA6OrqIjIysspo/Lp165CTk4OQkBDGPam0lStXYu3atYiPj4eVlRW0tLSkfSUlJdi4cSO8vb3RokUL6OrqIi0trcoxROqAcV49MKEnIvqLVq1ahfnz56NFixY4fPiwVK0bAK5du4Y9e/bg6NGjMDExQVhYGLS0tDhNjaodxeUn3333HYKDg1FRUYHt27ejRYsWLx2nON2TSJWUlJRg4sSJ+OCDD+Dr64vbt28jKysLYWFh6NSpExwcHGBhYYGcnBxcunQJI0aMgKamJsrKyniHBlIbjPPqgwk9EdF/ISkpCf3794eGhgbkcjmaNGmCGTNmYMOGDVi4cCFcXV0xe/ZsNG/e/LWvwS9Dqq4Uk/qYmBiEhIRAJpMhPDwcrVq1euVxRKpECIHHjx9j0KBB6NKlC3r37o2YmBg8fvwYAFBcXAxzc3OEhIRAR0dHOo+dtKROGOfVC7vGiYje0L179/DZZ5/BxsYG7u7uWL58OWxsbAAAn376KebNm4fIyEhs3rwZd+/elc6rqKiQHgshmMxTtSWTyVA5TjB69Gi4u7sjLy8Pa9aseek4ImUTQlS5PlcyMDCAh4cHkpOTMW/ePHTt2hVyuRxJSUn44IMPUFBQUCXJAbiWmFQX47z6469KIqI31LhxY2zbtg12dna4ePEiTp06BUtLSxQVFUFXVxfe3t4QQkjrg6dNm4YWLVpUmVbMRIaqu8qkXiaTwd7eHvXq1UOfPn2U3SyiKgoKClC3bl3pmhwSEoKcnByUl5fD398fkyZNQp8+fSCTyWBiYiKdd+nSJZiZmSmr2UT/FcZ5zcAReiKi/6CyZ1tDQwO1atVC/fr10axZM3h6eqK4uBi6urooLi4GAPj4+GD27NkICAjA4cOHldlsorfmdavzXrddcaS+X79+XCtPKsXPzw8tWrRAXl6e9DwgIAA3b97EkSNHYGFhgfT0dDRv3hwmJiYoKCjAwYMHMWLECNy5cwdfffUVgNfHP5EqYJzXHPyGJSL6E4qFuy5evIgmTZogLS0N27dvx6NHjzBgwACUlJSgdu3a0peet7c3oqOj4eTkpMymE70VFRUV0uhOVlYWsrOzcf36dQCQitv9J1evXsWjR4/+1nYSvSlHR0d06dIFffv2xZ07d6REJjY2FidOnECvXr1gZ2eHH3/8EQBw/fp1rFixAjKZDOnp6ahVqxbKy8s544pUGuO85mBRPCKi11BM5hcuXIiEhAQsXboUgwYNQkVFBZKTk+Hl5QV9fX0cOXIEtWvXhouLC2xtbaVkngVkSJ0pFq9btGgR9u/fj/v376NDhw4YN24cZs+eDQAvVaxXPC84OBgRERGIjY2tcgs7ImX66aef4ODggNu3b6Nly5bYuXMn2rVrBwB4+PAhnJ2dkZKSgoSEBHTr1g05OTlo06YNNDQ0WNiU1AbjvGbgCD0R0WtUJigLFixAeHg45HI5evToIU29HzBgAIKCglBYWAgzMzPY2toiKSkJDg4O0mswmSd1VpmUy+VyhIaGYvXq1Th27BjMzMwwZ84crFixAsDzz0rlSL1iMh8WFoZFixbB19eXyTwpneJskrZt2yIyMhLW1tZIT09HSUmJdIyRkRG2bNmCPn36wNraGleuXEG7du2kOGeSQ6qMcV7z8H+KiOhPXLp0Cd9++y22bt0KOzs7FBYWIicnBydPnkTHjh1ha2uL2NhYREREoKKiAklJSdI0NSbzpK4Uk/K0tDQcOHAA0dHRsLW1xcGDB7Fv3z6MGjUKgYGB0NTUhLe390sjOmFhYfDx8cGWLVswZswYZb4doiqzSM6cOQMTExO0bdsWa9asQX5+PkaNGoWUlBQ0atQIQggYGRlh06ZNaN++Pdq2bSu9DutBkCpjnNdMnHJPRPQnMjMzMXHiRERERKCsrAzffvstkpOTkZ+fD2NjYyxZsgQjRoyocg6TeVJnij8Is7Oz0aZNG6xevRpz5szBDz/8AAcHB8jlckyYMAHjxo3D0aNHMW/ePCxbtkx6jcpkPiIiAmPHjlXWWyECUDWm58+fj/j4ePj7+2PIkCHQ09NDTk4OHB0d8eDBA5w+fRqNGzd+aRkJpx+TqmOc11zsfiEi+rdXFffq0KEDNDQ04OrqioEDBwIAli9fjjNnzqCsrAz3799/6Rwm86SuhBDSjzs/Pz/MnDkTRUVF+Pzzz6Gnp4fIyEhMmDAB06ZNg5GRETp06IDevXvj/PnzUlHI6OhoeHh4YMuWLUzmSSVUxrS/vz8iIiKwZs0a2NnZQU9PDwDQrl07REVFoUGDBujXrx/u3r370gglkxxSdYzzmov/a0REqNqznZqaKlX27tmzJ9LT0xEfHw9jY2P06dNHOs7Q0PCNKnwTqYvKafbnzp3DqVOnsHr1ahgaGgIASkpKkJGRgR49ekBbWxtPnz5FXl4eZs2ahUmTJkmvYWVlhbi4OKkDjEgVXL9+HXv37kVYWBgGDRqEX3/9FT/99BMOHTqEVq1aYcKECdizZw/69+8PT09P7N69W9lNJvqvMc5rJib0RFTjKY5K+vr6YteuXZDJZMjNzcXHH3+MhQsXSiONT548wcOHD+Hm5obi4mK4uroqs+lEb92GDRuQkpKCpk2bwtraGsDzDi8dHR1MmDABwcHBcHZ2Rk5ODp4+fYrx48cDeP45EkKgXbt2UhVlIlVRq1YtaGtro6CgAEeOHMGuXbvw448/oqSkBE+fPkV+fj5mzJiB5ORkNG3aVNnNJfqfMM5rJk65J6Iar3JUMiQkBBEREYiKisKhQ4cQHx+PxMRE+Pr64tatWwCA8PBw2Nvb4/Hjxzh79iw0NTVRXl6uzOYTvVWPHz9GVFQUUlNTcePGDQB/TOWsvFXd3bt30b59+yqfAZlMxkJKpBJeNXOqSZMmaNKkCdavXw87OzsYGhpixYoVSElJQbt27fD7778DAJo3b87rOqkFxjlV4gg9EdG/paamYuzYsejVqxeEEOjQoQMSEhLQr18/dOrUCYsXL4aTkxMMDQ3h6OgITU1NFpAhtZaUlIT+/ftDQ0MDcrkcTZo0gY+PD/T19bFw4UJs2rQJs2fPRvPmzQEAbdq0ga+vL3x9faXX4GeAVIni8qlLly5BW1sbQgi0b98e+/btw9mzZ6Gvr4/u3btL5xQVFb1U+4S1UEiVMc5JEavcE1GNpHhbLgAoLS3FkCFD0Lx5c2zduhUVFRUoKyuDtrY21q5di9DQUJw5cwYNGjSQzmE1e1Jn9+7dw4ABA2BgYAAbGxts3LgRZ8+ehaWlJQDgyy+/RFBQENzc3ODm5oZmzZoBqPpD8sXPEZEyKcZjQEAA9uzZg6dPn0JbWxt+fn5wcnKSjn38+LFUA+LevXv417/+xY4pUguMc3oR58YRUY1TWfAOeF5AJi8vD1paWnB0dMSePXuQlJQEDQ0NaGlpAQB0dHTQsGFDGBgYVHkdJvOkzho3boxt27YhJycH4eHhOHXqFCwtLVFUVAQA8Pb2hru7OzZv3ozNmzfjzp07AKren5jJPKkSxSRnw4YNWLduHQ4ePAhra2s4OzsjLCxMOnb79u1wdHTEs2fPkJqailq1anH6MakFxjm9iAk9EdU4ivdpHTlyJMzNzaVpxi4uLpg1axYSExNRUVGBgoICxMfHw8TERErwidRZ5bpLDQ0N1KpVC/Xr10ezZs3g6emJ4uJi6Orqori4GADg4+OD2bNnIyAgAIcPH1Zms4neSFpaGo4fP46oqCgMGjQIV69exffff49hw4Zh5syZ2LRpEwBg+vTpmDt3Lg4dOgQtLS2UlZWxk5bUBuOcFHHKPRHVGIpThaOjo+Hp6YmQkBCcP38eiYmJaNmyJWxsbPDLL79g3bp1aN26NTQ1NaGjo4PU1FRoaWlxijGpNcXPwMWLF1G/fn3o6ekhKysLn376KfT09HDs2DHo6OhUifV9+/bB3t6ePwRJ5bx4Tf75558RGRkJDw8PnD59GlOmTMGiRYswdepUjB49GkeOHMHKlSvh7e0tncPlU6TqGOf0Z5jQE1GNc+LECezduxeWlpZwcXEBAOzfvx/BwcGoV68e3Nzc0KhRI6mozMSJE1kAj9SeYjK/cOFCJCQkYOnSpRg0aBAqKiqQnJwMLy8v6Ovr48iRI6hduzZcXFxga2srrcnkD0JSJYrxeO3aNejr66Nx48ZSrE+bNg16enoICgqClpYWPvnkE6SlpaF27do4ceIEO2dJLTDO6T/hlHsiqlHu378PFxcXbN26FYWFhdL2kSNHwt3dHb/99hs2bNiAkpIS/POf/8TkyZOlW7swmSd1VpnML1iwAOHh4ZDL5ejRo4c09X7AgAEICgpCYWEhzMzMYGtri6SkJDg4OEivwWSeVME333yDjIwMKR79/Pxgb28PCwsL+Pj4IC0tDQCQmZmJOnXqQEtLC0VFRXjw4AECAgJw8uRJyGQycEyLVBnjnN4UR+iJqMY5f/48xo8fD1NTU6xZswZdunSR9h04cAC+vr4YPnw4li9frsRWEr19ly5dwujRoxEcHAw7OzsUFhYiNzcXJ0+eRMeOHdGrVy/cuHEDERERqKiogFwul4ooMZknVXDjxg3069cPQ4YMgY+Pj7RcpHL51IEDB9CsWTMsWLAAp06dgpeXF5ydnZGRkYHS0lKkpqZCU1OTy6dIpTHO6b/BhJ6IaqTMzEw4OzvD2toac+bMgYWFhbQvJSUF77//PhMYqnYyMzMxceJEREREoKysDN9++y2Sk5ORn58PY2NjLFmyBCNGjKhyDpN5UjUZGRlwdXVF3759oaGhAXNzc0yfPh0AEB8fjzVr1qBevXqYNGkSfv31V+zfvx8mJiYIDQ2FlpYWY5rUAuOc3hSn3BNRjWRpaYnNmzcjLS0NQUFByMrKkvb16tVLmmZPpK4qq9kr6tChAzQ0NODq6oqBAwcCAJYvX44zZ86grKwM9+/ff+kc/iAkVWNlZYWNGzfi1KlT2LJlCx49eiTtGz58OObOnYvCwkJ8++23sLS0RGJiIjZv3swq36RWGOf0ppjQE1GN1bVrV4SHhyMjIwP+/v64ceNGlf38MiR1pVgALzU1FWfPnsW5c+dQu3ZtpKenY8mSJThy5Ai++uorjBgxAi1btoShoeErOwGIVFG3bt0QERGBevXq4cCBA7hw4YK0b8SIEfD09MSVK1cQFxcnbRdCsBYKqRXGOb0JTrknohrv3LlzCA0NRXh4uJQEEakrxTWTvr6+2LVrF2QyGXJzc/Hxxx9j4cKFaN26NQDgyZMnePjwIdzc3HD//n1p3SWRuuDyKaoJGOf0Z5jQExHhjyRIcWSTSJ2FhIRALpcjNjYWDRo0wJ07dzB16lT06dMHq1evhqmpKYKCgrBjxw7o6ekhKSmJ6y5JLaWnp8PV1RXdu3eHh4cHzM3Nq+xnTFN1wDin12FCT0T0b6wGS9WJk5MTdHV1ERoaKsV2RkYG+vXrBw8PDyxevBgPHz5ETEwMHB0doampibKyMk7VJLWUnp6OGTNmwNTUFKtWrYKZmZmym0T01jHO6VU4DEVE9G9M5kldvdg3X1pail9++QXFxcXS/mfPnsHKygoBAQGIiorCb7/9BiMjIzg7O0tFIJnMk7rq2rUrQkJCYGBgAFNTU2U3h+hvwTinV2FCT0REpMYqKiqkzqjr168jLy8PWlpacHR0xJ49e5CUlAQNDQ1oaWkBAHR0dNCwYUMYGBhUeR1O1SR117NnT2zevBkaGhos8EjVFuOcXsSEnoiISI1V1nyYP38+Ro4cCXNzc/j4+EBfXx8uLi6YNWsWEhMTUVFRgYKCAsTHx8PExERK8ImqE5lMBiEEa6FQtcY4J0WcW0dERKSGFAs4RkdHY/v27QgJCcH58+eRmJiI27dvw8bGBiNGjMDw4cPRunVraGpqQkdHB6mpqdIPQi41oeqGMU01AeOcKrEoHhERkRo7ceIE9u7dC0tLS7i4uAAA9u/fj+DgYNSrVw9ubm5o1KgRzp49C319fUycOJEF8IiIiKoJJvRERERq6v79++jTpw8ePHgAuVwODw8PaV9cXBzWr18PQ0ND+Pn5oWfPntI+3t6IiIioeuDCCyIiIjXVpEkT7Nu3D02aNMGBAwdw4cIFad+IESPw+eef46effkJMTEyV85jMExERVQ8coSciIlJzmZmZcHZ2hrW1NebMmQMLCwtpX0pKCt5//30m8URERNUQE3oiIqJqID09Ha6urujevTs8PDxgbm5eZT+n2RMREVU/TOiJiIiqifT0dMyYMQOmpqZYtWoVzMzMlN0kIiIi+htxDT0REVE10bVrV4SEhMDAwACmpqbKbg4RERH9zThCT0REVM1U3l9e8V71REREVP0woSciIqqGKpN6IiIiqr7YbU9ERFQNMZknIiKq/pjQExEREREREakhJvREREREREREaogJPREREREREZEaYkJPREREREREpIaY0BMRERERERGpISb0RERE9D+5efMmZDIZMjIylN0UIiKiGokJPRERUQ0mk8n+9C8gIEDZTSQiIqLXqKXsBhAREZHy3Lt3T3q8e/duLFq0CFeuXJG26evrK6NZRERE9AY4Qk9ERFSDNWnSRPqrW7cuZDKZ9LxRo0ZYu3YtmjdvDh0dHVhZWSExMfG1r1VeXg4XFxd07NgRt2/fBgDExsaiW7duqF27Nlq3bg25XI6ysjLpHJlMhvDwcIwePRp6enpo164d9u/fL+3Pz8+Hg4MDjI2Noauri3bt2mHLli1/3z8IERGRGmFCT0RERK8UFBSENWvWYPXq1Th//jzs7OwwcuRI5OTkvHRsSUkJxo8fj4yMDJw8eRItW7bEyZMn4ejoiDlz5iArKwthYWHYunUrli5dWuVcuVyOCRMm4Pz58xg6dCgcHBzw+++/AwAWLlyIrKwsJCQk4PLly/jmm2/QsGHDd/L+iYiIVJ1MCCGU3QgiIiJSvq1bt8LDwwMPHz4EAJiYmGDWrFmYP3++dEzPnj3Ro0cPfP3117h58ybMzMxw8uRJBAQEoKSkBPHx8ahbty4AYODAgfjwww/h5+cnnb9z5074+Pjg7t27AJ6P0C9YsABLliwBADx58gT6+vpISEjA4MGDMXLkSDRs2BARERHv6F+BiIhIfXANPREREb2ksLAQd+/eRe/evats7927NzIzM6ts+/jjj9G8eXMcPXoUurq60vbMzEycPn26yoh8eXk5iouL8fTpU+jp6QEA3nvvPWl/nTp1YGhoiLy8PADAzJkzMXbsWPz444/46KOPMGrUKPTq1eutv18iIiJ1xCn3RERE9JcMHToU58+fx5kzZ6psf/z4MeRyOTIyMqS/CxcuICcnB7Vr15aO09LSqnKeTCZDRUUFAGDIkCG4desWPD09cffuXXz44Yfw8vL6+98UERGRGmBCT0RERC8xNDREs2bNcPr06SrbT58+DXNz8yrbZs6ciRUrVmDkyJE4fvy4tL1bt264cuUK2rZt+9Kfhsab/wQxNjaGk5MTdu7cifXr12Pjxo1/7c0RERFVE5xyT0RERK/k7e0Nf39/tGnTBlZWVtiyZQsyMjIQGRn50rGzZ89GeXk5hg8fjoSEBPTp0weLFi3C8OHD0bJlS4wbNw4aGhrIzMzExYsXERgY+EZtWLRoEbp37w4LCwtpjX6nTp3e9lslIiJSS0zoiYiI6JXc3d1RUFCAzz//HHl5eTA3N8f+/fvRrl27Vx7v4eGBiooKDB06FImJibCzs0N8fDwWL16MlStXQktLCx07doSrq+sbt0FbWxt+fn64efMmdHV10bdvX0RFRb2tt0hERKTWWOWeiIiIiIiISA1xDT0RERERERGRGmJCT0RERERERKSGmNATERERERERqSEm9ERERERERERqiAk9ERERERERkRpiQk9ERERERESkhpjQExEREREREakhJvREREREREREaogJPREREREREZEaYkJPREREREREpIaY0BMRERERERGpof8HUDrqVpCQaVgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAMGCAYAAAAA9YxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUU0lEQVR4nOzdd3QU5dvG8WuTkAJp9FCT0AlVQaoSQJAuCAioSJGiFAOC0qVJVZSqgCAQiohI7yhVUUTpEkCRBBBCUUkCBELKvH/wZn/EUFJ22AS+n3P2HPaZmWfu2Z3dcO0zxWIYhiEAAAAAAGBTDvYuAAAAAACAxxGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAJ4gtWvXVu3ata3Pw8LCZLFYtGDBgkdaR6dOneTn5/dI15keGaHe2rVrq2zZsnatISNL3JcnTZpk71IeqQULFshisSgsLMzepWRI9vqOA4BEBG4AuEvif15dXV11/vz5ZNMJPY9G4vvwsEdKQnBISIhGjhz5SAJJ7dq1rbU5ODjI09NTJUuW1Ouvv65vv/3W9PVL0oULFzRy5EgdOnTokawvPRLDUEoeBMr0GTlyZJLXM2vWrAoICNCwYcMUFRVls/VER0dr5MiR2rlzp836BIDMzMneBQBARhQTE6MJEyZo+vTp9i7FVL6+vrp586ayZMli71KSqFWrlhYtWpSkrWvXrqpSpYq6d+9ubXN3d39oXyEhIRo1apRq1679SEapCxYsqPHjx0uSbty4oVOnTmnlypVavHix2rRpo8WLF5v6el+4cEGjRo2Sn5+fKlasaNp6bCF37tzJ3uePP/5Yf/31lyZPnpxsXqTfzJkz5e7uruvXr2vr1q0aO3astm/frj179shisaS7/+joaI0aNUqSkhxNAwBPKgI3ANxDxYoVNWfOHA0ePFj58+c3ZR2GYejWrVtyc3Mzpf+USBzNz2iKFCmiIkWKJGl76623VKRIEbVv395OVaWMl5dXshonTJigoKAgffbZZ/Lz89PEiRPtVJ39REdHK2vWrEnasmXLluy1+uqrr3T16tUM/z5nVq1bt1auXLkk3flMtWrVSitXrtTevXtVvXr1ey5zr/cOAJAyHFIOAPcwZMgQxcfHa8KECQ+dNy4uTh988IGKFi0qFxcX+fn5aciQIYqJiUkyn5+fn5o2baotW7aocuXKcnNz0+zZs7Vz505ZLBZ9/fXXGjVqlAoUKCAPDw+1bt1akZGRiomJUd++fZUnTx65u7urc+fOyfqeP3++6tatqzx58sjFxUUBAQGaOXPmQ2v/7/mNibWk5PDtTZs26bnnnlO2bNnk4eGhJk2a6NixY8nWsXr1apUtW1aurq4qW7asVq1a9dC6UurgwYNq1KiRPD095e7urueff1579+61Tl+wYIFefvllSVKdOnWs25J4uOuaNWvUpEkT5c+fXy4uLipatKg++OADxcfH26xGSXJ0dNS0adMUEBCgGTNmKDIyMsn0xYsXq1KlSnJzc1OOHDnUrl07nTt37p597d+/XzVq1JCbm5v8/f01a9Ys67SdO3fqmWeekSR17tzZur0POn818VDjEydOqE2bNvL09FTOnDnVp08f3bp1K9n8Kak18dSL/fv3q1atWsqaNauGDBmS0pcrmcuXL6tLly7KmzevXF1dVaFCBQUHBz90OcMw1L17dzk7O2vlypVp2oaQkBDVqVNHWbNmVYECBfThhx+mqOaUfiYTvxd++OEHValSRa6uripSpIgWLlyYbN5jx46pbt26cnNzU8GCBTVmzBglJCSkqJ77qVu3riQpNDRU0oPfu4e9D2FhYdYjEUaNGmXd/0aOHGmdZ/v27dbvDW9vbzVv3lzHjx9PVtf58+fVpUsX62fT399fPXr00O3bt63znD59Wi+//LJy5MihrFmzqlq1atqwYUO6Xg8AsDVGuAHgHvz9/dWhQwfNmTNHgwYNeuAod9euXRUcHKzWrVurf//++vnnnzV+/HgdP348Wbg8efKkXnnlFb355pvq1q2bSpYsaZ02fvx4ubm5adCgQTp16pSmT5+uLFmyyMHBQVevXtXIkSO1d+9eLViwQP7+/ho+fLh12ZkzZ6pMmTJ68cUX5eTkpHXr1qlnz55KSEhQr169UrzdpUuXTnaIb0REhPr166c8efJY2xYtWqSOHTuqQYMGmjhxoqKjozVz5kw9++yzOnjwoDWcb926Va1atVJAQIDGjx+vf/75R507d1bBggVTXNP9HDt2TM8995w8PT01YMAAZcmSRbNnz1bt2rW1a9cuVa1aVbVq1VJQUJCmTZumIUOGqHTp0tbtlO4Ecnd3d/Xr10/u7u7avn27hg8frqioKH300UfprvFujo6OeuWVV/T+++/rhx9+UJMmTSRJY8eO1fvvv682bdqoa9euunLliqZPn65atWrp4MGD8vb2tvZx9epVNW7cWG3atNErr7yir7/+Wj169JCzs7PeeOMNlS5dWqNHj9bw4cPVvXt3Pffcc5KkGjVqPLS+Nm3ayM/PT+PHj9fevXs1bdo0Xb16NUnwS02t//zzjxo1aqR27dqpffv2yps3b5pet5s3b6p27do6deqUevfuLX9/fy1fvlydOnVSRESE+vTpc8/l4uPj9cYbb2jZsmVatWpVml/vhg0bqmXLlmrTpo2++eYbDRw4UOXKlVOjRo0eWHdqPpOnTp1S69at1aVLF3Xs2FHz5s1Tp06dVKlSJZUpU0aSdPHiRdWpU0dxcXEaNGiQsmXLps8//zzdR8j8+eefkqScOXNa2+713qXkfcidO7dmzpypHj166KWXXlLLli0lSeXLl5ckfffdd2rUqJGKFCmikSNH6ubNm5o+fbpq1qypAwcOWL83Lly4oCpVqigiIkLdu3dXqVKldP78eX3zzTeKjo6Ws7OzLl26pBo1aig6OlpBQUHKmTOngoOD9eKLL+qbb77RSy+9lK7XBQBsxgAAWM2fP9+QZPzyyy/Gn3/+aTg5ORlBQUHW6YGBgUaZMmWszw8dOmRIMrp27Zqkn3fffdeQZGzfvt3a5uvra0gyNm/enGTeHTt2GJKMsmXLGrdv37a2v/LKK4bFYjEaNWqUZP7q1asbvr6+Sdqio6OTbUuDBg2MIkWKJGkLDAw0AgMDrc9DQ0MNScb8+fPv+XokJCQYTZs2Ndzd3Y1jx44ZhmEY165dM7y9vY1u3bolmffixYuGl5dXkvaKFSsa+fLlMyIiIqxtW7duNSQl24aHyZYtm9GxY0fr8xYtWhjOzs7Gn3/+aW27cOGC4eHhYdSqVcvatnz5ckOSsWPHjmR93ut1e/PNN42sWbMat27dsrZ17NgxRfX+d//4r1WrVhmSjKlTpxqGYRhhYWGGo6OjMXbs2CTzHT161HByckrSHhgYaEgyPv74Y2tbTEyMUbFiRSNPnjzWfeeXX3554Hv6XyNGjDAkGS+++GKS9p49exqSjMOHD6e51lmzZqWohrs1adIkyWs9ZcoUQ5KxePFia9vt27eN6tWrG+7u7kZUVJRhGP/blz/66CMjNjbWaNu2reHm5mZs2bLFulxatmHhwoXWtpiYGMPHx8do1arVQ7cjpZ/JxO+F3bt3W9suX75suLi4GP3797e29e3b15Bk/Pzzz0nm8/LyMiQZoaGhD6wn8X0+efKkceXKFSM0NNSYPXu24eLiYuTNm9e4ceNGku3+73uX0vfhypUrhiRjxIgRyWpI3Ff/+ecfa9vhw4cNBwcHo0OHDta2Dh06GA4ODsYvv/ySrI+EhIQkr8f3339vnXbt2jXD39/f8PPzM+Lj4w3DePh3HACYjUPKAeA+ihQpotdff12ff/65wsPD7znPxo0bJUn9+vVL0t6/f39JSnZ4o7+/vxo0aHDPvjp06JDkYlpVq1aVYRh64403ksxXtWpVnTt3TnFxcda2u0e5IiMj9ffffyswMFCnT59OdvhyanzwwQdav369FixYoICAAEnSt99+q4iICL3yyiv6+++/rQ9HR0dVrVpVO3bskCSFh4fr0KFD6tixo7y8vKx91q9f39pXWsXHx2vr1q1q0aJFknO98+XLp1dffVU//PBDiq68fPfrdu3aNf3999967rnnFB0drRMnTqSrxntJvMjbtWvXJEkrV65UQkKC2rRpk+S19PHxUfHixa2vZSInJye9+eab1ufOzs568803dfnyZe3fvz9dtf131PXtt9+W9L99PLW1uri4qHPnzumqKXH9Pj4+euWVV6xtWbJkUVBQkK5fv65du3Ylmf/27dt6+eWXtX79em3cuFEvvPCCdVpqt8Hd3T3JueTOzs6qUqWKTp8+/dC6U/OZDAgIsB6NIN25QFzJkiWTrGfjxo2qVq2aqlSpkmS+11577aG13K1kyZLKnTu3/P399eabb6pYsWLasGFDknO07/XepfZ9+K/E74NOnTopR44c1vby5curfv361v0sISFBq1evVrNmzVS5cuVk/SRe2G3jxo2qUqWKnn32Wes0d3d3de/eXWFhYQoJCUnFqwIA5uGQcgB4gGHDhmnRokWaMGGCpk6dmmz6mTNn5ODgoGLFiiVp9/Hxkbe3t86cOZOk3d/f/77rKly4cJLniSG1UKFCydoTEhIUGRlpPQx0z549GjFihH766SdFR0cnmT8yMjJJ4E2pzZs3a9SoURo8eLBatWplbf/jjz8k/e/cz//y9PSUJOu2Fy9ePNk8JUuW1IEDB1JdU6IrV64oOjo6ySH5iUqXLq2EhASdO3fOejju/Rw7dkzDhg3T9u3bkwX09PxQcT/Xr1+XJHl4eEi681oahnHP10hSsquZ58+fX9myZUvSVqJECUl3zp+tVq1ammv7bw1FixaVg4OD9XZcqa21QIECcnZ2TnM9ic6cOaPixYvLwSHpGEHiaQH//YyNHz9e169f16ZNm5JdJTu121CwYMFkV+7Onj27jhw58tC6U/OZ/O9nP3E9V69etT4/c+aMqlatmmy+e30GHmTFihXy9PRUlixZVLBgQRUtWjTZPPd671L7PvxX4vT7fWa3bNmiGzdu6Pr164qKinro7Rfv93rcXQ+3cASQERC4AeABEq+K/fnnn2vQoEH3nS+lt9N50PmWjo6OqWo3DEPSnXMwn3/+eZUqVUqffPKJChUqJGdnZ23cuFGTJ09O00WVQkND9dprr6l+/foaM2ZMkmmJ/S1atEg+Pj7JlnVyyhx/WiIiIhQYGChPT0+NHj1aRYsWlaurqw4cOKCBAwem+2JU9/Lbb79JkvUHmoSEBFksFm3atOme73NKbntmlv/u06mt1V5X32/QoIE2b96sDz/8ULVr105yFf7UbsPDPnv3k9rPZFrXkxa1atWyXqX8fux55wQAeNxkjv8VAYAdDRs2TIsXL77nrZx8fX2VkJCgP/74wzqyIkmXLl1SRESEfH19Ta9v3bp1iomJ0dq1a5OMlP338NiUunnzplq2bClvb28tXbo02YhW4ohYnjx5VK9evfv2k7jtiSPidzt58mSaakuUO3duZc2a9Z79nDhxQg4ODtYjA+73Y8jOnTv1zz//aOXKlapVq5a1PfFqzbYWHx+vL7/8UlmzZrUeBlu0aFEZhiF/f3/rSPWDXLhwQTdu3Egyyv37779LkvWCU2m9l/Iff/yR5AiMU6dOKSEhwdpvamu1FV9fXx05ckQJCQlJ9sXEQ/7/+xmrVq2a3nrrLTVt2lQvv/yyVq1aZf0R6FFtg60/k9Kd7TTjs5Sa9afkfbjf/pc4/X6f2Vy5cilbtmxyc3OTp6en9cepB9Vzv77uXh8A2BvncAPAQxQtWlTt27fX7NmzdfHixSTTGjduLEmaMmVKkvZPPvlEkqxXRjZT4ujY3aNhkZGRmj9/fpr6e+utt/T7779r1apVyp49e7LpDRo0kKenp8aNG6fY2Nhk069cuSLpzvnUFStWVHBwcJLDs7/99tt0n1/p6OioF154QWvWrLEe8izd+aHjyy+/1LPPPms9tD0xnEZERCTrQ0r6ut2+fVufffZZumq7l/j4eAUFBen48eMKCgqy1tayZUs5Ojpq1KhRyUYzDcPQP//8k6QtLi5Os2fPTlLv7NmzlTt3blWqVEnS/bf3YT799NMkz6dPny5J1qtxp7ZWW2ncuLEuXryoZcuWWdvi4uI0ffp0ubu7KzAwMNky9erV01dffaXNmzfr9ddft44oP6ptsPVnUrrzOuzdu1f79u2ztl25ckVLlixJe6GpXH9K3ofEc8H/u//d/X1w97TffvtNW7dutX6XOjg4qEWLFlq3bp1+/fXXZHUkvqaNGzfWvn379NNPP1mn3bhxQ59//rn8/PzSfZ0IALAVRrgBIAWGDh2qRYsW6eTJk0nOC65QoYI6duyozz//3HqI8r59+xQcHKwWLVqoTp06ptf2wgsvyNnZWc2aNdObb76p69eva86cOcqTJ899L/Z2Pxs2bNDChQvVqlUrHTlyJMm5qu7u7mrRooU8PT01c+ZMvf7663r66afVrl075c6dW2fPntWGDRtUs2ZNzZgxQ9Kd82mbNGmiZ599Vm+88Yb+/fdfTZ8+XWXKlLGez5xWY8aM0bfffqtnn31WPXv2lJOTk2bPnq2YmJgk90quWLGiHB0dNXHiREVGRsrFxUV169ZVjRo1lD17dnXs2FFBQUGyWCxatGhRug/jjYyM1OLFiyVJ0dHROnXqlFauXKk///xT7dq10wcffGCdt2jRohozZowGDx6ssLAwtWjRQh4eHgoNDdWqVavUvXt3vfvuu9b58+fPr4kTJyosLEwlSpTQsmXLdOjQIX3++efW84+LFi0qb29vzZo1Sx4eHsqWLZuqVq36wOsHSHdG9l988UU1bNhQP/30kxYvXqxXX31VFSpUSFOtttK9e3fNnj1bnTp10v79++Xn56dvvvlGe/bs0ZQpU6znw/9XixYtNH/+fHXo0EGenp6aPXv2I9sGW34mEw0YMECLFi1Sw4YN1adPH+ttwRJHns2W0vfBzc1NAQEBWrZsmUqUKKEcOXKobNmyKlu2rD766CM1atRI1atXV5cuXay3BfPy8kpyr+5x48Zp69atCgwMVPfu3VW6dGmFh4dr+fLl+uGHH+Tt7a1BgwZp6dKlatSokYKCgpQjRw4FBwcrNDRUK1asSHZkDgDYzSO9JjoAZHB33xbsvzp27GhISnbbp9jYWGPUqFGGv7+/kSVLFqNQoULG4MGDk9xWyjDu3P6nSZMmyfpNvC3Y8uXLU1RL4u19rly5Ym1bu3atUb58ecPV1dXw8/MzJk6caMybNy/Z7YIedluwxHXe6/Hf22Lt2LHDaNCggeHl5WW4uroaRYsWNTp16mT8+uuvSeZbsWKFUbp0acPFxcUICAgwVq5cmeLbbN3tv7cFMwzDOHDggNGgQQPD3d3dyJo1q1GnTh3jxx9/TLbsnDlzjCJFihiOjo5JbhG2Z88eo1q1aoabm5uRP39+Y8CAAcaWLVuS3UYsNbcFu/s1c3d3N4oXL260b9/e2Lp1632XW7FihfHss88a2bJlM7Jly2aUKlXK6NWrl3Hy5MkkfZcpU8b49ddfjerVqxuurq6Gr6+vMWPGjGT9rVmzxggICDCcnJweekukxP0pJCTEaN26teHh4WFkz57d6N27t3Hz5s101ZoW/70tmGEYxqVLl4zOnTsbuXLlMpydnY1y5col26a7bwt2t88++8yQZLz77rs22YaU7gsp/Uze73vhv59VwzCMI0eOGIGBgYarq6tRoEAB44MPPjC++OKLVN0W7O7vjXt50HuXkvfBMAzjxx9/NCpVqmQ4Ozsnu0XYd999Z9SsWdNwc3MzPD09jWbNmhkhISHJ+jhz5ozRoUMHI3fu3IaLi4tRpEgRo1evXkZMTIx1nj///NNo3bq14e3tbbi6uhpVqlQx1q9fn6QfbgsGwN4shmHCFTkAAECmMHLkSI0aNUpXrlx56MW0AABA6nC8DQAAAAAAJiBwAwAAAABgAgI3AAAAAAAm4BxuAAAAAABMwAg3AAAAAAAmIHADAAAAAGACJ3sXkB4JCQm6cOGCPDw8ZLFY7F0OAAAAAOAxZxiGrl27pvz588vB4cFj2Jk6cF+4cEGFChWydxkAAAAAgCfMuXPnVLBgwQfOk6kDt4eHh6Q7G+rp6WnnagAAAAAAj7uoqCgVKlTImkcfJFMH7sTDyD09PQncAAAAAIBHJiWnNXPRNAAAAAAATEDgBgAAAADABARuAAAAAABMkKnP4QYAAACAx0VCQoJu375t7zKeeFmyZJGjo6NN+iJwAwAAAICd3b59W6GhoUpISLB3KZDk7e0tHx+fFF0Y7UEI3AAAAABgR4ZhKDw8XI6OjipUqJAcHDjz114Mw1B0dLQuX74sScqXL1+6+iNwAwAAAIAdxcXFKTo6Wvnz51fWrFntXc4Tz83NTZJ0+fJl5cmTJ12Hl/PTCQAAAADYUXx8vCTJ2dnZzpUgUeIPH7Gxsenqh8ANAAAAABlAes8Xhu3Y6r0gcAMAAAAAYAICNwAAAAAg0xg5cqQqVqxo7zJShMANAAAAAI+5Tp06yWKxyGKxyNnZWcWKFdPo0aMVFxeXrj5btGhhuyIfQ1ylHAAAAACeAA0bNtT8+fMVExOjjRs3qlevXsqSJYsGDx6cZL7bt29zATcbYYQbAAAAAJ4ALi4u8vHxka+vr3r06KF69epp7dq11pHqsWPHKn/+/CpZsqQk6ejRo6pbt67c3NyUM2dOde/eXdevX5d057Du4OBgrVmzxjpyvnPnzocul2jevHkqU6aMXFxclC9fPvXu3ds67ezZs2revLnc3d3l6empNm3a6NKlS4/mRbIxAjcAAAAAPIHc3Nx0+/ZtSdK2bdt08uRJffvtt1q/fr1u3LihBg0aKHv27Prll1+0fPlyfffdd9Zg/O6776pNmzZq2LChwsPDFR4erho1ajx0OUmaOXOmevXqpe7du+vo0aNau3atihUrJklKSEhQ8+bN9e+//2rXrl369ttvdfr0abVt2/bRv0A2wCHlAAAAAPAEMQxD27Zt05YtW/T222/rypUrypYtm+bOnWs9lHzOnDm6deuWFi5cqGzZskmSZsyYoWbNmmnixInKmzev3NzcFBMTIx8fH2vfwcHBD11uzJgx6t+/v/r06WNd7plnnpF0J/gfPXpUoaGhKlSokCRp4cKFKlOmjH755RfrfJkFI9wAAAAA8ARYv3693N3d5erqqkaNGqlt27YaOXKkJKlcuXJJzts+fvy4KlSoYA3NklSzZk0lJCTo5MmT913Hw5a7fPmyLly4oOeff/6+yxcqVMgatiUpICBA3t7eOn78eFo33W4Y4QYAAACAJ0CdOnU0c+ZMOTs7K3/+/HJy+l8cvDsgm8nNze2RrCejYIQbAAAAAJ4A2bJlU7FixVS4cOEkYfteSpcurcOHD+vGjRvWtj179sjBwcF6UTVnZ2fFx8enajkPDw/5+flp27Zt913vuXPndO7cOWtbSEiIIiIiFBAQkOpttjcCNwAAAAAgiddee02urq7q2LGjfvvtN+3YsUNvv/22Xn/9deXNm1eS5OfnpyNHjujkyZP6+++/FRsbm6LlRo4cqY8//ljTpk3TH3/8oQMHDmj69OmSpHr16qlcuXJ67bXXdODAAe3bt08dOnRQYGCgKleubLfXI60I3AAAAACAJLJmzaotW7bo33//1TPPPKPWrVvr+eef14wZM6zzdOvWTSVLllTlypWVO3du7dmzJ0XLdezYUVOmTNFnn32mMmXKqGnTpvrjjz8kSRaLRWvWrFH27NlVq1Yt1atXT0WKFNGyZcse+WtgCxbDMAx7F5FWUVFR8vLyUmRkpDw9Pe1dDgAAAACk2q1btxQaGip/f3+5urrauxzowe9JanIoI9wAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmID7cAMAgAzj+NjtNuur9NC6NusLAIC0YIQbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAbcFAwAAAIAMqNJ7Cx/p+vZ/1CFV83fq1EnBwcHJ2l1cXBQTE/PAZXfs2KGwsDD17dtXERERyaZbLBatWrVKLVq0SFVNGQ2BGwAAAACQJg0bNtT8+fOTtFksFhmGYX3ep08fRUVFJZkvR44cCgsLe1Rl2g2BGwAAAACQJi4uLvLx8XngPG5uboqJiXnofI8jzuEGAAAAAMAEBG4AAAAAQJqsX79e7u7uSR7jxo1L8fKRkZHJlnd3dzex4keLQ8oBAAAAAGlSp04dzZw5M0lbjhw5Ury8h4eHDhw4kKy9ePHi6a4tIyBwAwAAAADSJFu2bCpWrFial3dwcEjX8hkdh5QDAAAAAGACRrgBAAAAAGkSExOjixcvJmlzcnJSrly57FRRxkLgBgAAAIAMaP9HHexdwkNt3rxZ+fLlS9JWsmRJnThxwk4VZSwW4+47kmcyUVFR8vLyUmRkpDw9Pe1dDgAASKfjY7fbrK/SQ+varC8AMNOtW7cUGhoqf39/ubq62rsc6MHvSWpyKOdwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACJ3sXAAAAAABI7uzoco90fYWHH32k63sSMMINAAAAAEi12rVrq2/fvsnaFyxYIG9vb0lSdHS0Bg8erKJFi8rV1VW5c+dWYGCg1qxZk6Qfi8Uii8UiFxcXFShQQM2aNdPKlSvvud4dO3aocePGypkzp7JmzaqAgAD1799f58+fN2Mz04XADQAAAAAwxVtvvaWVK1dq+vTpOnHihDZv3qzWrVvrn3/+STJft27dFB4erj///FMrVqxQQECA2rVrp+7duyeZb/bs2apXr558fHy0YsUKhYSEaNasWYqMjNTHH3/8KDctRTikHAAAAABgirVr12rq1Klq3LixJMnPz0+VKlVKNl/WrFnl4+MjSSpYsKCqVaumUqVK6Y033lCbNm1Ur149/fXXXwoKClJQUJAmT55sXdbPz0+1atVSRETEI9mm1GCEGwAAAABgCh8fH23cuFHXrl1L9bIdO3ZU9uzZrYeWL1++XLdv39aAAQPuOX/iYewZCYEbAAAAAGCKzz//XD/++KNy5sypZ555Ru+884727NmTomUdHBxUokQJhYWFSZL++OMPeXp6Kl++fCZWbFsEbgAAAACAKWrVqqXTp09r27Ztat26tY4dO6bnnntOH3zwQYqWNwxDFosl2b8zCwI3AAAAACDVPD09FRkZmaw9IiJCXl5e1udZsmTRc889p4EDB2rr1q0aPXq0PvjgA92+ffuB/cfHx+uPP/6Qv7+/JKlEiRKKjIxUeHi4bTfERARuAAAAAECqlSxZUgcOHEjWfuDAAZUoUeK+ywUEBCguLk63bt16YP/BwcG6evWqWrVqJUlq3bq1nJ2d9eGHH95z/ox40TSuUg4AAAAASLUePXpoxowZCgoKUteuXeXi4qINGzZo6dKlWrdunaQ799h+5ZVXVLlyZeXMmVMhISEaMmSI6tSpI09PT2tf0dHRunjxouLi4vTXX39p1apVmjx5snr06KE6depIkgoVKqTJkyerd+/eioqKUocOHeTn56e//vpLCxculLu7e4a7NRiBGwAAAAAyoMLDj9q7hAcqUqSIdu/eraFDh6pevXq6ffu2SpUqpeXLl6thw4aSpAYNGig4OFhDhgxRdHS08ufPr6ZNm2r48OFJ+pozZ47mzJkjZ2dn5cyZU5UqVdKyZcv00ksvJZmvZ8+eKlGihCZNmqSXXnpJN2/elJ+fn5o2bap+/fo9sm1PKYthGIa9i0irqKgoeXl5KTIyMsmvIwAAIHM6Pna7zfoqPbSuzfoCADPdunVLoaGh8vf3l6urq73LgR78nqQmh3IONwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmcLJ3AQAAAACA5GpOr/lI17fn7T2PdH1PAka4AQAAAACpVrt2bfXt2zdZ+4IFC+Tt7S1Jio6O1uDBg1W0aFG5uroqd+7cCgwM1Jo1a5L0Y7FYZLFY5OLiogIFCqhZs2ZauXJlkj4T57nfIywszOQtTj0CNwAAAADAFG+99ZZWrlyp6dOn68SJE9q8ebNat26tf/75J8l83bp1U3h4uP7880+tWLFCAQEBateunbp37y5Jatu2rcLDw62P6tWrW5dJfBQqVMgem/hAHFIOAAAAADDF2rVrNXXqVDVu3FiS5Ofnp0qVKiWbL2vWrPLx8ZEkFSxYUNWqVVOpUqX0xhtvqE2bNqpXr57c3Nys8zs7OydZJqNihBsAAAAAYAofHx9t3LhR165dS/WyHTt2VPbs2ZMcWp7ZELgBAAAAAKb4/PPP9eOPPypnzpx65pln9M4772jPnpRdnM3BwUElSpTIkOdmpxSBGwAAAABgilq1aun06dPatm2bWrdurWPHjum5557TBx98kKLlDcOQxWIxuUrzELgBAAAAAKnm6empyMjIZO0RERHy8vKyPs+SJYuee+45DRw4UFu3btXo0aP1wQcf6Pbt2w/sPz4+Xn/88Yf8/f1tXvujQuAGAAAAAKRayZIldeDAgWTtBw4cUIkSJe67XEBAgOLi4nTr1q0H9h8cHKyrV6+qVatW6a7VXrhKOQAAAAAg1Xr06KEZM2YoKChIXbt2lYuLizZs2KClS5dq3bp1ku7cY/uVV15R5cqVlTNnToWEhGjIkCGqU6eOPD09rX1FR0fr4sWLiouL019//aVVq1Zp8uTJ6tGjh+rUqWOvTUw3AjcAAAAAZEB73k7ZxcXspUiRItq9e7eGDh2qevXq6fbt2ypVqpSWL1+uhg0bSpIaNGig4OBgDRkyRNHR0cqfP7+aNm2q4cOHJ+lrzpw5mjNnjpydnZUzZ05VqlRJy5Yt00svvWSPTbMZi2EYhr2LSKuoqCh5eXkpMjIyya8jAAAgczo+drvN+io9tK7N+gIAM926dUuhoaHy9/eXq6urvcuBHvyepCaHcg43AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACZwsncBAAAAAIDkdtUKfKTrC9y965Gu70nACDcAAAAAwG527twpi8WiiIiIJO2dOnWSxWJJ9mjYsKF1mQc9du7cqQULFsjb2/ue67VYLFq9erWp25ZhAveECRNksVjUt29fe5cCAAAAAMgAGjZsqPDw8CSPpUuXqkaNGkna2rRpk2zeGjVq2Lv8jBG4f/nlF82ePVvly5e3dykAAAAAgBRYv369vL29FR8fL0k6dOiQLBaLBg0aZJ2na9euat++vc6cOaNmzZope/bsypYtm8qUKaONGzcqLCxMderUkSRlz55dFotFnTp1si7v4uIiHx+fJI/s2bPL2dk5SZubm1uyeZ2dnR/p63Evdg/c169f12uvvaY5c+Yoe/bs9i4HAAAAAJACzz33nK5du6aDBw9Kknbt2qVcuXJp586d1nl27dql2rVrq1evXoqJidHu3bt19OhRTZw4Ue7u7ipUqJBWrFghSTp58qTCw8M1depUe2yOKeweuHv16qUmTZqoXr16D503JiZGUVFRSR4AAAAAgEfPy8tLFStWtAbsnTt36p133tHBgwd1/fp1nT9/XqdOnVJgYKDOnj2rmjVrqly5cipSpIiaNm2qWrVqydHRUTly5JAk5cmTRz4+PvLy8rKuY/369XJ3d0/yGDduXKrqjIyMTNaHu7u7zV6HB7HrVcq/+uorHThwQL/88kuK5h8/frxGjRplclUAAAAAgJQIDAzUzp071b9/f33//fcaP368vv76a/3www/6999/lT9/fhUvXlxBQUHq0aOHtm7dqnr16qlVq1YpOqW4Tp06mjlzZpK2xICeUh4eHjpw4ECy9uLFi6eqn7Sw2wj3uXPn1KdPHy1ZskSurq4pWmbw4MGKjIy0Ps6dO2dylQAAAACA+6ldu7Z++OEHHT58WFmyZFGpUqVUu3Zt7dy5U7t27VJg4J1bm3Xt2lWnT5/W66+/rqNHj6py5cqaPn36Q/vPli2bihUrluSR2sDt4OCQrI9ixYqlaXtTy26Be//+/bp8+bKefvppOTk5ycnJSbt27dK0adPk5ORkPfH+bi4uLvL09EzyAAAAAADYR+J53JMnT7aG68TAvXPnTtWuXds6b6FChfTWW29p5cqV6t+/v+bMmSNJ1oub3SsDZnZ2O6T8+eef19GjR5O0de7cWaVKldLAgQPl6Ohop8oAAAAAACmRPXt2lS9fXkuWLNGMGTMkSbVq1VKbNm0UGxtrDeF9+/ZVo0aNVKJECV29elU7duxQ6dKlJUm+vr6yWCxav369GjduLDc3N+s51jExMbp48WKSdTo5OSlXrlyPcCvTzm6B28PDQ2XLlk3Sli1bNuXMmTNZOwAAAAA8aQJ377J3CSkSGBioQ4cOWUezc+TIoYCAAF26dEklS5aUdGf0ulevXvrrr7/k6emphg0bavLkyZKkAgUKaNSoURo0aJA6d+6sDh06aMGCBZKkzZs3K1++fEnWV7JkSZ04ceKRbV96WAzDMOxdRKLatWurYsWKmjJlSormj4qKkpeXlyIjIzm8HACAx8Dxsdtt1lfpoXVt1hcAmOnWrVsKDQ2Vv79/iq9vBXM96D1JTQ6161XK/+vu+7UBAAAAAJCZ2f0+3AAAAAAAPI4I3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmMDJ3gUAAAAAAJKb0X/dI11f74+bPdL1PQkY4QYAAAAAmGrnzp2yWCzWh5ubm8qUKaPPP//cOs/d0+/1GDlypCTp4MGDevnll5U3b165urqqePHi6tatm37//Xc7bd39EbgBAAAAAI/EyZMnFR4erpCQEL355pvq0aOHtm3bJkkKDw+3PqZMmSJPT88kbe+++67Wr1+vatWqKSYmRkuWLNHx48e1ePFieXl56f3337fz1iVH4AYAAAAApNr69evl7e2t+Ph4SdKhQ4dksVg0aNAg6zxdu3ZV+/btrc/z5MkjHx8f+fv7KygoSP7+/jpw4IAkycfHx/rw8vKSxWJJ0ubg4KDOnTurcePGWrt2rerVqyd/f39VrVpVkyZN0uzZsx/tC5ACBG4AAAAAQKo999xzunbtmg4ePChJ2rVrl3LlyqWdO3da59m1a5dq166dbFnDMLR582adPXtWVatWTdH6tmzZor///lsDBgy453Rvb+/UboLpCNwAAAAAgFTz8vJSxYoVrQF7586deuedd3Tw4EFdv35d58+f16lTpxQYGGhdpmDBgnJ3d5ezs7OaNGmiESNGqFatWila3x9//CFJKlWqlM23xSwEbgAAAABAmgQGBmrnzp0yDEPff/+9WrZsqdKlS+uHH37Qrl27lD9/fhUvXtw6//fff69Dhw7p0KFDmjt3rsaNG6eZM2emaF2GYZi1GabhtmAAAAAAgDSpXbu25s2bp8OHDytLliwqVaqUateurZ07d+rq1atJRrclyd/f33rod5kyZfTzzz9r7Nix6tGjx0PXVaJECUnSiRMnVL16dZtvixkY4QYAAAAApEniedyTJ0+2huvEwL1z5857nr99N0dHR928eTNF63rhhReUK1cuffjhh/ecHhERkZrSHwlGuAEAAAAAaZI9e3aVL19eS5Ys0YwZMyRJtWrVUps2bRQbG5tshPvy5cu6deuWYmJitG/fPi1atEitW7dO0bqyZcumuXPn6uWXX9aLL76ooKAgFStWTH///be+/vprnT17Vl999ZXNtzE9CNwAAAAAkAH1/riZvUtIkcDAQB06dMg6mp0jRw4FBATo0qVLKlmyZJJ5E587OTmpUKFCevPNNzVy5MgUr6t58+b68ccfNX78eL366quKiopSoUKFVLduXY0ZM8ZWm2QzFiMznnn+/6KiouTl5aXIyEh5enrauxwAAJBOx8dut1lfpYfWtVlfAGCmW7duKTQ0VP7+/nJ1dbV3OdCD35PU5FDO4QYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABE72LgAAAAAAkNzY9q0f6fqGLv4mVfN36tRJwcHBkiQnJyflyJFD5cuX1yuvvKJOnTrJwSHp+G6DBg303Xffae/evXrmmWeS9RUREaHVq1enaxsyGka4AQAAAABp0rBhQ4WHhyssLEybNm1SnTp11KdPHzVt2lRxcXHW+c6ePasff/xRvXv31rx58+xY8aNF4AYAAAAApImLi4t8fHxUoEABPf300xoyZIjWrFmjTZs2acGCBdb55s+fr6ZNm6pHjx5aunSpbt68ab+iHyECNwAAAADAZurWrasKFSpo5cqVkiTDMDR//ny1b99epUqVUrFixfTNN6k7fD2zInADAAAAAGyqVKlSCgsLkyR99913io6OVoMGDSRJ7du31xdffGHH6h4dAjcAAAAAwKYMw5DFYpEkzZs3T23btpWT051rdr/yyivas2eP/vzzT3uW+EgQuAEAAAAANnX8+HH5+/vr33//1apVq/TZZ5/JyclJTk5OKlCggOLi4p6Ii6cRuAEAAAAANrN9+3YdPXpUrVq10pIlS1SwYEEdPnxYhw4dsj4+/vhjLViwQPHx8fYu11TchxsAAAAAkCYxMTG6ePGi4uPjdenSJW3evFnjx49X06ZN1aFDB1WqVEmtW7dW2bJlkyxXqFAhDR48WJs3b1aTJk3sVL35GOEGAAAAAKTJ5s2blS9fPvn5+alhw4basWOHpk2bpjVr1ujQoUM6fPiwWrVqlWw5Ly8vPf/884/9xdMshmEY9i4iraKiouTl5aXIyEh5enrauxwAAJBOx8dut1lfpYfWtVlfAGCmW7duKTQ0VP7+/nJ1dbV3OdCD35PU5FBGuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATONm7AAAAAABAcsfHbn+k6ys9tG6ql7ly5YqGDx+uDRs26NKlS8qePbsqVKigWrVqadiwYQ9cdseOHQoLC1Pnzp0lSRaLRXnz5lWtWrX00UcfqXDhwtZ5a9eurYoVK2rKlCnWtqlTp2rAgAEKDg5Wu3btUl37o0DgBgAAAACkSatWrXT79m0FBwerSJEiunTpkrZt26YyZcooPDzcOl+fPn0UFRWl+fPnW9ty5MihsLAweXp66uTJkzIMQ6GhoerZs6defvll/fzzz/dd74gRIzRp0iStWbNGDRs2NHUb04PADQAAAABItYiICH3//ffauXOnAgMDJUm+vr6qUqVKsnnd3NwUExMjHx+fZNMsFou1PV++fOrSpYuCgoIUFRUlT0/PJPMahqGgoCAtXrxY3377rWrUqGHCltkO53ADAAAAAFLN3d1d7u7uWr16tWJiYmzS5+XLl7Vq1So5OjrK0dExybS4uDi1b99e33zzjXbt2pXhw7bECDcAAAAAIA2cnJy0YMECdevWTbNmzdLTTz+twMBAtWvXTuXLl09xP5GRkXJ3d5dhGIqOjpYkBQUFKVu2bEnmmzNnjiTp8OHDKlWqlO02xESMcAMAAAAA0qRVq1a6cOGC1q5dq4YNG2rnzp16+umntWDBghT34eHhoUOHDunXX3/Vxx9/rKefflpjx45NNt+zzz4rd3d3vf/++4qLi7PhVpiHwA0AAAAASDNXV1fVr19f77//vn788Ud16tRJI0aMSPHyDg4OKlasmEqXLq1+/fqpWrVq6tGjR7L5ypUrp23btmnHjh1q27ZtpgjdBG4AAAAAgM0EBAToxo0baV5+0KBBWrZsmQ4cOJBsWsWKFbVt2zbt3r1bbdq0UWxsbHpKNR2BGwAAAACQav/884/q1q2rxYsX68iRIwoNDdXy5cv14Ycfqnnz5mnut1ChQnrppZc0fPjwe06vUKGCtm/frh9++CHDh24umgYAAAAASDV3d3dVrVpVkydP1p9//qnY2FgVKlRI3bp105AhQ9LV9zvvvKPq1atr375997zNWLly5bR9+3Y9//zzevnll/X111/L2dk5Xes0g8UwDMPeRaRVVFSUvLy8FBkZmez+bAAAIPM5Pna7zfoqPbSuzfoCADPdunVLoaGh8vf3l6urq73LgR78nqQmh3JIOQAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACJ3sXAAAAAABIbuTIkRl6fZ06dVJERIRWr16dbNrNmzc1YcIELV26VGfOnJGHh4fq1KmjkSNHqkyZMknWOWrUKEmSg4OD8ufPr0aNGmnChAnKkSOHdT4/Pz+dOXNGkuTq6qq8efOqSpUqeuutt1S3bt0k6161apUmTpyo48ePKyEhQYULF1b9+vU1ZcqUVG2fLTDCDQAAAACwmZiYGNWrV0/z5s3TmDFj9Pvvv2vjxo2Ki4tT1apVtXfv3iTzlylTRuHh4Tp79qzmz5+vzZs3q0ePHsn6HT16tMLDw3Xy5EktXLhQ3t7eqlevnsaOHWudZ9u2bWrbtq1atWqlffv2af/+/Ro7dqxiY2NN3+57YYQbAAAAAGAzU6ZM0U8//aSDBw+qQoUKkiRfX1+tWLFCVatWVZcuXfTbb7/JYrFIkpycnOTj4yNJKlCggF5++WXNnz8/Wb8eHh7W+QoXLqxatWopX758Gj58uFq3bq2SJUtq3bp1qlmzpt577z3rciVKlFCLFi1M3up7Y4QbAAAAAGAzX375perXr28N24kcHBz0zjvvKCQkRIcPH77nsmFhYdqyZYucnZ1TtK4+ffrIMAytWbNGkuTj46Njx47pt99+S99G2AiBGwAAAABgM7///rtKly59z2mJ7b///ru17ejRo3J3d5ebm5v8/f117NgxDRw4MEXrypEjh/LkyaOwsDBJ0ttvv61nnnlG5cqVk5+fn9q1a6d58+YpJiYmfRuVRgRuAAAAAIBNGYaR4nlLliypQ4cO6ZdfftHAgQPVoEEDvf3226laV+Lh6dmyZdOGDRt06tQpDRs2TO7u7urfv7+qVKmi6OjoVG9HehG4AQAAAAA2U6JECR0/fvye0xLbS5QoYW1zdnZWsWLFVLZsWU2YMEGOjo7WK5c/zD///KMrV67I398/SXvRokXVtWtXzZ07VwcOHFBISIiWLVuWxi1KOwI3AAAAAMBm2rVrp++++y7ZedoJCQmaPHmyAgICkp3ffbdhw4Zp0qRJunDhwkPXNXXqVDk4ODzwomh+fn7KmjWrbty4keJtsBWuUg4AAAAASJPIyEgdOnQoSVv79u21Zs0aNWvWTB9//LGqVq2qS5cuady4cTp+/Li+++476yHg91K9enWVL19e48aN04wZM6zt165d08WLFxUbG6vQ0FAtXrxYc+fO1fjx41WsWDFJd+7rHR0drcaNG8vX11cRERGaNm2aYmNjVb9+fVNegwchcAMAAAAA0mTnzp166qmnkrR16dJF27dv17hx4zRkyBCdOXNGHh4eqlOnjvbu3auyZcs+tN933nlHnTp10sCBA1WoUCFJ0vDhwzV8+HA5OzvLx8dH1apV07Zt21SnTh3rcoGBgfr000/VoUMHXbp0SdmzZ9dTTz2lrVu3qmTJkrbd+BSwGKk5mz2DiYqKkpeXlyIjI+Xp6WnvcgAAQDodH7vdZn2VHlrXZn0BgJlu3bql0NBQ+fv7y9XV1d7lQA9+T1KTQzmHGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAgA8jEN5B67CQkJNikH+7DDQAAAAB2lCVLFlksFl25ckW5c+eWxWKxd0lPLMMwdPv2bV25ckUODg5ydnZOV38EbgAAAACwI0dHRxUsWFB//fWXwsLC7F0OJGXNmlWFCxeWg0P6DgoncAMAAACAnbm7u6t48eKKjY21dylPPEdHRzk5OdnkSAMCNwAAAABkAI6OjnJ0dLR3GbAhLpoGAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJ7Bq4Z86cqfLly8vT01Oenp6qXr26Nm3aZM+SAAAAAACwCbsG7oIFC2rChAnav3+/fv31V9WtW1fNmzfXsWPH7FkWAAAAAADp5mTPlTdr1izJ87Fjx2rmzJnau3evypQpY6eqAAAAAABIP7sG7rvFx8dr+fLlunHjhqpXr37PeWJiYhQTE2N9HhUV9ajKAwAAAAAgVex+0bSjR4/K3d1dLi4ueuutt7Rq1SoFBATcc97x48fLy8vL+ihUqNAjrhYAAAAAgJSxe+AuWbKkDh06pJ9//lk9evRQx44dFRIScs95Bw8erMjISOvj3Llzj7haAAAAAABSxu6HlDs7O6tYsWKSpEqVKumXX37R1KlTNXv27GTzuri4yMXF5VGXCAAAAABAqtl9hPu/EhISkpynDQAAAABAZmTXEe7BgwerUaNGKly4sK5du6Yvv/xSO3fu1JYtW+xZFgAAAAAA6WbXwH358mV16NBB4eHh8vLyUvny5bVlyxbVr1/fnmUBAAAAAJBudg3cX3zxhT1XDwAAAACAaTLcOdwAAAAAADwOCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAmcUrtAQkKCdu3ape+//15nzpxRdHS0cufOraeeekr16tVToUKFzKgTAAAAAIBMJcUj3Ddv3tSYMWNUqFAhNW7cWJs2bVJERIQcHR116tQpjRgxQv7+/mrcuLH27t1rZs0AAAAAAGR4KR7hLlGihKpXr645c+aofv36ypIlS7J5zpw5oy+//FLt2rXT0KFD1a1bN5sWCwAAAABAZpHiwL1161aVLl36gfP4+vpq8ODBevfdd3X27Nl0FwcAAAAAQGaV4kPKHxa275YlSxYVLVo0TQUBAAAAAPA4SPVF0yTpjz/+0Jo1axQWFiaLxSJ/f3+1aNFCRYoUsXV9AAAAAABkSqkO3OPHj9fw4cOVkJCgPHnyyDAMXblyRYMGDdK4ceP07rvvmlEnAAAAAACZSqruw71jxw4NGzZMQ4cO1d9//63w8HBdvHjRGrgHDRqk3bt3m1UrAAAAAACZRqpGuGfNmqWuXbtq5MiRSdpz5Mih0aNH6+LFi5o5c6Zq1aplyxoBAAAAAMh0UjXCvW/fPr3++uv3nf76669zD24AAAAAAJTKwH3p0iX5+fndd7q/v78uXryY3poAAAAAAMj0UhW4b926JWdn5/tOz5Ili27fvp3uogAAAAAAyOxSfZXyuXPnyt3d/Z7Trl27lu6CAAAAAAB4HKQqcBcuXFhz5sx56DwAAAAAADzpUhW4w8LCTCoDAAAAAIDHS6rO4QYAAAAAACmTqsD9008/af369UnaFi5cKH9/f+XJk0fdu3dXTEyMTQsEAAAAACAzSlXgHj16tI4dO2Z9fvToUXXp0kX16tXToEGDtG7dOo0fP97mRQIAAAAAkNmkKnAfOnRIzz//vPX5V199papVq2rOnDnq16+fpk2bpq+//trmRQIAAAAAkNmkKnBfvXpVefPmtT7ftWuXGjVqZH3+zDPP6Ny5c7arDgAAAACATCpVgTtv3rwKDQ2VJN2+fVsHDhxQtWrVrNOvXbumLFmy2LZCAAAAAAAyoVQF7saNG2vQoEH6/vvvNXjwYGXNmlXPPfecdfqRI0dUtGhRmxcJAAAAAEBmk6r7cH/wwQdq2bKlAgMD5e7uruDgYDk7O1unz5s3Ty+88ILNiwQAAAAAILNJVeDOlSuXdu/ercjISLm7u8vR0THJ9OXLl8vd3d2mBQIAAAAAkBmlKnAn8vLyumd7jhw50lUMAAAAAACPi1QF7qeeekoWiyVZu5eXl0qUKKG+ffuqdOnSNisOAAAAAIDMKlWBu0WLFvdsj4iI0IEDB1SxYkVt375dNWvWtEVtAAAAAABkWqkK3CNGjHjg9KFDh2r48OHatm1buooCAAAAACCzS9VtwR7m1Vdf1dGjR23ZJQAAAAAAmZJNA7ejo6MSEhJs2SUAAAAAAJmSTQP3ypUrFRAQYMsuAQAAAADIlFJ1Dve0adPu2R4ZGan9+/drw4YN2rRpk00KAwAAAAAgM0tV4J48efI92z09PVWyZEnt3r1b1atXt0lhAAAAAABkZqkK3KGhoWbVAQAAAADAY8Wm53ADAAAAAIA7Uhy4J0yYoOjo6BTN+/PPP2vDhg1pLgoAAAAAgMwuxYE7JCREvr6+6tmzpzZt2qQrV65Yp8XFxenIkSP67LPPVKNGDbVt21YeHh6mFAwAAAAAQGaQ4nO4Fy5cqMOHD2vGjBl69dVXFRUVJUdHR7m4uFhHvp966il17dpVnTp1kqurq2lFAwAAAACQ0aXqomkVKlTQnDlzNHv2bB05ckRnzpzRzZs3lStXLlWsWFG5cuUyq04AAAAAADKVVAXuRA4ODqpYsaIqVqxo43IAAAAAAHg8cJVyAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwARpCtxvvPGGrl27lqz9xo0beuONN9JdFAAAAAAAmV2aAndwcLBu3ryZrP3mzZtauHBhuosCAAAAACCzS9VtwaKiomQYhgzD0LVr1+Tq6mqdFh8fr40bNypPnjw2LxIAAAAAgMwmVYHb29tbFotFFotFJUqUSDbdYrFo1KhRNisOAAAAAIDMKlWBe8eOHTIMQ3Xr1tWKFSuUI0cO6zRnZ2f5+voqf/78Ni8SAAAAAIDMJlWBOzAwUJIUGhqqQoUKycGBi5wDAAAAAHAvqQrciXx9fXX16lV98cUXOn78uCQpICBAnTt3TjLqDQAAAADAkypNQ9S7d++Wn5+fpk2bpqtXr+rq1auaNm2a/P39tXv3blvXCAAAAABAppOmEe5evXqpbdu2mjlzphwdHSXduUp5z5491atXLx09etSmRQIAAAAAkNmkaYT71KlT6t+/vzVsS5Kjo6P69eunU6dO2aw4AAAAAAAyqzQF7qefftp67vbdjh8/rgoVKqS7KAAAAAAAMrsUH1J+5MgR67+DgoLUp08fnTp1StWqVZMk7d27V59++qkmTJhg+yoBAAAAAMhkLIZhGCmZ0cHBQRaLRQ+b3WKxKD4+3ibFPUxUVJS8vLwUGRkpT0/PR7JOAABgnuNjt9usr9JD69qsLwAAEqUmh6Z4hDs0NDTdhQEAAAAA8KRIceD29fU1sw4AAAAAAB4rabpomiQtWrRINWvWVP78+XXmzBlJ0pQpU7RmzRqbFQcAAAAAQGaVpsA9c+ZM9evXT40bN1ZERIT1nG1vb29NmTLFlvUBAAAAAJAppSlwT58+XXPmzNHQoUOT3Iu7cuXKOnr0qM2KAwAAAAAgs0pT4A4NDdVTTz2VrN3FxUU3btxId1EAAAAAAGR2aQrc/v7+OnToULL2zZs3q3Tp0umtCQAAAACATC/FVym/W79+/dSrVy/dunVLhmFo3759Wrp0qcaPH6+5c+faukYAAAAAADKdNAXurl27ys3NTcOGDVN0dLReffVV5c+fX1OnTlW7du1sXSMAAAAAAJlOmgK3JL322mt67bXXFB0drevXrytPnjy2rAsAAAAAgEwtzYH777//VlhYmCwWi/z8/GxYEgAAAAAAmV+qL5p27Ngx1apVS3nz5lXVqlVVpUoV5cmTR3Xr1tXJkyfNqBEAAAAAgEwnVSPcFy9eVGBgoHLnzq1PPvlEpUqVkmEYCgkJ0Zw5c/Tcc8/pt99+4/ByAAAAAMATL1WBe/LkyfL19dWePXvk6upqbW/YsKF69OihZ599VpMnT9b48eNtXigAAAAAAJlJqg4p//bbbzVw4MAkYTuRm5ub3nvvPW3ZssVmxQEAAAAAkFmlKnCfPn1aTz/99H2nV65cWadPn053UQAAAAAAZHapCtzXrl2Tp6fnfad7eHjo+vXr6S4KAAAAAIDMLtW3Bbt27do9DymXpKioKBmGke6iAAAAAADI7FIVuA3DUIkSJR443WKxpLsoAAAAAAAyu1QF7h07dphVBwAAAAAAj5VUBe7AwECz6gAAAAAA4LGSqoumAQAAAACAlCFwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACZI8VXKW7ZsmeJOV65cmaZiAAAAAAB4XKR4hNvLy8v68PT01LZt2/Trr79ap+/fv1/btm2Tl5eXKYUCAAAAAJCZpHiEe/78+dZ/Dxw4UG3atNGsWbPk6OgoSYqPj1fPnj3l6elp+yoBAAAAAMhk0nQO97x58/Tuu+9aw7YkOTo6ql+/fpo3b57NigMAAAAAILNKU+COi4vTiRMnkrWfOHFCCQkJ6S4KAAAAAIDMLsWHlN+tc+fO6tKli/78809VqVJFkvTzzz9rwoQJ6ty5s00LBAAAAAAgM0pT4J40aZJ8fHz08ccfKzw8XJKUL18+vffee+rfv79NCwQAAAAAIDNK0yHlDg4OGjBggM6fP6+IiAhFRETo/PnzGjBgQJLzuh9m/PjxeuaZZ+Th4aE8efKoRYsWOnnyZFpKAgAAAAAgQ0lT4JbunMf93XffaenSpbJYLJKkCxcu6Pr16ynuY9euXerVq5f27t2rb7/9VrGxsXrhhRd048aNtJYFAAAAAECGkKZDys+cOaOGDRvq7NmziomJUf369eXh4aGJEycqJiZGs2bNSlE/mzdvTvJ8wYIFypMnj/bv369atWqlpTQAAAAAADKENI1w9+nTR5UrV9bVq1fl5uZmbX/ppZe0bdu2NBcTGRkpScqRI8c9p8fExCgqKirJAwAAAACAjChNI9zff/+9fvzxRzk7Oydp9/Pz0/nz59NUSEJCgvr27auaNWuqbNmy95xn/PjxGjVqVJr6BwAAAADgUUrTCHdCQoLi4+OTtf/111/y8PBIUyG9evXSb7/9pq+++uq+8wwePFiRkZHWx7lz59K0LgAAAAAAzJamwP3CCy9oypQp1ucWi0XXr1/XiBEj1Lhx41T317t3b61fv147duxQwYIF7zufi4uLPD09kzwAAAAAAMiI0nRI+ccff6wGDRooICBAt27d0quvvqo//vhDuXLl0tKlS1Pcj2EYevvtt7Vq1Srt3LlT/v7+aSkHAAAAAIAMJ02Bu2DBgjp8+LCWLVumw4cP6/r16+rSpYtee+21JBdRe5hevXrpyy+/1Jo1a+Th4aGLFy9Kkry8vFLVDwAAAAAAGY3FMAzDbiv///t3/9f8+fPVqVOnhy4fFRUlLy8vRUZGcng5AACPgeNjt9usr9JD69qsLwAAEqUmh6bpHG5HR0fVqVNH//77b5L2S5cuydHRMcX9GIZxz0dKwjYAAAAAABlZmgK3YRiKiYlR5cqVdezYsWTTAAAAAAB40qUpcFssFq1YsULNmjVT9erVtWbNmiTTAAAAAAB40qV5hNvR0VFTp07VpEmT1LZtW40ZM4bRbQAAAAAA/l+arlJ+t+7du6t48eJ6+eWXtXv3blvUBAAAAABAppemEW5fX98kF0erU6eO9u7dq3PnztmsMAAAAAAAMrM0jXCHhoYmaytWrJgOHjyoS5cupbsoAAAAAAAyuzSNcN+Pq6urfH19bdklAAAAAACZUopHuHPkyKHff/9duXLlUvbs2R94NfL/3p8bAAAAAIAnTYoD9+TJk+Xh4SFJmjJliln1AAAAAADwWEhx4O7YseM9/w0AAAAAAJJLceCOiopKcaeenp5pKgYAAAAAgMdFigO3t7f3A8/bliTDMGSxWBQfH5/uwgAAAAAAyMxSHLh37NhhZh0AAAAAADxWUhy4AwMDzawDAAAAAIDHSooD971ER0fr7Nmzun37dpL28uXLp6soAAAAAAAyuzQF7itXrqhz587atGnTPadzDjcAAAAA4EnnkJaF+vbtq4iICP38889yc3PT5s2bFRwcrOLFi2vt2rW2rhEAAAAAgEwnTSPc27dv15o1a1S5cmU5ODjI19dX9evXl6enp8aPH68mTZrYuk4AAAAAADKVNI1w37hxQ3ny5JEkZc+eXVeuXJEklStXTgcOHLBddQAAAAAAZFJpCtwlS5bUyZMnJUkVKlTQ7Nmzdf78ec2aNUv58uWzaYEAAAAAAGRGaTqkvE+fPgoPD5ckjRgxQg0bNtSSJUvk7OysBQsW2LI+AAAAAAAypTQF7vbt21v/XalSJZ05c0YnTpxQ4cKFlStXLpsVBwAAAABAZpWu+3Anypo1q55++mlbdAUAAAAAwGMhTYHbMAx988032rFjhy5fvqyEhIQk01euXGmT4gAAAAAAyKzSFLj79u2r2bNnq06dOsqbN68sFout6wIAAAAAIFNLU+BetGiRVq5cqcaNG9u6HgAAAAAAHgtpui2Yl5eXihQpYutaAAAAAAB4bKQpcI8cOVKjRo3SzZs3bV0PAAAAAACPhTQdUt6mTRstXbpUefLkkZ+fn7JkyZJk+oEDB2xSHAAAAAAAmVWaAnfHjh21f/9+tW/fnoumAQAAAABwD2kK3Bs2bNCWLVv07LPP2roeAAAAAAAeC2k6h7tQoULy9PS0dS0AAAAAADw20hS4P/74Yw0YMEBhYWE2LgcAAAAAgMdDmg4pb9++vaKjo1W0aFFlzZo12UXT/v33X5sUBwAAAABAZpWmwD1lyhQblwEAAAAAwOMl1YE7NjZWu3bt0vvvvy9/f38zagIAAAAAINNL9TncWbJk0YoVK8yoBQAAAACAx0aaLprWokULrV692salAAAAAADw+EjTOdzFixfX6NGjtWfPHlWqVEnZsmVLMj0oKMgmxQEAAAAAkFmlKXB/8cUX8vb21v79+7V///4k0ywWC4EbAAAAAPDES1PgDg0NtXUdAADYTKX3Ftqkn/0fdbBJPwAA4MmUpnO472YYhgzDsEUtAAAAAAA8NtIcuBcuXKhy5crJzc1Nbm5uKl++vBYtWmTL2gAAAAAAyLTSdEj5J598ovfff1+9e/dWzZo1JUk//PCD3nrrLf3999965513bFokAAAAAACZTZoC9/Tp0zVz5kx16PC/c9tefPFFlSlTRiNHjiRwAwAAAACeeGk6pDw8PFw1atRI1l6jRg2Fh4enuygAAAAAADK7NAXuYsWK6euvv07WvmzZMhUvXjzdRQEAAAAAkNml6ZDyUaNGqW3bttq9e7f1HO49e/Zo27Zt9wziAAAAAAA8adI0wt2qVSv9/PPPypUrl1avXq3Vq1crV65c2rdvn1566SVb1wgAAAAAQKaTphFuSapUqZIWL15sy1oAAAAAAHhspPk+3AAAAAAA4P5SNcLt4OAgi8XywHksFovi4uLSVRQAAAAAAJldqgL3qlWr7jvtp59+0rRp05SQkJDuogAAAAAAyOxSFbibN2+erO3kyZMaNGiQ1q1bp9dee02jR4+2WXEAAAAAAGRWaT6H+8KFC+rWrZvKlSunuLg4HTp0SMHBwfL19bVlfQAAAAAAZEqpDtyRkZEaOHCgihUrpmPHjmnbtm1at26dypYta0Z9AAAAAABkSqk6pPzDDz/UxIkT5ePjo6VLl97zEHMAAAAAAJDKwD1o0CC5ubmpWLFiCg4OVnBw8D3nW7lypU2KAwAAAAAgs0pV4O7QocNDbwsGAAAAAABSGbgXLFhgUhkAAAAAADxe0nyVcgAAAAAAcH8EbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABM4GTvAgBbOD52u836Kj20rs36AgAAAPDkYoQbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAE9g1cO/evVvNmjVT/vz5ZbFYtHr1anuWAwAAAACAzdg1cN+4cUMVKlTQp59+as8yAAAAAACwOSd7rrxRo0Zq1KhRiuePiYlRTEyM9XlUVJQZZQEAAAAAkG6Z6hzu8ePHy8vLy/ooVKiQvUsCAAAAAOCeMlXgHjx4sCIjI62Pc+fO2bskAAAAAADuya6HlKeWi4uLXFxc7F0GAAAAAAAPlalGuAEAAAAAyCwI3AAAAAAAmMCuh5Rfv35dp06dsj4PDQ3VoUOHlCNHDhUuXNiOlQEAAAAAkD52Ddy//vqr6tSpY33er18/SVLHjh21YMECO1UFAAAAAED62TVw165dW4Zh2LMEAAAAAABMwTncAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAmc7F0AAAAZ1dnR5WzWV+HhR23WFwAAyBwY4QYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABM4GTvAgAAeBLUnF7TZn3teXuPzfoCAADmYYQbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBk70LeBydHV3OZn0VHn7UZn0BAAAAAB4dRrgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABNkiMD96aefys/PT66urqpatar27dtn75IAAAAAAEgXuwfuZcuWqV+/fhoxYoQOHDigChUqqEGDBrp8+bK9SwMAAAAAIM3sHrg/+eQTdevWTZ07d1ZAQIBmzZqlrFmzat68efYuDQAAAACANHOy58pv376t/fv3a/DgwdY2BwcH1atXTz/99FOy+WNiYhQTE2N9HhUVZdN6Kr230Cb9rPKwSTcAAAAAgEzMroH777//Vnx8vPLmzZukPW/evDpx4kSy+cePH69Ro0aZVs/+jzrYqCdb9SPVnF7TZn2NW26bt/voM+/apB9JirwUbJN+hi7+xib9PAls98PSRzbpR5Jeye5ps772vL3HJv3M6L/OJv1I7Of2kBG/z22zZ96xq1agTfp53L/PR44cmSH7shW+z1OG7/PMjf08ZdjPMy67H1KeGoMHD1ZkZKT1ce7cOXuXBAAAAADAPdl1hDtXrlxydHTUpUuXkrRfunRJPj4+yeZ3cXGRi4vLoyoPAAAAAIA0s+sIt7OzsypVqqRt27ZZ2xISErRt2zZVr17djpUBAAAAAJA+dh3hlqR+/fqpY8eOqly5sqpUqaIpU6boxo0b6ty5s71LAwAAAAAgzeweuNu2basrV65o+PDhunjxoipWrKjNmzcnu5AaAAAAAACZid0DtyT17t1bvXv3tncZAAAAAADYTKa6SjkAAAAAAJkFgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMIGTvQvAg+15e4/N+tq1PNBmfQEAAAAAHowRbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAETvYuAAAA2Efvj5vZrK+x7YNt1hcAAI8LRrgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAVcpR6pxVVsAAAAAeDhGuAEAAAAAMAGBGwAAAAAAE3BIOQAAmUzg7l32LgEAAKQAgfsJkhH/gzZ08Tf2LgEAYAN8nwMww/6POtioJ1v1I+2xWU94ElgMwzDsXURaRUVFycvLS5GRkfL09LR3OQAAAACAx1xqcijncAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJnCydwHpYRiGJCkqKsrOlQAAAAAAngSJ+TMxjz5Ipg7c165dkyQVKlTIzpUAAAAAAJ4k165dk5eX1wPnsRgpieUZVEJCgi5cuCAPDw9ZLBZ7l/NEiIqKUqFChXTu3Dl5enrauxzAFOzneBKwn+NJwH6OJwH7+aNnGIauXbum/Pnzy8HhwWdpZ+oRbgcHBxUsWNDeZTyRPD09+UDjscd+jicB+zmeBOzneBKwnz9aDxvZTsRF0wAAAAAAMAGBGwAAAAAAExC4kSouLi4aMWKEXFxc7F0KYBr2czwJ2M/xJGA/x5OA/Txjy9QXTQMAAAAAIKNihBsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbpklISLB3CQAAAABgNwRumGLChAnq3bu3YmNj7V0KAAAAANgFgRumKFiwoGbNmqX333+f0A0AuCfuTIrHSeL+zH4N4G4EbticYRhq3769li9frk8++UTDhg3TrVu37F0WACADCQkJkcVikSTNmzdPv/76q50rAtLn6tWriomJ0bVr1yQRvPF4Y/9OOQI3bOruD19gYKAmTpyojz76SJMmTdLt27ftWBmQsXCNAzzJjhw5oiZNmmjy5Ml677331LNnT+XIkcPeZQFptmjRIjVv3lxPP/20mjZtqtWrV1t/UAIeFxs2bNDatWslSRaLhdCdQk72LgCPl8Q/LitWrFD//v31/PPPq3Dhwho+fLiuXbumMWPGKEuWLHauErCvhIQEOTjc+b1zzZo1OnXqlPLkyaNKlSopICDAztUB5suRI4feeOMNjRkzRvHx8QoJCVGRIkUUFxcnJyf+a4LMZeXKlerevbsmTZqk6OhohYaGqmXLlho8eLD69eunnDlz2rtEIN2++eYbtWnTRgUKFFBcXJxatmxpDd38uPRg/FWDzZ08eVJdu3bV+PHj9cYbbygyMlKrV69Wz549JUkffPCBnJ2d7VwlYB+GYVjD9sCBA7Vw4UKVKVNG4eHh8vX1Vffu3dWiRQv7FgmYrGDBgipQoICuXbum/Pnza82aNXrnnXfk5OSk+Ph4OTo62rtEIMU2btyoV199Vb169bK21ahRQx06dFBsbKxGjx4tV1dXO1YIpM/Bgwc1adIkde3aVfHx8Ro2bJgMw1CrVq0I3SlA4IbNRUVFKUeOHGrQoIGcnZ2VO3dudevWTfHx8erZs6e8vb3Vt29fubm52btU4JFL/IM0bdo0ffXVV1q1apWqVaumKVOmaNCgQdZzANu2bStJ/BHDYyPxyI7EfbpWrVr6/vvvtWXLFs2aNUu3bt3S4MGDCdvIVAzDUHh4uPLnzy/pf6cLtW/fXk5OTnrttddUsmRJdenShe9zZFqOjo7y9fVVnz59JEmTJ0/W+++/L0mE7hTgHG7YnKurq0JDQ3X69GlJ//vj07hxY+XJk0dDhw7VhAkT7FkiYFfXr19XSEiI3n33XVWrVk2rV6/WyJEj1bdvX7m6umrcuHFatWqVJPHHC4+Fu0+j+O233/TLL78oa9asqlq1qnr16qXWrVsrODhYH374oXWZ8ePH6/Dhw/YqGXigxHNXE388Wr58uUJCQqw/KhmGoXbt2mnEiBEaPny4zpw5w/c5Mp3E/8OXL19ekyZNUpkyZVSmTBn17t1b1atX1/vvv69vvvlG0p3Pws2bN+1ZboZlMTjbHemQ+GvWfw8BfPXVV3X27Fl98sknqlKliqQ7IeOdd95RjRo1VL16dZUqVcpeZQN29/vvvytbtmyKjIxUs2bN9Pbbb6tv375aunSpunXrpgIFCmjq1Klq2LChvUsF0uXuUY+hQ4dq+fLlSkhIUGxsrFq2bKn33ntPDg4O+vTTT7V06VLVrFlTf//9t3777TedPn2aEW9kaHFxcbp+/bratGkjZ2dnTZ06VUWLFrVej2DPnj1q1aqVNm/erIoVK9q7XCBNEvfnu/+/f/jwYU2bNk0//fSTxo4dqxdffFF169bVgAED1KRJEztXnLEwwo00S/xP1LZt2zRw4ED169dPISEhkqSePXvKy8tLQUFBWr9+vQ4fPqwxY8Zo586deumllwjbeGLEx8ffs71IkSIqUKCAvv/+e+XLl09dunSRdOewrcDAQHXp0kUvvPDCoywVMEVi2P7kk0/0xRdfaPbs2Tp16pTq1q2rhQsX6syZM/Lx8VGvXr3Uv39/nT9/Xp6enjp16pQcHR25oj8yrPnz56tJkyby9vZWly5dFBUVpf79++vkyZPWi/8VLFhQ3t7e3B4VmdaCBQvUqFEjxcXFydHR0Xp0R4UKFRQUFKSaNWtqyJAhKlWqlP7880/+73IPBG6kmcVi0datW9WgQQOFhYVpyZIlatu2rYKDg/Xss89q2LBhKlWqlJo3b67WrVtr8eLF+vrrr+Xt7W3v0gHTXbhwQZKsvwRPmzZNvXr1UpcuXRQeHm79z5hhGPr777/166+/KjY2VkuWLFH16tWto373C+xAZmEYhuLi4vT9999r8ODBqlOnjtatW6eVK1dq7Nixql69umJiYpQ3b1716NFD3333nb788ktlyZJFcXFx1kPRgYzEMAzFxsbqn3/+UXh4uNq2batOnTrpxo0baty4sRYuXKivv/5ab731lry8vKxH+wGZiWEYun37tiIjI/XXX39Z2+4O3a+88orCwsKUO3duhYWFWb+78T8cUo5USxzZvnz5skaNGqUKFSqoe/fuku4cSn7ixAn17t1bHTp0kJOTk06ePCnDMJQ9e3blzZvXztUD5hs8eLBmzZqln3/+WSVKlNDIkSM1depUNWrUSL/++qtu3rypJUuWqFatWtq/f7/69++v06dPy8nJSdmyZdOBAweUJUsWLkCCx0JCQoJu376t559/Xp9++qmuXbumxo0ba9KkSXrzzTcVExOjzz//XJUrV1a1atWs+zz7PzKSe+2PkZGRqlChgpo2baoZM2ZIkvbu3aslS5Zo2bJl8vPzU+7cubV69WplyZKFK/Ajw3vQft68eXNNnTo1ybSIiAi1bt1a4eHhOnz4sJycnLi94z3wszFSzWKxaN++fWrZsqV+/vlnFS9e3DotODhYpUuX1vTp0zV//nxdv35dJUuWVKlSpQjbeGL0799fAQEBat68uY4dO6azZ89q69at+vLLL3XixAk9/fTTevnll7Vz505VqlRJU6ZM0aRJkzRgwAAdPHjQ+uswYQOZ0X8PAXdwcJCrq6t8fX3VsmVLNWrUSJ9++qnefPNNSXf+M7dixQodOXIkyT7P/o+M5F77o5eXlz766CPt2LFDP/30kySpWrVqmj59uo4ePaodO3Zo/fr11u90wjYyugft599995327duXZNpff/2lnDlz6tChQ4TtByBwI01KlSoli8WiAwcO6NChQ9ZDS7JkyaKFCxeqfPnyGj9+vPXKhcCTJFeuXFq/fr08PT3VqFEjHT58WO7u7pLuhI81a9aoevXqatOmjXbt2qWKFSuqTZs2euutt6wXJeEPFjKju69GfuTIER0/flyRkZGS7tx3Pk+ePCpSpIg6dOggwzB09epVderUSXFxceratas9Swceaty4cXrllVe0YcMGa1uFChXk7OysX375RZKsh9LmyZNH2bJlk8ViUUJCAt/pyDQetJ/v3btX0v9+WC1btqyWLVtm/VGJ/fzeCNxIkf+eeeDp6amNGzeqbt26WrRokdatW2c919TR0VFffPGF6tevr8DAQHuUC9hd9uzZtWnTJpUrV04HDx7UlStXJP3vj9Tq1av17LPPqk6dOjp48GCSZRkFQWaVGLYHDBigli1b6qmnntJbb72lTZs2WS+wExsbq4IFCyowMFANGzbUpUuXtGPHDjk6OnLNAmRoFStW1JkzZzRy5Eg9++yz+vHHH1WiRAn17dtXw4cP19mzZ62B4+6RQq5DgMwkJft54u3v7kbYvj/O4cZDJZ7PsW/fPv3000+6deuWKlasqAYNGujatWt68cUXdfPmTQ0ZMkRNmjQhLOCJdPfI3t2uXr2qxo0b699//9XatWtVsmTJJOdIDRo0SGPHjuVzg0zt7v1/48aN6tOnj2bOnKl//vlHc+fOVXx8vPr27asXX3xR58+f17x58+To6Kh8+fKpQ4cOcnR0ZHQEmcKNGzd0+PBhTZgwQb///rsKFiyo1q1ba8mSJWrWrJn69+/P9zkyPfZz2yJwI0VWrFihnj176qmnnpKXl5eWL1+usWPHavDgwdbQHRsbqz59+qhly5Z8CPFEuTtsrFu3TufPn5efn5+KFSumYsWKKTIyUvXr11dUVJTWrFmTLHRL4mI6eCxs3bpVa9euVZEiRdSvXz9Jdw4tHzFihCIiItSzZ0+9/PLLyZZj/0dm8N8fVtetW6ddu3bp008/VUxMjDp37qwvvvjCjhUC6cd+bnsEbtzT3WEgJCRE9evX17Bhw9SjRw+dO3dO/v7+6tevn8aPHy9HR0dFRUWpVq1ayp07t1atWmU9XxV4kgwcOFCfffaZihQporNnz6pcuXJ644031KlTJ0VGRqpBgwa6fv26li1bpjJlyti7XMCmwsLC1KRJE4WGhuqtt97SJ598Yp2WGLpv3Lihdu3a6Y033rBjpUD6/DeQHDx4UFu2bNG7777LURp4bLCf2w4nlSCJdevWSZL1Ih+SdOXKFZUqVUo9evRQaGioatSooW7duunDDz+Uo6OjTpw4IU9PT/3www+aO3cuYRtPjLvPN/3ll1/03XffacuWLTp8+LC+/fZblSxZUtOnT9dXX30lLy8vbdq0Sbdu3dLYsWPtWDVgG//9vd7Pz0+zZs3SU089pd27d+vbb7+1TitfvrxGjx6tW7du6dChQ4+4UiBl/rtP329M6u4QYhiGnnrqKQ0aNMh6lWYgI2M/f/QI3LD6888/1bx5c7Vv317S/z5oN2/e1OXLl7Vv3z7VqVNHjRs3tt5v8ocfftCoUaN05swZubu7y9fX1271A49KSEiIpP9d3GzixImaNWuWSpcurWrVqkmSKleurL59+8rf31+rV69WbGyssmfProMHD2rRokV2qx2whYSEBOtRUBcvXlR0dLTi4+P13HPPacyYMXJxcdGsWbO0fft26zLlypXT/PnzNWXKFDtVDdxbYuBI3KdPnz6d5PmD/HceRv6QUbGf2w+BG1b+/v5au3atNm/erI4dO1rbixUrpty5c+uFF17Qc889p9mzZ1uDxpo1axQZGSkPDw97lQ08Uu+88446deqk3bt3W9uuXbum+fPn68cff9T58+et7WXKlFGrVq20YsUKnTt3TpLk4eHB1ZiR6SX+IDtq1CjVq1dPzz//vN59913dvHlTderU0ahRo3Tx4kV9+umn2rFjh3W5okWLysHBIdm9ugF7uvuovvHjx2vYsGEpWu7ukUHO0ERGx35uPwRuWDk4OKhRo0YKDg7WqlWr1KFDB0l3AnfDhg3l4uKiAgUKKCQkRMePH9eAAQP0xRdf6MMPP1SOHDnsXD3waHTr1k0xMTGaOHGidu7cKUkaM2aMpk6dqrCwMC1YsED//POPdf6iRYuqWLFiyQ6/4gJRyIzuDsqLFy/WjBkz1K9fPz399NP66aef1Lx5c0VHR6tevXoaNWqUrly5opEjR+rAgQNJ+uE2ScgIhgwZYj1iL3Gf/Pfff1W6dGlJeuAPQ3df62bdunVJflgCMhL2c/vjLx4k/e8Xq6ioKDVp0kRLly7V2rVr9dprr0m6c0/VLl26aMeOHapQoYJef/11bd68Wdu3b1fZsmXtWTrwyMTHxysgIEDLly/X2bNn9eGHH1oPmX377bc1ZswYjRgxQuPHj9euXbt07NgxjRgxQh4eHipWrJidqwfS5+4L6Kxfv14XLlzQtGnT9MYbb2jatGl67733dPXqVb344ovW0D1gwAAFBASoYsWK9i0e+I+//vpLR48e1VdffaX58+db28PCwqw/kN7vh6G7Q8isWbPUvHlzDrFFhsR+nkEYeKIlJCRY//3dd98ZDRs2NGJjY43bt28b69evN7y8vIxXX33VOs+ZM2eMnTt3GidOnDAuX75sj5IBu4qLizMMwzBOnjxplC1b1mjUqJGxbds26/Rx48YZFovFsFgsRseOHY2WLVsat2/fNgzDMOLj4+1SM5AejRo1Mg4fPmx9/ssvvxglSpQwPD09jVWrVlnbb9++baxYscJ45plnjBdeeMG4fv16kn7Y/5HRhISEGB07djRq1KhhzJ071zAMw2jevLkxatQowzDuvc/GxsZa/z1r1izD29vb+Oabbx5NwUAasJ/bHyPcT6hPPvlEa9asSXI+x759++Tu7i4nJydlyZJFjRs31pIlS7RhwwbrSHfhwoUVGBiokiVLKnfu3PbcBOCRuftwq8RDwUuUKGE9N/ujjz6yjnQPHjxY06dPlyRVqlRJ8+bNU5YsWRQfH89htMh0zpw5o/Lly6tUqVLWtqJFi6p3797KkSOH5s6da23PkiWLmjVrpsGDB+vEiRMaMmSIpP8dQcX+j4wi8Tu9dOnSGjhwoIoWLaq5c+dqyZIl8vPzU968efXnn3/qzJkzunTpki5evKiffvpJ0v8uFjV79mwNGDBAc+fOVatWrey2LcD9sJ9nIPZO/Hj0rl69arRr187Ili2bsXnzZmt7UFCQ8dprryWZNz4+3li/fr2RK1cuo0WLFo+6VMDu7v7l9/jx48ZPP/1kREVFGTdv3jQMwzBOnDhhlC1b1mjYsGGSke4PPvjAsFgsxpQpU4yrV68+6rIBm/v444+NHTt2GIZhGFFRUcZnn31mlCtXzujUqVOS+W7fvm3s3LnTejQIkJHc/Z1+6dIlwzDuHLH0+uuvG1WrVjUsFovh6elpFC9e3MibN6+RJ08eI0+ePMaLL75oPSrws88+M7y8vBjxQ4bFfp6xELifUH/88YfRrVs3w9vb21i3bp1hGIbxzjvvGF27djUMw7CGCcO4c1jJypUrjcKFCxvnz5+3S72APdx9ysXQoUONEiVKGDlz5jQqVKhgTJ482bh48aJhGHeCeLly5YwmTZoYGzdutC7z4YcfGhaLxfjss8+S9AVkNn///bfRpEkTw9vb29izZ49hGIYRERFhzJgxw6hYsaLRuXPney5H6EZGcncIGT16tNGyZUtj//79hmEYxrFjx4zXX3/dqFatmhEUFGRERkYaly5dMg4fPmz8/vvv1n359OnThp+fn7F8+XK7bAPwMOznGQ+B+wlz94fwxx9/NAYOHGh4e3sb33//vTF16lTjvffeM27dumVERERY5zt79qxhGEay8/GAJ8UHH3xg5MuXz9i0aZNhGIbx4osvGr6+vsbQoUON8PBwwzDujHTnyZPH6NevX5KQMXnyZCMkJMQudQNpda8fiI4ePWq0b9/eyJUrl/HDDz8YhvG/0F2pUiWjefPmj7hKIG0GDx5s5M2b11i8eLHx119/WdtDQkKMDh06GNWqVTOCg4OTLZf43Z74vQ9kZOznGYfFMLih2pPCuOuG9999953ee+89vfPOO/rxxx/11VdfydnZWZ6enkpISNCtW7fk7u6u27dvK2vWrNqzZ4+yZ89u5y0AHr2QkBC9+eabGjBggJo1a6Zvv/1WrVq1UtWqVfX777+rY8eO6tmzp3x8fHT27FkVKFBAjo6OiouL42qeyJTuvhq5ceeHeevz3377TePGjdO3336r1atXq2bNmoqMjNSsWbN04sQJffHFF5yrjQxt//79atOmjT7//HM9//zz1vbE/f7EiROaOHGi9uzZo08++URNmza1zmPcddVmICNjP89Y+N/gE+LusP3VV1/p1VdflSRly5ZNY8aMkaurq+bOnatXXnlFQUFBCgsLU2xsrCwWi0qUKEHYxhMrf/78CgoKUt26dfX999/r9ddf16RJk9S9e3c1aNBACxcu1NWrVzVixAgVLlxY0p3bhxG2kRndHbZnzZql3bt3y2KxqEqVKurTp4/Kli2roUOHyjAMtWzZUqtWrVKNGjXUu3dvZc2a1XohTkI3Mqp//vlHhmGoQoUK1rbEH5ViY2NVqlQpvfvuuypatKgaNWqUZFlCCDIL9vOMhf8RPkEsFou++eYbvfrqq1q5cqWWLVumY8eOqVWrVurWrZtiY2MVHBys1q1bJ/k1DHiSeXt7q2HDhsqWLZuCg4PVsmVLdenSRZLk5+enc+fOKSEhQTlz5rQuk3glcyCzSQzKgwYN0qJFi9S6dWt5eHho4MCBunLlisaMGaMyZcpo2LBhcnR01LPPPqvDhw+rXLlykpRkNBzIiFxcXHThwgWFhYUpV65c1qM4LBaLtm3bJm9vb1WrVk1lypSRdOcHVL7Tkdmwn2cs/FV8QlgsFq1atUpt2rTRF198oRYtWuj69eu6cOGCJKlMmTLq16+f2rZtq8DAQG3dutXOFQMZh4eHhyTp33//1Y0bNxQXFydJioyM1Mcff6wZM2bIYrGIM3TwOFi6dKm++eYbrVixQlOnTlXlypUVHx+vcePGqUePHpLu/M149913NXz4cAUEBFiXZWQEGcXdt3O8m6+vr6pVq6ZPPvlER44ckcVisY76ffjhh1q3bl2S+QkhyMjYzzMHzuF+gmzatElXr161Hk4eFBSkiIgILVy40DrP+vXrtX//frVr104lS5a0V6lAhvTee+9py5YtKlasmMLDwxUZGamjR4/K0dGRw2jxWIiPj9fs2bN169Yt9evXTxs2bFD79u01ZswYubm5qWvXrho8eLDGjh2bZDmuWYCM5O7v402bNun69euKiYlR+/btJUkLFizQnDlz5Obmptdee02Ojo5atGiRLl++rP3797Mv4//au/OoKuu1/+PvDQKCgCNOqORsaIljZiRleTiWQ1ZqxQkD8TEjFEpAXIrgrGlpkIkimslRw+GgHEUTs1QMiUBzSKlMLQesHHKARPbzR4v7B5nPqd8J2Rs+r7VYa3NP67v1Yu/7+g7XbRUU59ZDCXc1VDqlZObMmWzatIm9e/dia2vL1KlT2bJlC2lpaTRo0KCymyliMcoWEJk4cSLnz5/HxsaGd999lxo1amgqllit3yuOc+XKFS5cuICzszO+vr74+fkRHh7OoUOH8PHx4eLFi8ycOZMJEyZUUqtF7qxsTEdFRbF69Wrq1q3LhQsXuO+++3j//fdp0KABqamppKamkpKSQqdOnWjSpAlr167Fzs5On+li8RTn1kUJdzVU+kf6zjvvEBcXx5dffklsbCzTp08nKyuLrl27VnYTRSzOnb6YNLIn1qrs6EhBQQH169cvF+NZWVmMGDGCbdu24eHhwddff83MmTN58cUXefjhh3WjJhZt3rx5zJ8/n82bN9O9e3eWLl3K6NGj8fHxYc2aNTRq1Aj4NfadnJyoVasWJpNJn+liVRTn1kHzH6uxTp06Ua9ePV599VVmzZrFp59+qmRbqo079TXeaXtpcvHb9VL6whJrVZpsx8TEMHjwYHr06MGqVas4f/488GvtguPHj5OcnMzRo0cJCQnhwoUL+Pj4GI++E7EUt27dMl6fP3+eQ4cOERcXR/fu3UlNTSU8PJypU6dy8uRJ/Pz8OH36NAANGzbE2dnZqMOhz3SxZIpz66QR7mosKyuLBx98EFtbW/bv30+XLl0qu0kid0XZkb0jR45gY2ODvb09rVq1um1/WWWncB0/fpwmTZoYBdVErNF7771HVFQUsbGxbNmyhfz8fJ588kmCg4Np0aIF8+bNIyoqinvuuYc6deqQmZmJnZ2dntMqFuv48eO0a9eOjRs34u3tzcmTJxk6dCjjx48nODiYhQsXEhYWRufOndm+fTtubm6V3WSRP01xbl00wl2NeXl5MXXqVA4dOqRkW6qNso8tio6O5oUXXuCRRx4hICCAuLg44NeRv9+OZJdNMOLi4hg+fDgXL168u40X+S/9Nq6LioqIjo5m1KhRbNy4ET8/Pz788EPi4uI4f/4848eP5+jRo6xatYqsrCzs7OwoLi5Wsi0WY+PGjUyZMgWA0NBQIiMjKS4uZsiQIbi5ubF79248PT2NgrEuLi6MHDmSjh07Uq9evcpsusgfpji3bppPUI05ODgQFRWldXhSrZQmCrGxsSxevJh//vOfuLu7M2fOHMaNG8e1a9eYMGGCkXTb2NiUS7YTEhKIjo7m3XffpUWLFpX5VkT+lLKdTcnJyZw/f57c3Fx8fX2NY6KiogBISUnBZDIxZswY2rRpQ5s2bYBfE3ZNRRRLUVRUxFdffcXs2bP5+OOPycnJYd++feVi9Pjx45w8eZLatWvz888/k5qayiOPPEJYWBig5w+L5VOcVwFmEZFqoKSkxHj92WefmXv27GnetWuX2Ww2m9PT080uLi7mIUOGmGvVqmWeO3eucezNmzeN14sXLza7urqa169ff/caLvIXuHXrlvE6PDzc7Orqau7UqZPZ1tbW3KtXL/OJEyfKHT979myzu7u7OS4u7i63VOTPKSwsNPfu3dtsMpnMwcHBxvbi4mKz2Ww2Hz161Fy/fn2zh4eHuV27duZOnTqV+1wXsQaKc+umbmoRqfLKrsn+8ssvuf/++3nqqafo0aMHO3fu5KWXXmLevHkMGzaMZ599lsjISOPRR6U9yAkJCURERJCUlMTTTz9dmW9H5E8rjf/jx4/zww8/sHPnTry8vEhMTGTlypVMmjSJGTNm4OHhAUBkZCRNmzY1pieKWJKyn+k3b96kb9++9OzZk/feew83NzemTJmCra0tv/zyCx06dODTTz9l7dq1ODk5ERISosc5ilVQnFcdKpomIlWa+TfPqvz0009JTU2lZs2a2NvbM3LkSJydnXnjjTewt7cnODiYgwcPUrt2bTZv3ozJZCIlJQV/f3+Sk5OVbIvVWrt2LRMnTqRJkyZs3ryZunXrAr92Jq1atQoPDw9mzpx521IJ3bCJJSmbhKSkpODu7k7Xrl0pKSlh0aJFTJ8+nbCwMGO9K/xaHNPT09P4XTEtlk5xXrWoaJqIVGmlyfb+/fvZs2cPs2fPxtXVFXt7e4qKisjLy6OoqAh7e3uuX79OQUEBwcHBpKWlGed6eXmxefNmJdti1UpKSmjevDlHjhzhxo0bxvbRo0fz4osv8t133/Hyyy8bjwUrpRs2sRTmMnUIJkyYwNixYzl27Bg3btzAycmJgIAAJk2axIIFC5g0aRLXrl3jiSee4I033ih3HcW0WDLFedWjEW4RqfIWLVpEZmYmv/zyC6tXr8bW1tboPZ4zZw5xcXH069eP/Px8rl+/TnZ2Nra2tpjN5nJffCLWLi0tjZiYGBwdHUlOTi43mv3WW2+Rn59PfHy8Yl4s2pw5c3jzzTdJS0vDy8sLOzs7Y19RURFLliwhPDyc5s2b4+joSE5OTrljRKyB4rzqUMItIlXe3LlzmThxIs2bN+fDDz80Ki4DfP3116xbt46dO3fi7u5OQkICdnZ2moolVUrZpRX/+te/iIuLo6SkhJUrV9K8efPbjrvTs+hFKltRURHDhw/nwQcfJDIyklOnTnHkyBESEhK499578fPzo2PHjuTn53P48GEGDhyIra0txcXFqrAvVkNxXrUo4RaRKiUjI4NHH30UGxsbYmNjady4MaNHj2bRokVMnjyZoKAgQkJCaNas2R2voS8sqYrKJt0bN24kPj4ek8lEYmIi99xzz+8eJ2JJzGYzV69epV+/ftx333089NBDbNy4katXrwJQWFiIp6cn8fHxODg4GOepA1WsieK86lH3tYhUGWfPnuXVV1+lV69ejB07llmzZtGrVy8AXnnlFSZMmEBycjLLli3jzJkzxnklJSXGa7PZrGRbqiSTyURpH/uQIUMYO3YsBQUFzJ8//7bjRCqb2Wwu99lcysXFhdDQUHbt2sWECRPo0qULsbGxZGRk8OCDD3L58uVySQhoLatYLsV59aC7ShGpMho1asR7772Hr68vhw4dYs+ePXTu3JkbN27g6OhIeHg4ZrPZWKP60ksv0bx583JTZ5VsSFVWmnSbTCYGDx5M3bp18fb2ruxmiZRz+fJlateubXwex8fHk5+fz61bt5gyZQrPPfcc3t7emEwm3N3djfMOHz5My5YtK6vZIn+K4rz60Ai3iFi90t5hGxsbatSoQb169WjatClhYWEUFhbi6OhIYWEhABEREYSEhBATE8OHH35Ymc0W+UvcaWXYnbaXHenu06eP1mqLRYmKiqJ58+YUFBQYv8fExPDtt9+yY8cOOnbsSG5uLs2aNcPd3Z3Lly+zbds2Bg4cyOnTp3n77beBO8e/iCVQnFcv+pYVEatWtrjToUOHaNy4MTk5OaxcuZKff/6Zvn37UlRURM2aNY0vpvDwcFJSUhgxYkRlNl3kv1ZSUmKMjhw5coQvv/ySb775BsAofvafHD9+nJ9//rlC2ynyR/n7+3Pffffx8MMPc/r0aSPRSE1N5ZNPPqF37974+vry+eefA/DNN98we/ZsTCYTubm51KhRg1u3bmm2klg0xXn1oqJpImK1yibbkydPZuvWrcyYMYN+/fpRUlLCrl27GD9+PM7OzuzYsYOaNWsSGBiIj4+PkWyryIhYq7LFzaKjo9m0aRPnzp2jffv2PPvss4SEhADcVnG87HlxcXEkJSWRmppa7hFhIpXpq6++ws/Pj1OnTtGiRQtWrVpF27ZtAbh06RIBAQFkZmaydetWunbtSn5+Pq1bt8bGxkZFL8VqKM6rD41wi4jVKk0iJk2aRGJiIrGxsfTo0cOYWt63b18WLlzIlStXaNmyJT4+PmRkZODn52dcQ8m2WKvSpDk2NpbFixczb948PvroI1q2bMm4ceOYPXs28OvfSelId9lkOyEhgejoaCIjI5VsS6UrOxujTZs2JCcn0717d3JzcykqKjKOqVOnDsuXL8fb25vu3btz7Ngx2rZta8S5khCxZIrz6kn/WyJi1Q4fPswHH3zAihUr8PX15cqVK+Tn57N79246dOiAj48PqampJCUlUVJSQkZGhjEVS8m2WKOySXNOTg5btmwhJSUFHx8ftm3bxoYNG3jqqaeYPn06tra2hIeH3zYikpCQQEREBMuXL+fpp5+uzLcjUm4Wxr59+3B3d6dNmzbMnz+fixcv8tRTT5GZmUnDhg0xm83UqVOHpUuX0q5dO9q0aWNcR/UIxJIpzqsvTSkXEat24MABhg8fTlJSEsXFxXzwwQfs2rWLixcv4ubmxrRp0xg4cGC5c5Rsi7Uqe8P25Zdf0rp1a+bNm8e4ceP49NNP8fPzIzY2lmHDhvHss8+yc+dOJkyYwMyZM41rlCbbSUlJPPPMM5X1VkSA8jE9ceJE0tLSmDJlCv3798fJyYn8/Hz8/f25cOECe/fupVGjRrctk9D0WrF0ivPqTV0kImI1fq8AVPv27bGxsSEoKIjHH38cgFmzZrFv3z6Ki4s5d+7cbeco2RZrZDabjZuvqKgoxowZw40bN3j99ddxcnIiOTmZYcOG8dJLL1GnTh3at2/PQw89xMGDB42CgSkpKYSGhrJ8+XIl22IRSmN6ypQpJCUlMX/+fHx9fXFycgKgbdu2rFmzhvr169OnTx/OnDlz2wifkhCxdIrz6k3/cyJiFcr29GZnZxvVmXv27Elubi5paWm4ubnh7e1tHOfq6vqHqjSLWIPSaeT79+9nz549zJs3D1dXVwCKiorIy8ujR48e2Nvbc/36dQoKCggODua5554zruHl5cXmzZuNzikRS/DNN9+wfv16EhIS6NevHz/88ANfffUV27dv55577mHYsGGsW7eORx99lLCwMNauXVvZTRb50xTn1ZcSbhGxeGVH9iIjI1m9ejUmk4nz58/z/PPPM3nyZGO07tq1a1y6dIlRo0ZRWFhIUFBQZTZd5C+1aNEiMjMzadKkCd27dwd+7YxycHBg2LBhxMXFERAQQH5+PtevX2fo0KHAr39DZrOZtm3bGlVwRSxFjRo1sLe35/Lly+zYsYPVq1fz+eefU1RUxPXr17l48SKjR49m165dNGnSpLKbK/L/RXFefWlKuYhYvNKRvfj4eJKSklizZg3bt28nLS2N9PR0IiMjOXnyJACJiYkMHjyYq1evkpWVha2tLbdu3arM5ov8Za5evcqaNWvIzs7mxIkTwP+bqlj6KLAzZ87Qrl27cvFvMplUaEcswu/NOmrcuDGNGzdmwYIF+Pr64urqyuzZs8nMzKRt27b89NNPADRr1kyf6WIVFOdSlka4RcRqZGdn88wzz9C7d2/MZjPt27dn69at9OnTh3vvvZepU6cyYsQIXF1d8ff3x9bWVkVGxGplZGTw6KOPYmNjQ2xsLI0bNyYiIgJnZ2cmT57M0qVLCQkJoVmzZgC0bt2ayMhIIiMjjWso/sWSlF0adPjwYezt7TGbzbRr144NGzaQlZWFs7Mz3bp1M865cePGbXU3VIdDLJniXH5LVcpFxCKVffQRwM2bN+nfvz/NmjVjxYoVlJSUUFxcjL29PW+++SaLFy9m37591K9f3zhH1cjFWp09e5a+ffvi4uJCr169WLJkCVlZWXTu3BmAN954g4ULFzJq1ChGjRpF06ZNgfI3er/9GxKpTGXjMSYmhnXr1nH9+nXs7e2JiopixIgRxrFXr141ahCcPXuWzz77TB1HYhUU5/J7NL9MRCxOaUE0+LXISEFBAXZ2dvj7+7Nu3ToyMjKwsbHBzs4OAAcHBxo0aICLi0u56yjZFmvVqFEj3nvvPfLz80lMTGTPnj107tyZGzduABAeHs7YsWNZtmwZy5Yt4/Tp00D557Mq2RZLUjYJWbRoEW+99Rbbtm2je/fuBAQEkJCQYBy7cuVK/P39+eWXX8jOzqZGjRqaXitWQXEuv0cJt4hYnLLPqhw0aBCenp7GVNrAwECCg4NJT0+npKSEy5cvk5aWhru7u5GAi1ir0nV/NjY21KhRg3r16tG0aVPCwsIoLCzE0dGRwsJCACIiIggJCSEmJoYPP/ywMpst8ofk5OTw8ccfs2bNGvr168fx48f597//zZNPPsmYMWNYunQpACNHjuS1115j+/bt2NnZUVxcrA5UsRqKc/ktTSkXEYtRdjpsSkoKYWFhxMfHc/DgQdLT02nRogW9evXi+++/56233qJVq1bY2tri4OBAdnY2dnZ2mkYrVqts/B86dIh69erh5OTEkSNHeOWVV3BycuKjjz7CwcGhXJxv2LCBwYMH60ZNLM5vP4+/++47kpOTCQ0NZe/evfzjH/8gOjqaF198kSFDhrBjxw7mzJlDeHi4cY6WBomlU5zLf6KEW0QszieffML69evp3LkzgYGBAGzatIm4uDjq1q3LqFGjaNiwoVF4ZPjw4SqQJlatbLI9efJktm7dyowZM+jXrx8lJSXs2rWL8ePH4+zszI4dO6hZsyaBgYH4+PgYawJ1wyaWpGw8fv311zg7O9OoUSMj1l966SWcnJxYuHAhdnZ2vPzyy+Tk5FCzZk0++eQTdZyKVVCcyx+hKeUiYlHOnTtHYGAgK1as4MqVK8b2QYMGMXbsWH788UcWLVpEUVER//M//8MLL7xgPD5DybZYq9Jke9KkSSQmJhIbG0uPHj2MqeV9+/Zl4cKFXLlyhZYtW+Lj40NGRgZ+fn7GNZRsiyV49913ycvLM+IxKiqKwYMH07FjRyIiIsjJyQHgwIED1KpVCzs7O27cuMGFCxeIiYlh9+7dmEwmNB4klkxxLn+GRrhFxOIcPHiQoUOH4uHhwfz587nvvvuMfVu2bCEyMpIBAwYwa9asSmylyF/r8OHDDBkyhLi4OHx9fbly5Qrnz59n9+7ddOjQgd69e3PixAmSkpIoKSkhNjbWKLKjZFsswYkTJ+jTpw/9+/cnIiLCWA5RujRoy5YtNG3alEmTJrFnzx7Gjx9PQEAAeXl53Lx5k+zsbGxtbbU0SCya4lz+LCXcImKRDhw4QEBAAN27d2fcuHF07NjR2JeZmckDDzygJEOqlAMHDjB8+HCSkpIoLi7mgw8+YNeuXVy8eBE3NzemTZvGwIEDy52jZFssTV5eHkFBQTz88MPY2Njg6enJyJEjAUhLS2P+/PnUrVuX5557jh9++IFNmzbh7u7O4sWLsbOzU0yLVVCcy5+hKeUiYpE6d+7MsmXLyMnJYeHChRw5csTY17t3b2MauYg1Kq1GXlb79u2xsbEhKCiIxx9/HIBZs2axb98+iouLOXfu3G3n6IZNLI2XlxdLlixhz549LF++nJ9//tnYN2DAAF577TWuXLnCBx98QOfOnUlPT2fZsmWq0ixWRXEuf4YSbhGxWF26dCExMZG8vDymTJnCiRMnyu3XF5ZYo7IF0rKzs8nKymL//v3UrFmT3Nxcpk2bxo4dO3j77bcZOHAgLVq0wNXV9XeTdBFL1LVrV5KSkqhbty5btmzhiy++MPYNHDiQsLAwjh07xubNm43tZrNZdTjEqijO5Y/SlHIRsXj79+9n8eLFJCYmGomKiDUqu2YvMjKS1atXYzKZOH/+PM8//zyTJ0+mVatWAFy7do1Lly4xatQozp07Z6z7E7EWWhok1YHiXP4TJdwiYhVKE5Wyo4Mi1io+Pp7Y2FhSU1OpX78+p0+f5sUXX8Tb25t58+bh4eHBwoULef/993FyciIjI0Pr/sQq5ebmEhQURLdu3QgNDcXT07PcfsW0VAWKc/m/KOEWEauhip5SVYwYMQJHR0cWL15sxHVeXh59+vQhNDSUqVOncunSJTZu3Ii/v7+eMy9WLTc3l9GjR+Ph4cHcuXNp2bJlZTdJ5C+nOJc70TCRiFgNJdtijX7br33z5k2+//57CgsLjf2//PILXl5exMTEsGbNGn788Ufq1KlDQECAnjMvVq9Lly7Ex8fj4uKCh4dHZTdHpEIozuVOlHCLiIhUkJKSEqOj6JtvvqGgoAA7Ozv8/f1Zt24dGRkZ2NjYYGdnB4CDgwMNGjTAxcWl3HU0FVGsXc+ePVm2bBk2NjYqAChVluJcfo8SbhERkQpSWm9g4sSJDBo0CE9PTyIiInB2diYwMJDg4GDS09MpKSnh8uXLpKWl4e7ubiTgIlWJyWTCbDarDodUaYpz+S3NTxMREfmLlS3ul5KSwsqVK4mPj+fgwYOkp6dz6tQpevXqxcCBAxkwYACtWrXC1tYWBwcHsrOzjRs2LaOQqkYxLdWB4lzKUtE0ERGRCvLJJ5+wfv16OnfuTGBgIACbNm0iLi6OunXrMmrUKBo2bEhWVhbOzs4MHz5cBdJERESqECXcIiIiFeDcuXN4e3tz4cIFYmNjCQ0NNfZt3ryZBQsW4OrqSlRUFD179jT26fExIiIiVYcWF4iIiFSAxo0bs2HDBho3bsyWLVv44osvjH0DBw7k9ddf56uvvmLjxo3lzlOyLSIiUnVohFtERKQCHThwgICAALp37864cePo2LGjsS8zM5MHHnhASbaIiEgVpYRbRESkguXm5hIUFES3bt0IDQ3F09Oz3H5NIxcREamalHCLiIjcBbm5uYwePRoPDw/mzp1Ly5YtK7tJIiIiUsG0hltEROQu6NKlC/Hx8bi4uODh4VHZzREREZG7QCPcIiIid1Hp87XLPqtbREREqiYl3CIiIndZadItIiIiVZu61kVERO4yJdsiIiLVgxJuERERERERkQqghFtERERERESkAijhFhEREREREakASrhFREREREREKoASbhEREREREZEKoIRbRESkivr2228xmUzk5eVVdlNERESqJSXcIiIiFsxkMv2fPzExMZXdRBEREbmDGpXdABEREbmzs2fPGq/Xrl1LdHQ0x44dM7Y5OztXRrNERETkD9AIt4iIiAVr3Lix8VO7dm1MJpPxe8OGDXnzzTdp1qwZDg4OeHl5kZ6efsdr3bp1i8DAQDp06MCpU6cASE1NpWvXrtSsWZNWrVoRGxtLcXGxcY7JZCIxMZEhQ4bg5ORE27Zt2bRpk7H/4sWL+Pn54ebmhqOjI23btmX58uUV9w8iIiJiRZRwi4iIWKmFCxcyf/585s2bx8GDB/H19WXQoEHk5+ffdmxRURFDhw4lLy+P3bt306JFC3bv3o2/vz/jxo3jyJEjJCQksGLFCmbMmFHu3NjYWIYNG8bBgwd54okn8PPz46effgJg8uTJHDlyhK1bt3L06FHeffddGjRocFfev4iIiKUzmc1mc2U3QkRERP6zFStWEBoayqVLlwBwd3cnODiYiRMnGsf07NmTHj168M477/Dtt9/SsmVLdu/eTUxMDEVFRaSlpVG7dm0AHn/8cR577DGioqKM81etWkVERARnzpwBfh3hnjRpEtOmTQPg2rVrODs7s3XrVv7+978zaNAgGjRoQFJS0l36VxAREbEeWsMtIiJiha5cucKZM2d46KGHym1/6KGHOHDgQLltzz//PM2aNWPnzp04Ojoa2w8cOMDevXvLjWjfunWLwsJCrl+/jpOTEwD333+/sb9WrVq4urpSUFAAwJgxY3jmmWf4/PPP+dvf/sZTTz1F7969//L3KyIiYo00pVxERKSKe+KJJzh48CD79u0rt/3q1avExsaSl5dn/HzxxRfk5+dTs2ZN4zg7O7ty55lMJkpKSgDo378/J0+eJCwsjDNnzvDYY48xfvz4in9TIiIiVkAJt4iIiBVydXWladOm7N27t9z2vXv34unpWW7bmDFjmD17NoMGDeLjjz82tnft2pVjx47Rpk2b235sbP74LYKbmxsjRoxg1apVLFiwgCVLlvx3b05ERKSK0JRyERERKxUeHs6UKVNo3bo1Xl5eLF++nLy8PJKTk287NiQkhFu3bjFgwAC2bt2Kt7c30dHRDBgwgBYtWvDss89iY2PDgQMHOHToENOnT/9DbYiOjqZbt2507NjRWCN+7733/tVvVURExCop4RYREbFSY8eO5fLly7z++usUFBTg6enJpk2baNu27e8eHxoaSklJCU888QTp6en4+vqSlpbG1KlTmTNnDnZ2dnTo0IGgoKA/3AZ7e3uioqL49ttvcXR05OGHH2bNmjV/1VsUERGxaqpSLiIiIiIiIlIBtIZbREREREREpAIo4RYRERERERGpAEq4RURERERERCqAEm4RERERERGRCqCEW0RERERERKQCKOEWERERERERqQBKuEVEREREREQqgBJuERERERERkQqghFtERERERESkAijhFhEREREREakASrhFREREREREKsD/AgmG4MMbzlU0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -982,7 +1717,7 @@ "source": [ "# Visualization\n", "import matplotlib.pyplot as plt\n", - "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", + "from sklearn.preprocessing import StandardScaler\n", "import seaborn as sns\n", "\n", "scaler = StandardScaler()\n", @@ -1012,13 +1747,13 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 63, "id": "8a03e0a2-e684-4924-a1ef-7028687d1fcc", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAMGCAYAAAAA9YxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTT0lEQVR4nOzdd3gU1f/28XvTQ0ISeocEMPQmIE0JVbogXeFLEVAQ6QIGlSZFEQVEBRFpioBIR4q0gAJKRyB0E0B6SwKEJJDM8wdP9scawCTssAm8X9e118WePTPzmd1JyL1n5ozFMAxDAAAAAADArpwcXQAAAAAAAE8jAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwDAKiQkRBaLRSEhIQ7Zfo0aNVSjRg3r8/DwcFksFs2aNcsh9dhDp06d5O/v7+gynpjhw4fLYrHoypUrji7lifr3sQtbiccFADxrCNwA4GAWiyVZj+SE4DFjxmjp0qWm15zo5MmTeuutt1SwYEF5eHjIx8dH1apV06RJk3T79u0nVseDbNu2TcOHD1dERIRD60gPEsPQfz0IlI/P39/f5j3Nnj27XnrpJS1ZssSu2+H4B4C0wcXRBQDAs+7777+3eT5nzhytW7cuSXuxYsX+c11jxoxRy5Yt1axZM3uW+EC//PKLWrVqJXd3d3Xo0EElS5ZUXFycfv/9dw0cOFCHDh3StGnTTK/jYbZt26YRI0aoU6dO8vPzc1gd6UHz5s1VuHBh6/ObN2+qR48eevXVV9W8eXNre44cORxR3lOnbNmyGjBggCTp3Llz+uabb9S8eXNNmTJF3bt3t8s2OP4BIG0gcAOAg7Vv397m+R9//KF169YlaU9LwsLC1LZtWxUoUEAbN25Urly5rK/17NlTJ06c0C+//OLACs0THR2tDBkyOLqMVLl7964SEhLk5uZm0166dGmVLl3a+vzKlSvq0aOHSpcunaaPw/QqT548Nu9rhw4dVLhwYU2YMOGhgfthnx0AIG3jlHIASAdu3bqlAQMGKF++fHJ3d1eRIkU0fvx4GYZh7WOxWHTr1i3Nnj3berpqp06dJEmnTp3S22+/rSJFisjT01NZsmRRq1atFB4enqp6xo0bp5s3b+q7776zCduJChcurD59+lif3717Vx999JEKFSokd3d3+fv7a8iQIYqNjU3xtv/66y916tTJehp7zpw59cYbb+jq1avWPsOHD9fAgQMlSQEBAdb34/79/eGHH1S+fHl5enoqc+bMatu2rc6cOWOzrRo1aqhkyZLavXu3qlevrgwZMmjIkCGSpGXLlqlRo0bKnTu33N3dVahQIX300UeKj49P8T5J9041bty4sX799VeVLVtWHh4eKl68uBYvXpykb0REhPr27Ws9HgoXLqxPPvlECQkJ1j6J17+PHz9eEydOtL73oaGhqapPkjZu3KiXXnpJXl5e8vPzU9OmTXX48OH/XO7UqVMqXLiwSpYsqYsXL6ZqH6ZNm2bdh4oVK2rnzp3/ud1r167p3XffValSpeTt7S0fHx81aNBA+/fvt+mXOHfBTz/9pNGjRytv3rzy8PBQ7dq1deLEiSTrTazF09NTL7zwgn777bf/rOVRcubMqWLFiiksLCzJfj/os/uvz+G/jv+U/DyuXr1aQUFBypgxo3x8fFSxYkX9+OOPNn0WLlxo/VnKmjWr2rdvr7Nnzz7WewIATwtGuAEgjTMMQ6+88oo2bdqkLl26qGzZslq7dq0GDhyos2fPasKECZLunZretWtXvfDCC3rzzTclSYUKFZIk7dy5U9u2bVPbtm2VN29ehYeHa8qUKapRo4ZCQ0NTPGK7YsUKFSxYUFWrVk1W/65du2r27Nlq2bKlBgwYoD///FNjx47V4cOHU3zt6rp16/T333+rc+fOypkzp/XU9UOHDumPP/6QxWJR8+bNdezYMc2bN08TJkxQ1qxZJUnZsmWTJI0ePVoffvihWrdura5du+ry5cuaPHmyqlevrr1799qcgnv16lU1aNBAbdu2Vfv27a2nVc+aNUve3t7q37+/vL29tXHjRg0dOlRRUVH69NNPU7RPiY4fP642bdqoe/fu6tixo2bOnKlWrVppzZo1qlu3rqR7I+xBQUE6e/as3nrrLeXPn1/btm1TcHCwzp8/r4kTJ9qsc+bMmYqJidGbb74pd3d3Zc6cOVW1rV+/Xg0aNFDBggU1fPhw3b59W5MnT1a1atW0Z8+eh04Md/LkSdWqVUuZM2fWunXrlDVr1hTvw48//qgbN27orbfeksVi0bhx49S8eXP9/fffcnV1fWjNf//9t5YuXapWrVopICBAFy9e1DfffKOgoCCFhoYqd+7cNv0//vhjOTk56d1331VkZKTGjRundu3a6c8//7T2+e677/TWW2+patWq6tu3r/7++2+98sorypw5s/Lly5eq9/bOnTs6c+aMsmTJYtP+oM8uOZ/Dfx3/yf15nDVrlt544w2VKFFCwcHB8vPz0969e7VmzRq9/vrr1j6dO3dWxYoVNXbsWF28eFGTJk3S1q1bk/wsAcAzyQAApCk9e/Y07v/1vHTpUkOSMWrUKJt+LVu2NCwWi3HixAlrm5eXl9GxY8ck64yOjk7Stn37dkOSMWfOHGvbpk2bDEnGpk2bHlpfZGSkIclo2rRpsvZn3759hiSja9euNu3vvvuuIcnYuHGjtS0oKMgICgqyPg8LCzMkGTNnznzkvsybN8+QZGzZssXa9umnnxqSjLCwMJu+4eHhhrOzszF69Gib9gMHDhguLi427UFBQYYkY+rUqUm2+aA63nrrLSNDhgxGTEyMta1jx45GgQIFkvT9twIFChiSjEWLFlnbIiMjjVy5chnlypWztn300UeGl5eXcezYMZvl33vvPcPZ2dk4ffq0YRj/9975+PgYly5d+s/t3+/y5cuGJGPYsGHWtrJlyxrZs2c3rl69am3bv3+/4eTkZHTo0MHaNmzYMEOScfnyZePw4cNG7ty5jYoVKxrXrl1L9T5kyZLFZvlly5YZkowVK1Y8cj9iYmKM+Ph4m7awsDDD3d3dGDlypLUt8bgvVqyYERsba22fNGmSIck4cOCAYRiGERcXZ2TPnt0oW7asTb9p06YZkmyO3YcpUKCA8fLLLxuXL182Ll++bOzfv99o27atIcno1auXzX4/6LNL7ufwsOM/uT+PERERRsaMGY1KlSoZt2/ftumbkJBg836ULFnSps/KlSsNScbQoUOtbYnHBQA8azilHADSuFWrVsnZ2Vm9e/e2aR8wYIAMw9Dq1av/cx2enp7Wf9+5c0dXr15V4cKF5efnpz179qSonqioKElSxowZk9V/1apVkqT+/fvbtCdOGpXSa73v35eYmBhduXJFlStXlqRk7cvixYuVkJCg1q1b68qVK9ZHzpw59dxzz2nTpk02/d3d3dW5c+dH1nHjxg1duXJFL730kqKjo3XkyJEU7VOi3Llz69VXX7U+9/HxUYcOHbR3715duHBB0r3Td1966SVlypTJpv46deooPj5eW7ZssVlnixYtrCObqXX+/Hnt27dPnTp1shkhL126tOrWrWv9jO938OBBBQUFyd/fX+vXr1emTJmsr6V0H9q0aWOz/EsvvSTp3gj2o7i7u8vJ6d6fOvHx8bp69aq8vb1VpEiRBx4rnTt3trlG+t/b2bVrly5duqTu3bvb9OvUqZN8fX0fWcv9fv31V2XLlk3ZsmVTmTJltHDhQv3vf//TJ598YtPv359daj6Hf0vuz+O6det048YNvffee/Lw8LDpm3h7r8T34+2337bp06hRIxUtWvSpnccBAFLiqTmlfMuWLfr000+1e/dunT9/XkuWLEnRLL3Dhw/XiBEjkrRnyJBBt27dsmOlAJAyp06dUu7cuZME3MRZy0+dOvWf67h9+7bGjh2rmTNn6uzZszbXfkdGRqaoHh8fH0n3QmZynDp1Sk5OTjazYEv3rlv18/NLVv33u3btmkaMGKH58+fr0qVLNq8lZ1+OHz8uwzD03HPPPfD1f5+inCdPngdOVHXo0CF98MEH2rhxo/VLiJTU8SCFCxdOcq/iwMBASfeu682ZM6eOHz+uv/7666Eh+t/vSUBAQKpquV/iZ1SkSJEkrxUrVkxr167VrVu35OXlZW1v0qSJcuTIobVr18rb29tmmZTuQ/78+W2eJ4bv69evP7LuhIQETZo0SV9//bXCwsJsrq//9+nbydlO4vvw72PH1dVVBQsWfGQt96tUqZJGjRoli8WiDBkyqFixYg889frfn11qPod/S+7P48mTJyVJJUuWfOS6HlZP0aJF9fvvvz90WQB4Vjw1gfvWrVsqU6aM3njjDZtbmCTXu+++m2Rm0Nq1a6tixYr2KhEAHKZXr16aOXOm+vbtqypVqsjX11cWi0Vt27a1maQqOXx8fJQ7d24dPHgwRcv9O0imVuvWrbVt2zYNHDhQZcuWlbe3txISElS/fv1k7UtCQoIsFotWr14tZ2fnJK//OxzeP5KdKCIiQkFBQfLx8dHIkSNVqFAheXh4aM+ePRo8eHCK39OUSEhIUN26dTVo0KAHvp4Y0BM9qP4noUWLFpo9e7bmzp2rt956y+a1lO7Dgz4nSTZfHD3ImDFj9OGHH+qNN97QRx99pMyZM8vJyUl9+/Z94GeU2u2kVNasWVWnTp3/7GfmZ2evn0cAwKM9NYG7QYMGatCgwUNfj42N1fvvv6958+YpIiJCJUuW1CeffKIaNWpIuvcH1v1/ZO3fv1+hoaGaOnWq2aUDwCMVKFBA69ev140bN2xGuRNPWy5QoIC17WF/RP/888/q2LGjPvvsM2tbTEyMIiIiUlVT48aNNW3aNG3fvl1VqlT5z/oTEhJ0/Phxm3uJX7x4URERETb1/5fr169rw4YNGjFihIYOHWptP378eJK+D3svChUqJMMwFBAQkCTYJVdISIiuXr2qxYsXq3r16tb2xFmmU+vEiRMyDMOm9mPHjkmSdVKyQoUK6ebNm8kKbPaS+BkdPXo0yWtHjhxR1qxZk4yqfvrpp3JxcdHbb7+tjBkzWifZkp7cPvz888+qWbOmvvvuO5v2iIgI60RiKZH4Phw/fly1atWytt+5c0dhYWEqU6bM4xWczO0n53N42PGf3J/HxAkXDx48mGQ0/EH13P9+JLal5GcbAJ5Wz8w13O+88462b9+u+fPn66+//lKrVq1Uv379B/6RJknTp09XYGCg9fotAHCUhg0bKj4+Xl9++aVN+4QJE2SxWGy+bPTy8npgiHZ2dk4ySjd58uRU38Jq0KBB8vLyUteuXa23ebrfyZMnNWnSJGv9kpLMPP35559Lune9Z3IljkD+e1/+vW5J1uDx7/ejefPmcnZ21ogRI5KsxzAMm9uLpaSOuLg4ff311/+57KOcO3fOZpboqKgozZkzR2XLllXOnDkl3Rvh3759u9auXZtk+YiICN29e/exaniQXLlyqWzZspo9e7bN+3nw4EH9+uuv1s/4fhaLRdOmTVPLli3VsWNHLV++3Prak9qHBx33CxcuTPUtqypUqKBs2bJp6tSpiouLs7bPmjUr1V9epURKPoeHHf/J/Xl8+eWXlTFjRo0dO1YxMTE2fRPf0woVKih79uyaOnWqzS3FVq9ercOHD6foZxsAnlZPzQj3o5w+fVozZ87U6dOnrbcAeffdd7VmzRrNnDlTY8aMsekfExOjuXPn6r333nNEuQBgo0mTJqpZs6bef/99hYeHq0yZMvr111+1bNky9e3b1zoSJUnly5fX+vXr9fnnnyt37twKCAhQpUqV1LhxY33//ffy9fVV8eLFtX37dq1fv/6B17EmR6FChfTjjz+qTZs2KlasmDp06KCSJUsqLi5O27Zt08KFC633AC9Tpow6duyoadOmWU/F3rFjh2bPnq1mzZqpZs2ayd6uj4+PqlevrnHjxunOnTvKkyePfv311weOLJcvX16S9P7776tt27ZydXVVkyZNVKhQIY0aNUrBwcEKDw9Xs2bNlDFjRoWFhWnJkiV688039e677z6yjqpVqypTpkzq2LGjevfuLYvFou+///6xTz0ODAxUly5dtHPnTuXIkUMzZszQxYsXNXPmTGufgQMHavny5WrcuLE6deqk8uXL69atWzpw4IB+/vlnhYeHp2r09r98+umnatCggapUqaIuXbpYb0fl6+ur4cOHP3AZJycn/fDDD2rWrJlat26tVatWqVatWk9sHxo3bqyRI0eqc+fOqlq1qg4cOKC5c+em6Hrr+7m6umrUqFF66623VKtWLbVp00ZhYWGaOXNmqteZUsn9HB52/Cf359HHx0cTJkxQ165dVbFiRb3++uvKlCmT9u/fr+joaM2ePVuurq765JNP1LlzZwUFBem1116z3hbM399f/fr1eyLvCQCkaQ6YGd10kowlS5ZYnyfensLLy8vm4eLiYrRu3TrJ8j/++KPh4uJiXLhw4QlWDQD3/Pu2YIZhGDdu3DD69etn5M6d23B1dTWee+4549NPP7XenifRkSNHjOrVqxuenp6GJOstwq5fv2507tzZyJo1q+Ht7W3Uq1fPOHLkiFGgQAGb24gl57Zg9zt27JjRrVs3w9/f33BzczMyZsxoVKtWzZg8ebLNrbHu3LljjBgxwggICDBcXV2NfPnyGcHBwTZ9DCN5twX7559/jFdffdXw8/MzfH19jVatWhnnzp1Lchsrw7h3+6k8efIYTk5OSW6RtGjRIuPFF1+0/p9QtGhRo2fPnsbRo0dt6ilRosQD933r1q1G5cqVDU9PTyN37tzGoEGDjLVr1yZ5/1JyW7BGjRoZa9euNUqXLm24u7sbRYsWNRYuXJik740bN4zg4GCjcOHChpubm5E1a1ajatWqxvjx4424uDib9+7TTz/9z23/24NuC2YYhrF+/XqjWrVqhqenp+Hj42M0adLECA0Ntelz/23BEkVHRxtBQUGGt7e38ccff9hlHx5U37/FxMQYAwYMMHLlymV4enoa1apVM7Zv357kOEs87v/9Xj/o+DMMw/j666+NgIAAw93d3ahQoYKxZcuWJOt8mMTP+VH+67NLzudgGA8//pP782gYhrF8+XKjatWq1m298MILxrx582z6LFiwwChXrpzh7u5uZM6c2WjXrp3xzz//2PThtmAAnlUWw7DzTCBpgMVisZmlfMGCBWrXrp0OHTqUZEIUb29v62l6iWrXri0fHx+b0/oAADCTv7+/SpYsqZUrVzq6FAAAYCfPxCnl5cqVU3x8vC5duvSf12SHhYVp06ZNNteaAQAAAACQUk9N4L5586ZOnDhhfR4WFqZ9+/Ypc+bMCgwMVLt27dShQwd99tlnKleunC5fvqwNGzaodOnSNpN6zJgxQ7ly5XrkjOcAAAAAAPyXpyZw79q1y2binf79+0uSOnbsqFmzZmnmzJkaNWqUBgwYoLNnzypr1qyqXLmyGjdubF0mISFBs2bNUqdOnR56L04AAAAAAJLjqbyGGwAAAAAAR3tm7sMNAAAAAMCTROAGAAAAAMAE6foa7oSEBJ07d04ZM2aUxWJxdDkAAAAAgKecYRi6ceOGcufOLSenR49hp+vAfe7cOeXLl8/RZQAAAAAAnjFnzpxR3rx5H9knXQfujBkzSrq3oz4+Pg6uBgAAAADwtIuKilK+fPmsefRR0nXgTjyN3MfHh8ANAAAAAHhiknNZM5OmAQAAAABgAgI3AAAAAAAmIHADAAAAAGCCdH0NNwAAAAA8LRISEhQXF+foMp55rq6ucnZ2tsu6CNwAAAAA4GBxcXEKCwtTQkKCo0uBJD8/P+XMmTNZE6M9CoEbAAAAABzIMAydP39ezs7Oypcvn5ycuPLXUQzDUHR0tC5duiRJypUr12Otj8ANAAAAAA509+5dRUdHK3fu3MqQIYOjy3nmeXp6SpIuXbqk7NmzP9bp5Xx1AgAAAAAOFB8fL0lyc3NzcCVIlPjFx507dx5rPQRuAAAAAEgDHvd6YdiPvT4LAjcAAAAAACYgcAMAAAAA0o3hw4erbNmyji4jWQjcAAAAAPCU69SpkywWiywWi9zc3FS4cGGNHDlSd+/efax1NmvWzH5FPoWYpRwAAAAAngH169fXzJkzFRsbq1WrVqlnz55ydXVVcHCwTb+4uDgmcLMTRrgBAAAA4Bng7u6unDlzqkCBAurRo4fq1Kmj5cuXW0eqR48erdy5c6tIkSKSpAMHDqhWrVry9PRUlixZ9Oabb+rmzZuS7p3WPXv2bC1btsw6ch4SEvKfyyWaMWOGSpQoIXd3d+XKlUvvvPOO9bXTp0+radOm8vb2lo+Pj1q3bq2LFy8+mTfJzgjcAAAAAPAM8vT0VFxcnCRpw4YNOnr0qNatW6eVK1fq1q1bqlevnjJlyqSdO3dq4cKFWr9+vTUYv/vuu2rdurXq16+v8+fP6/z586patep/LidJU6ZMUc+ePfXmm2/qwIEDWr58uQoXLixJSkhIUNOmTXXt2jVt3rxZ69at099//602bdo8+TfIDjilHAAAAACeIYZhaMOGDVq7dq169eqly5cvy8vLS9OnT7eeSv7tt98qJiZGc+bMkZeXlyTpyy+/VJMmTfTJJ58oR44c8vT0VGxsrHLmzGld9+zZs/9zuVGjRmnAgAHq06ePdbmKFStKuhf8Dxw4oLCwMOXLl0+SNGfOHJUoUUI7d+609ksvGOEGAAAAgGfAypUr5e3tLQ8PDzVo0EBt2rTR8OHDJUmlSpWyuW778OHDKlOmjDU0S1K1atWUkJCgo0ePPnQb/7XcpUuXdO7cOdWuXfuhy+fLl88atiWpePHi8vPz0+HDh1O76w7j8MB99uxZtW/fXlmyZJGnp6dKlSqlXbt2ObosAAAAAHiq1KxZU/v27dPx48d1+/ZtzZ492xqM7w/IZvL09Hwi20krHBq4r1+/rmrVqsnV1VWrV69WaGioPvvsM2XKlMmRZQEAAADAU8fLy0uFCxdW/vz55eLy6KuLixUrpv379+vWrVvWtq1bt8rJyck6qZqbm5vi4+NTtFzGjBnl7++vDRs2PHS7Z86c0ZkzZ6xtoaGhioiIUPHixVO8z47m0MD9ySefKF++fJo5c6ZeeOEFBQQE6OWXX1ahQoUcWRYAAAAAPNPatWsnDw8PdezYUQcPHtSmTZvUq1cv/e9//1OOHDkkSf7+/vrrr7909OhRXblyRXfu3EnWcsOHD9dnn32mL774QsePH9eePXs0efJkSVKdOnVUqlQptWvXTnv27NGOHTvUoUMHBQUFqUKFCg57P1LLoYF7+fLlqlChglq1aqXs2bOrXLly+vbbbx/aPzY2VlFRUTYPAAAAAIB9ZciQQWvXrtW1a9dUsWJFtWzZUrVr19aXX35p7dOtWzcVKVJEFSpUULZs2bR169ZkLdexY0dNnDhRX3/9tUqUKKHGjRvr+PHjkiSLxaJly5YpU6ZMql69uurUqaOCBQtqwYIFT/w9sAeLYRiGozbu4eEhSerfv79atWqlnTt3qk+fPpo6dao6duyYpP/w4cM1YsSIJO2RkZHy8fExvV4AAAAAsLeYmBiFhYUpICDAmpHgWI/6TKKiouTr65usHOrQwO3m5qYKFSpo27Zt1rbevXtr586d2r59e5L+sbGxio2NtT6PiopSvnz5CNwAAAAA0i0Cd9pjr8Dt0FPKc+XKleTC92LFiun06dMP7O/u7i4fHx+bBwAAAAAAaZFDA3e1atWS3MPt2LFjKlCggIMqAgAAAADAPhwauPv166c//vhDY8aM0YkTJ/Tjjz9q2rRp6tmzpyPLAgAAAADgsT365msmq1ixopYsWaLg4GCNHDlSAQEBmjhxotq1a+fIsgAAsLtqk6vZbV1be22127oAAIB5HBq4Jalx48Zq3Lixo8sAAAAAAMCuHHpKOQAAAAAATysCNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmcPikaQAAAACApMoPnPNEt7f70w4p6l+jRg2VLVtWEydOtGmfNWuW+vbtq4iICEVHR+ujjz7STz/9pLNnzypjxowqXry4+vfvr6ZNm1rXs3nzZkmSm5ubsmbNqueff16dO3dW8+bNk2x306ZN+vTTT/Xnn3/q9u3b8vf3V4MGDdS/f3/lyZMndTtvEka4AQAAAACm6N69uxYvXqzJkyfryJEjWrNmjVq2bKmrV6/a9OvWrZvOnz+vkydPatGiRSpevLjatm2rN99806bfN998ozp16ihnzpxatGiRQkNDNXXqVEVGRuqzzz57kruWLIxwAwAAAABMsXz5ck2aNEkNGzaUJPn7+6t8+fJJ+mXIkEE5c+aUJOXNm1eVK1dW0aJF9cYbb6h169aqU6eO/vnnH/Xu3Vu9e/fWhAkTrMv6+/urevXqioiIeCL7lBKMcAMAAAAATJEzZ06tWrVKN27cSPGyHTt2VKZMmbR48WJJ0sKFCxUXF6dBgwY9sL+fn9/jlGoKAjcAAAAAwBTTpk3Ttm3blCVLFlWsWFH9+vXT1q1bk7Wsk5OTAgMDFR4eLkk6fvy4fHx8lCtXLhMrti8CNwAAAADAFNWrV9fff/+tDRs2qGXLljp06JBeeuklffTRR8la3jAMWSyWJP9OLwjcAAAAAIAU8/HxUWRkZJL2iIgI+fr6Wp+7urrqpZde0uDBg/Xrr79q5MiR+uijjxQXF/fI9cfHx+v48eMKCAiQJAUGBioyMlLnz5+3746YiMANAAAAAEixIkWKaM+ePUna9+zZo8DAwIcuV7x4cd29e1cxMTGPXP/s2bN1/fp1tWjRQpLUsmVLubm5ady4cQ/snxYnTWOWcgAAAABAivXo0UNffvmlevfura5du8rd3V2//PKL5s2bpxUrVki6d4/t1157TRUqVFCWLFkUGhqqIUOGqGbNmvLx8bGuKzo6WhcuXNDdu3f1zz//aMmSJZowYYJ69OihmjVrSpLy5cunCRMm6J133lFUVJQ6dOggf39//fPPP5ozZ468vb3T3K3BCNwAAAAAkAbt/rSDo0t4pIIFC2rLli16//33VadOHcXFxalo0aJauHCh6tevL0mqV6+eZs+erSFDhig6Olq5c+dW48aNNXToUJt1ffvtt/r222/l5uamLFmyqHz58lqwYIFeffVVm35vv/22AgMDNX78eL366qu6ffu2/P391bhxY/Xv3/+J7XtyWQzDMBxdRGpFRUXJ19dXkZGRNt+OAACQ1lSbXM1u69raK3mzuwIA0oeYmBiFhYUpICBAHh4eji4HevRnkpIcyjXcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJjAxdEFAAAAAACSOj2y1BPdXv6hB57o9p4FjHADAAAAAFKsRo0a6tu3b5L2WbNmyc/PT5IUHR2t4OBgFSpUSB4eHsqWLZuCgoK0bNkym/VYLBZZLBa5u7srT548atKkiRYvXmyzzsQ+D3uEh4ebvMcpR+AGAAAAAJiie/fuWrx4sSZPnqwjR45ozZo1atmypa5evWrTr1u3bjp//rxOnjypRYsWqXjx4mrbtq3efPNNSVKbNm10/vx566NKlSrWZRIf+fLlc8QuPhKnlAMAAAAATLF8+XJNmjRJDRs2lCT5+/urfPnySfplyJBBOXPmlCTlzZtXlStXVtGiRfXGG2+odevWqlOnjjw9Pa393dzcbJZJqxjhBgAAAACYImfOnFq1apVu3LiR4mU7duyoTJky2Zxant4QuAEAAAAAppg2bZq2bdumLFmyqGLFiurXr5+2bt2arGWdnJwUGBiYJq/NTi4CNwAAAADAFNWrV9fff/+tDRs2qGXLljp06JBeeuklffTRR8la3jAMWSwWk6s0D4EbAAAAAJBiPj4+ioyMTNIeEREhX19f63NXV1e99NJLGjx4sH799VeNHDlSH330keLi4h65/vj4eB0/flwBAQF2r/1JIXADAAAAAFKsSJEi2rNnT5L2PXv2KDAw8KHLFS9eXHfv3lVMTMwj1z979mxdv35dLVq0eOxaHYVZygEAAAAAKdajRw99+eWX6t27t7p27Sp3d3f98ssvmjdvnlasWCHp3j22X3vtNVWoUEFZsmRRaGiohgwZopo1a8rHx8e6rujoaF24cEF3797VP//8oyVLlmjChAnq0aOHatas6ahdfGwEbgAAAABIg/IPPeDoEh6pYMGC2rJli95//33VqVNHcXFxKlq0qBYuXKj69etLkurVq6fZs2dryJAhio6OVu7cudW4cWMNHTrUZl3ffvutvv32W7m5uSlLliwqX768FixYoFdffdURu2Y3FsMwDEcXkVpRUVHy9fVVZGSkzbcjAACkNdUmV7Pburb2St7srgCA9CEmJkZhYWEKCAiQh4eHo8uBHv2ZpCSHcg03AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACZwcXQBAAAAAICkqk2u9kS3t7XX1ie6vWcBI9wAAAAAgFS5fPmyevToofz588vd3V05c+ZUvXr1NHr0aFkslkc+QkJCNGvWLOtzJycn5cqVS23atNHp06dttlOjRg317dvXpm3SpElyd3fX/Pnzn+Aepwwj3AAAAACAVGnRooXi4uI0e/ZsFSxYUBcvXtSGDRtUokQJnT9/3tqvT58+ioqK0syZM61tmTNnVnh4uHx8fHT06FEZhqGwsDC9/fbbatWqlf7888+HbnfYsGEaP368li1bpvr165u6j4+DwA0AAAAASLGIiAj99ttvCgkJUVBQkCSpQIECeuGFF5L09fT0VGxsrHLmzJnkNYvFYm3PlSuXunTpot69eysqKko+Pj42fQ3DUO/evfXDDz9o3bp1qlq1qgl7Zj+cUg4AAAAASDFvb295e3tr6dKlio2Ntcs6L126pCVLlsjZ2VnOzs42r929e1ft27fXzz//rM2bN6f5sC0xwg0AAAAASAUXFxfNmjVL3bp109SpU/X8888rKChIbdu2VenSpZO9nsjISHl7e8swDEVHR0uSevfuLS8vL5t+3377rSRp//79Klq0qP12xESMcAMAAAAAUqVFixY6d+6cli9frvr16yskJETPP/+8Zs2alex1ZMyYUfv27dOuXbv02Wef6fnnn9fo0aOT9HvxxRfl7e2tDz/8UHfv3rXjXpiHwA0AAAAASDUPDw/VrVtXH374obZt26ZOnTpp2LBhyV7eyclJhQsXVrFixdS/f39VrlxZPXr0SNKvVKlS2rBhgzZt2qQ2bdqki9BN4AYAAAAA2E3x4sV169atVC//3nvvacGCBdqzZ0+S18qWLasNGzZoy5Ytat26te7cufM4pZqOwA0AAAAASLGrV6+qVq1a+uGHH/TXX38pLCxMCxcu1Lhx49S0adNUrzdfvnx69dVXNXTo0Ae+XqZMGW3cuFG///57mg/dTJoGAAAAAGnQ1l5bHV3CI3l7e6tSpUqaMGGCTp48qTt37ihfvnzq1q2bhgwZ8ljr7tevn6pUqaIdO3Y88DZjpUqV0saNG1W7dm21atVKP/30k9zc3B5rm2awGIZhOLqI1IqKipKvr68iIyOT3J8NAIC0pNrkanZbV1r/AwwAkDIxMTEKCwtTQECAPDw8HF0O9OjPJCU5lFPKAQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBi6MLAAAAAAAktbl60BPdXtCWzU90e88CRrgBAAAAACnWqVMnWSyWJA8PD48Htt//CAkJ0axZs+Tn5/fAdVssFi1duvSJ7o8ZGOEGAAAAAKRK/fr1NXPmTJs2i8UiwzCsz/v06aOoqCibfpkzZ1Z4ePiTKtNhCNwAAAAAgFRxd3dXzpw5H9nH09NTsbGx/9nvacQp5QAAAAAAmIDADQAAAABIlZUrV8rb29vmMWbMmGQvHxkZmWR5b29vEyt+sjilHAAAAACQKjVr1tSUKVNs2jJnzpzs5TNmzKg9e/YkaX/uueceu7a0gMANAAAAAEgVLy8vFS5cONXLOzk5PdbyaR2nlAMAAAAAYAJGuAEAAAAAqRIbG6sLFy7YtLm4uChr1qwOqihtIXADAAAAQBoUtGWzo0v4T2vWrFGuXLls2ooUKaIjR444qKK0xWLcf0fydCYqKkq+vr6KjIyUj4+Po8sBAOChqk2uZrd1be211W7rAgA4XkxMjMLCwhQQECAPDw9HlwM9+jNJSQ7lGm4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATODi6AIAAAAAAEl9OWDFE93eO581eaLbexY4dIR7+PDhslgsNo+iRYs6siQAAAAAgJ2FhITY5D5PT0+VKFFC06ZNs/b5dzb892P48OGSpL1796pVq1bKkSOHPDw89Nxzz6lbt246duyYg/bu4Rw+wl2iRAmtX7/e+tzFxeElAQAAAABMcPToUfn4+Oj27dtasWKFevTooUKFCql27do6f/68td+CBQs0dOhQHT161Nrm7e2tlStXqkWLFqpXr57mzp2rQoUK6dKlS1q4cKE+/PBDLViwwBG79VAOT7cuLi7KmTOno8sAAAAAAKTAypUr1b59e129elXOzs7at2+fypUrp8GDB+vjjz+WJHXt2lUxMTHq2rWrJCl79uzy8/OTJPXu3VtffPGF9uzZo9q1a9vkQl9fX1ksFpu26Ohode7cWQ0bNtSSJUus7QEBAapUqZIiIiLM3+kUcvikacePH1fu3LlVsGBBtWvXTqdPn35o39jYWEVFRdk8AAAAAABP3ksvvaQbN25o7969kqTNmzcra9asCgkJsfbZvHmzatSokWRZwzC0Zs0anT59WpUqVUrW9tauXasrV65o0KBBD3w9McinJQ4N3JUqVdKsWbO0Zs0aTZkyRWFhYdYP7UHGjh0rX19f6yNfvnxPuGIAAAAAgHRvFLps2bLWgB0SEqJ+/fpp7969unnzps6ePasTJ04oKCjIukzevHnl7e0tNzc3NWrUSMOGDVP16tWTtb3jx49LUrqa98uhgbtBgwZq1aqVSpcurXr16mnVqlWKiIjQTz/99MD+wcHBioyMtD7OnDnzhCsGAAAAACQKCgpSSEiIDMPQb7/9pubNm6tYsWL6/ffftXnzZuXOnVvPPfectf9vv/2mffv2ad++fZo+fbrGjBmjKVOmJGtbhmGYtRumcfg13Pfz8/NTYGCgTpw48cDX3d3d5e7u/oSrAgAAAAA8SI0aNTRjxgzt379frq6uKlq0qGrUqKGQkBBdv37dZnRbune9deKp3yVKlNCff/6p0aNHq0ePHv+5rcDAQEnSkSNHVKVKFbvvixkcfg33/W7evKmTJ08qV65cji4FAAAAAPAfEi8JnjBhgjVcJwbukJCQB16/fT9nZ2fdvn07Wdt6+eWXlTVrVo0bN+6BrzNp2r+8++672rx5s8LDw7Vt2za9+uqrcnZ21muvvebIsgAAAAAAyZApUyaVLl1ac+fOtYbr6tWra8+ePTp27FiSEe5Lly7pwoULOnXqlBYuXKjvv/9eTZs2Tda2vLy8NH36dP3yyy965ZVXtH79eoWHh2vXrl0aNGiQunfvbu/de2wOPaX8n3/+0WuvvaarV68qW7ZsevHFF/XHH38oW7ZsjiwLAAAAABzunc+aOLqEZAkKCtK+ffusgTtz5swqXry4Ll68qCJFitj0TXzu4uKifPny6a233tLw4cOTva2mTZtq27ZtGjt2rF5//XVFRUUpX758qlWrlkaNGmWvXbIbi5Eerzz//6KiouTr66vIyEj5+Pg4uhwAAB6q2uRqdlvX1l5b7bYuAIDjxcTEKCwsTAEBAfLw8HB0OdCjP5OU5NA0dQ03AAAAAABPCwI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACF0cXAAAAAABIanT7lk90e+//8HOK+nfq1EmzZ8+WJLm4uChz5swqXbq0XnvtNXXq1ElOTrbju/Xq1dP69ev1xx9/qGLFiknWFRERoaVLlz7WPqQ1jHADAAAAAFKlfv36On/+vMLDw7V69WrVrFlTffr0UePGjXX37l1rv9OnT2vbtm165513NGPGDAdW/GQRuAEAAAAAqeLu7q6cOXMqT548ev755zVkyBAtW7ZMq1ev1qxZs6z9Zs6cqcaNG6tHjx6aN2+ebt++7biinyACNwAAAADAbmrVqqUyZcpo8eLFkiTDMDRz5ky1b99eRYsWVeHChfXzzyk7fT29InADAAAAAOyqaNGiCg8PlyStX79e0dHRqlevniSpffv2+u677xxY3ZND4AYAAAAA2JVhGLJYLJKkGTNmqE2bNnJxuTdn92uvvaatW7fq5MmTjizxiSBwAwAAAADs6vDhwwoICNC1a9e0ZMkSff3113JxcZGLi4vy5Mmju3fvPhOTpxG4AQAAAAB2s3HjRh04cEAtWrTQ3LlzlTdvXu3fv1/79u2zPj777DPNmjVL8fHxji7XVNyHGwAAAACQKrGxsbpw4YLi4+N18eJFrVmzRmPHjlXjxo3VoUMHlS9fXi1btlTJkiVtlsuXL5+Cg4O1Zs0aNWrUyEHVm48RbgAAAABAqqxZs0a5cuWSv7+/6tevr02bNumLL77QsmXLtG/fPu3fv18tWrRIspyvr69q16791E+eZjEMw3B0EakVFRUlX19fRUZGysfHx9HlAADwUNUmV7Pburb22mq3dQEAHC8mJkZhYWEKCAiQh4eHo8uBHv2ZpCSHMsINAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmMDF0QUAAAAAAJI6PHrjE91esfdrPdHtJQoJCVHNmjV1/fp1+fn5Wds7deqk2bNnJ+lfr149vffee6pZs+Yj17tp0yaFh4erb9++ioiISPK6xWLRkiVL1KxZs8fcg4cjcAMAAAAA0qT69etr5syZNm3u7u7y8vLS+fPnrW19+vRRVFSUTd/MmTMrPDz8SZX6QJxSDgAAAABIsZUrV8rPz0/x8fGSpH379slisei9996z9unatavat2+vU6dOqUmTJsqUKZO8vLxUokQJrVq1SuHh4daR6kyZMslisahTp07W5d3d3ZUzZ06bR6ZMmeTm5mbT5unpmaSvm5vbE30/HoQRbgAAAABAir300ku6ceOG9u7dqwoVKmjz5s3KmjWrQkJCrH02b96swYMHq2fPnoqLi9OWLVvk5eWl0NBQeXt7K1++fFq0aJFatGiho0ePysfHR56eno7bKTtjhBsAAAAAkGK+vr4qW7asNWCHhISoX79+2rt3r27evKmzZ8/qxIkTCgoK0unTp1WtWjWVKlVKBQsWVOPGjVW9enU5Ozsrc+bMkqTs2bMrZ86c8vX1tW5j5cqV8vb2tnmMGTMmRXVGRkYmWYe3t7fd3odHYYQbAAAAAJAqQUFBCgkJ0YABA/Tbb79p7Nix+umnn/T777/r2rVryp07t5577jn17t1bPXr00K+//qo6deqoRYsWKl269H+uv2bNmpoyZYpNW2JAT66MGTNqz549Sdqfe+65FK0nNQjcAAAAAIBUqVGjhmbMmKH9+/fL1dVVRYsWVY0aNRQSEqLr168rKChI0r1ruevVq6dffvlFv/76q8aOHavPPvtMvXr1euT6vby8VLhw4ceq0cnJ6bHXkeptO2SrAAAAAIB0L/E67gkTJljDdWLgDgkJUY0aNax98+XLp+7du2vx4sUaMGCAvv32W0myTm6WOPna04TADQAAAABIlUyZMql06dKaO3euNVxXr15de/bs0bFjx6whvG/fvlq7dq3CwsK0Z88ebdq0ScWKFZMkFShQQBaLRStXrtTly5d18+ZN6/pjY2N14cIFm8eVK1ee+H6mFoEbAAAAAJBqQUFBio+PtwbuzJkzq3jx4sqZM6eKFCki6d7odc+ePVWsWDHVr19fgYGB+vrrryVJefLk0YgRI/Tee+8pR44ceuedd6zrXrNmjXLlymXzePHFF5/4PqaWxTAMw9FFpFZUVJR8fX0VGRkpHx8fR5cDAMBDVZtczW7r2tprq93WBQBwvJiYGIWFhSkgIEAeHh6OLgd69GeSkhzKCDcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAhdHFwAAAAAASGr48OFpenudOnVSRESEli5dmuS127dv6+OPP9a8efN06tQpZcyYUTVr1tTw4cNVokQJm22OGDFCkuTk5KTcuXOrQYMG+vjjj5U5c2ZrP39/f506dUqS5OHhoRw5cuiFF15Q9+7dVatWLZttL1myRJ988okOHz6shIQE5c+fX3Xr1tXEiRNTtH/2wAg3AAAAAMBuYmNjVadOHc2YMUOjRo3SsWPHtGrVKt29e1eVKlXSH3/8YdO/RIkSOn/+vE6fPq2ZM2dqzZo16tGjR5L1jhw5UufPn9fRo0c1Z84c+fn5qU6dOho9erS1z4YNG9SmTRu1aNFCO3bs0O7duzV69GjduXPH9P1+EEa4AQAAAAB2M3HiRG3fvl179+5VmTJlJEkFChTQokWLVKlSJXXp0kUHDx6UxWKRJLm4uChnzpySpDx58qhVq1aaOXNmkvVmzJjR2i9//vyqXr26cuXKpaFDh6ply5YqUqSIVqxYoWrVqmngwIHW5QIDA9WsWTOT9/rBGOEGAAAAANjNjz/+qLp161rDdiInJyf169dPoaGh2r9//wOXDQ8P19q1a+Xm5pasbfXp00eGYWjZsmWSpJw5c+rQoUM6ePDg4+2EnRC4AQAAAAB2c+zYMRUrVuyBryW2Hzt2zNp24MABeXt7y9PTUwEBATp06JAGDx6crG1lzpxZ2bNnV3h4uCSpV69eqlixokqVKiV/f3+1bdtWM2bMUGxs7OPtVCoRuAEAAAAAdmUYRrL7FilSRPv27dPOnTs1ePBg1atXT7169UrRthJPT/fy8tIvv/yiEydO6IMPPpC3t7cGDBigF154QdHR0Snej8dF4AYAAAAA2E1gYKAOHz78wNcS2wMDA61tbm5uKly4sEqWLKmPP/5Yzs7O1pnL/8vVq1d1+fJlBQQE2LQXKlRIXbt21fTp07Vnzx6FhoZqwYIFqdyj1CNwAwAAAADspm3btlq/fn2S67QTEhI0YcIEFS9ePMn13ff74IMPNH78eJ07d+4/tzVp0iQ5OTk9clI0f39/ZciQQbdu3Ur2PtgLs5QDAAAAAFIlMjJS+/bts2lr3769li1bpiZNmuizzz5TpUqVdPHiRY0ZM0aHDx/W+vXrraeAP0iVKlVUunRpjRkzRl9++aW1/caNG7pw4YLu3LmjsLAw/fDDD5o+fbrGjh2rwoULS7p3X+/o6Gg1bNhQBQoUUEREhL744gvduXNHdevWNeU9eBQCNwAAAAAgVUJCQlSuXDmbti5dumjjxo0aM2aMhgwZolOnTiljxoyqWbOm/vjjD5UsWfI/19uvXz916tRJgwcPVr58+SRJQ4cO1dChQ+Xm5qacOXOqcuXK2rBhg2rWrGldLigoSF999ZU6dOigixcvKlOmTCpXrpx+/fVXFSlSxL47nwwWIyVXs6cxUVFR8vX1VWRkpHx8fBxdDgAAD1VtcjW7rWtrr612WxcAwPFiYmIUFhamgIAAeXh4OLoc6NGfSUpyKNdwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAACkAen4BlJPnYSEBLush/twAwAAAIADubq6ymKx6PLly8qWLZssFoujS3pmGYahuLg4Xb58WU5OTnJzc3us9RG4AQAAAMCBnJ2dlTdvXv3zzz8KDw93dDmQlCFDBuXPn19OTo93UjiBGwAAAAAczNvbW88995zu3Lnj6FKeec7OznJxcbHLmQYEbgAAAABIA5ydneXs7OzoMmBHTJoGAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAnSTOD++OOPZbFY1LdvX0eXAgAAAADAY0sTgXvnzp365ptvVLp0aUeXAgAAAACAXTg8cN+8eVPt2rXTt99+q0yZMjm6HAAAAAAA7MLhgbtnz55q1KiR6tSp8599Y2NjFRUVZfMAAAAAACAtcnHkxufPn689e/Zo586dyeo/duxYjRgxwuSqAAAAAAB4fA4b4T5z5oz69OmjuXPnysPDI1nLBAcHKzIy0vo4c+aMyVUCAAAAAJA6Dhvh3r17ty5duqTnn3/e2hYfH68tW7boyy+/VGxsrJydnW2WcXd3l7u7+5MuFQAAAACAFHNY4K5du7YOHDhg09a5c2cVLVpUgwcPThK2AQAAAABITxwWuDNmzKiSJUvatHl5eSlLlixJ2gEAAAAASG8cPks5AAAAAABPI4fOUv5vISEhji4BAAAAAAC7YIQbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBS2oWCgsL02+//aZTp04pOjpa2bJlU7ly5VSlShV5eHjYu0YAAAAAANKdFAXuuXPnatKkSdq1a5dy5Mih3Llzy9PTU9euXdPJkyfl4eGhdu3aafDgwSpQoIBZNQMAAAAAkOYlO3CXK1dObm5u6tSpkxYtWqR8+fLZvB4bG6vt27dr/vz5qlChgr7++mu1atXK7gUDAAAAAJAeJDtwf/zxx6pXr95DX3d3d1eNGjVUo0YNjR49WuHh4faoDwAAAACAdCnZgftRYfvfsmTJoixZsqSqIAAAAAAAngapmjQtMjJS69atU3h4uCwWiwICAlSnTh35+PjYuz4AAAAAANKlFAfuH374Qe+8846ioqJs2n19fTV16lS1adPGbsUBAAAAAJBepeg+3Hv27FHnzp3VrFkz7d27V7dv31Z0dLR27dqlJk2a6H//+5/2799vVq0AAAAAAKQbKRrhnjx5spo1a6ZZs2bZtD///POaM2eOoqOjNWnSJM2YMcOeNQIAAAAAkO6kaIR769ateuuttx76evfu3fX7778/dlEAAAAAAKR3KQrc586dU2Bg4ENfDwwM1NmzZx+7KAAAAAAA0rsUBe7o6Gh5eHg89HV3d3fFxMQ8dlEAAAAAAKR3KZ6lfO3atfL19X3gaxEREY9bDwAAAAAAT4UUB+6OHTs+8nWLxZLqYgAAAAAAeFqkKHAnJCSYVQcAAAAAAE+VFF3DDQAAAAAAkidFgfvYsWPasWOHTduGDRtUs2ZNvfDCCxozZoxdiwMAAAAAIL1KUeAePHiwVq5caX0eFhamJk2ayM3NTVWqVNHYsWM1ceJEe9cIAAAAAEC6k6JruHft2qVBgwZZn8+dO1eBgYFau3atJKl06dKaPHmy+vbta9ciAQAAAABIb1I0wn3lyhXlzZvX+nzTpk1q0qSJ9XmNGjUUHh5ut+IAAAAAAEivUhS4M2fOrPPnz0u6N2P5rl27VLlyZevrcXFxMgzDvhUCAAAAAJAOpShw16hRQx999JHOnDmjiRMnKiEhQTVq1LC+HhoaKn9/fzuXCAAAAABA+pOia7hHjx6tunXrqkCBAnJ2dtYXX3whLy8v6+vff/+9atWqZfciAQAAAABIb1IUuP39/XX48GEdOnRI2bJlU+7cuW1eHzFihM013gAAAAAAPKtSFLglycXFRWXKlHngaw9rBwAAAADgWZOiwN28efMHtvv6+iowMFBdu3ZVtmzZ7FIYAAAAAADpWYomTfP19X3gIyIiQt9++62KFCmigwcPmlUrAAAAAADpRopGuGfOnPnQ1xISEtStWzcFBwdrxYoVj10YAAAAAADpWYpGuB+5Iicn9e7dW7t377bXKgEAAAAASLfsFrglycvLS9HR0fZcJQAAAAAA6ZJdA/e6desUGBhoz1UCAAAAAJAupega7uXLlz+wPTIyUrt379b06dM1ffp0uxQGAAAAAEB6lqLA3axZswe2Z8yYUUWKFNH06dPVtm1be9QFAAAAAEC6lqLAnZCQYFYdAAAAAAA8Vex6DTcAAAAAALgn2YF7/vz5yV7pmTNntHXr1lQVBAAAAADA0yDZgXvKlCkqVqyYxo0bp8OHDyd5PTIyUqtWrdLrr7+u559/XlevXrVroQAAAAAApCfJvoZ78+bNWr58uSZPnqzg4GB5eXkpR44c8vDw0PXr13XhwgVlzZpVnTp10sGDB5UjRw4z6wYAAAAAIE1L0aRpr7zyil555RVduXJFv//+u06dOqXbt28ra9asKleunMqVKycnJy4LBwAAAAAgRYE7UdasWR96izAAAAAAAMAs5QAAAAAAmILADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJgg2bOU9+/fP9kr/fzzz1NVDAAAAAAAT4tkB+69e/cmq5/FYkl1MQAAAAAAPC2SHbg3bdpkZh0AAAAAADxVuIYbAAAAAAATJHuE+9927dqln376SadPn1ZcXJzNa4sXL37swgAAAAAASM9SNcI9f/58Va1aVYcPH9aSJUt0584dHTp0SBs3bpSvr6+9awQAAAAAIN1JVeAeM2aMJkyYoBUrVsjNzU2TJk3SkSNH1Lp1a+XPn9/eNQIAAAAAkO6kKnCfPHlSjRo1kiS5ubnp1q1bslgs6tevn6ZNm2bXAgEAAAAASI9SFbgzZcqkGzduSJLy5MmjgwcPSpIiIiIUHR1tv+oAAAAAAEinUjVpWvXq1bVu3TqVKlVKrVq1Up8+fbRx40atW7dOtWvXtneNAAAAAACkO6kK3F9++aViYmIkSe+//75cXV21bds2tWjRQh988IFdCwQAAAAAID1KceC+e/euVq5cqXr16kmSnJyc9N5779m9MAAAAAAA0rMUX8Pt4uKi7t27W0e4AQAAAABAUqmaNO2FF17Qvn377FwKAAAAAABPj1Rdw/3222+rf//+OnPmjMqXLy8vLy+b10uXLm2X4gAAAAAASK9SFbjbtm0rSerdu7e1zWKxyDAMWSwWxcfH26c6AAAAAADSqVQF7rCwMHvXAQAAAADAUyVVgbtAgQL2rgMAAAAAgKdKqiZNk6Tvv/9e1apVU+7cuXXq1ClJ0sSJE7Vs2TK7FQcAAAAAQHqVqsA9ZcoU9e/fXw0bNlRERIT1mm0/Pz9NnDjRnvUBAAAAAJAupSpwT548Wd9++63ef/99OTs7W9srVKigAwcO2K04AAAAAADSq1QF7rCwMJUrVy5Ju7u7u27duvXYRQEAAAAAkN6lKnAHBARo3759SdrXrFmjYsWKPW5NAAAAAACke6mapbx///7q2bOnYmJiZBiGduzYoXnz5mns2LGaPn26vWsEAAAAACDdSVXg7tq1qzw9PfXBBx8oOjpar7/+unLnzq1Jkyapbdu29q4RAAAAAIB0J1WBW5LatWundu3aKTo6Wjdv3lT27NntWRcAAAAAAOlaqq7hrlWrliIiIiRJGTJksIbtqKgo1apVy27FAQAAAACQXqUqcIeEhCguLi5Je0xMjH777bfHLgoAAAAAgPQuRaeU//XXX9Z/h4aG6sKFC9bn8fHxWrNmjfLkyWO/6gAAAAAASKdSFLjLli0ri8Uii8XywFPHPT09NXnyZLsVBwAAAABAepWiwB0WFibDMFSwYEHt2LFD2bJls77m5uam7Nmzy9nZ2e5FAgAAAACQ3qQocBcoUECSlJCQYEoxAAAAAAA8LVJ9WzDp3nXcp0+fTjKB2iuvvPJYRQEAAAAAkN6lKnD//fffevXVV3XgwAFZLBYZhiFJslgsku5NoAYAAAAAwLMsVbcF69OnjwICAnTp0iVlyJBBhw4d0pYtW1ShQgWFhITYuUQAAAAAANKfVAXu7du3a+TIkcqaNaucnJzk5OSkF198UWPHjlXv3r2TvZ4pU6aodOnS8vHxkY+Pj6pUqaLVq1enpiQAAAAAANKUVAXu+Ph4ZcyYUZKUNWtWnTt3TtK9SdWOHj2a7PXkzZtXH3/8sXbv3q1du3apVq1aatq0qQ4dOpSasgAAAAAASDNSdQ13yZIltX//fgUEBKhSpUoaN26c3NzcNG3aNBUsWDDZ62nSpInN89GjR2vKlCn6448/VKJEidSUBgAAAABAmpCqwP3BBx/o1q1bkqSRI0eqcePGeumll5QlSxYtWLAgVYXEx8dr4cKFunXrlqpUqfLAPrGxsYqNjbU+j4qKStW2AAAAAAAwW6oCd7169az/Lly4sI4cOaJr164pU6ZM1pnKk+vAgQOqUqWKYmJi5O3trSVLlqh48eIP7Dt27FiNGDEiNSUDAAAAAPBEpeoa7gfJnDlzisO2JBUpUkT79u3Tn3/+qR49eqhjx44KDQ19YN/g4GBFRkZaH2fOnHncsgEAAAAAMEWyR7ibN2+e7JUuXrw42X3d3NxUuHBhSVL58uW1c+dOTZo0Sd98802Svu7u7nJ3d0/2ugEAAAAAcJRkB25fX18z67BKSEiwuU4bAAAAAID0KNmBe+bMmXbfeHBwsBo0aKD8+fPrxo0b+vHHHxUSEqK1a9fafVsAAAAAADxJqZo0zV4uXbqkDh066Pz58/L19VXp0qW1du1a1a1b15FlAQAAAADw2JIduMuVK5fsSdH27NmTrH7fffddcjcPAAAAAEC6kuzA3axZMxPLAAAAAADg6ZLswD1s2DAz6wAAAAAA4KnyWNdw7969W4cPH5YklShRQuXKlbNLUQAAAAAApHepCtyXLl1S27ZtFRISIj8/P0lSRESEatasqfnz5ytbtmz2rBEAAAAAgHTHKTUL9erVSzdu3NChQ4d07do1Xbt2TQcPHlRUVJR69+5t7xoBAAAAAEh3UjXCvWbNGq1fv17FihWzthUvXlxfffWVXn75ZbsVBwAAAABAepWqEe6EhAS5uromaXd1dVVCQsJjFwUAAAAAQHqXqsBdq1Yt9enTR+fOnbO2nT17Vv369VPt2rXtVhwAAAAAAOlVqgL3l19+qaioKPn7+6tQoUIqVKiQAgICFBUVpcmTJ9u7RgAAAAAA0p1UXcOdL18+7dmzR+vXr9eRI0ckScWKFVOdOnXsWhwAAAAAAOlVqu/DbbFYVLduXdWtW9ee9QAAAAAA8FRI0SnlGzduVPHixRUVFZXktcjISJUoUUK//fab3YoDAAAAACC9SlHgnjhxorp16yYfH58kr/n6+uqtt97S559/brfiAAAAAABIr1IUuPfv36/69es/9PWXX35Zu3fvfuyiAAAAAABI71IUuC9evPjA+28ncnFx0eXLlx+7KAAAAAAA0rsUBe48efLo4MGDD339r7/+Uq5cuR67KAAAAAAA0rsUBe6GDRvqww8/VExMTJLXbt++rWHDhqlx48Z2Kw4AAAAAgPQqRbcF++CDD7R48WIFBgbqnXfeUZEiRSRJR44c0VdffaX4+Hi9//77phQKAAAAAEB6kqLAnSNHDm3btk09evRQcHCwDMOQdO+e3PXq1dNXX32lHDlymFIoAAAAAADpSYoCtyQVKFBAq1at0vXr13XixAkZhqHnnntOmTJlMqM+AAAAAADSpRQH7kSZMmVSxYoV7VkLAAAAAABPjRRNmgYAAAAAAJKHwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACZI9adry5cuTvdJXXnklVcUAAAAAAPC0SHbgbtasWbL6WSwWxcfHp7YeAAAAAACeCskO3AkJCWbWAQAAAADAU4VruAEAAAAAMEGyR7j/7datW9q8ebNOnz6tuLg4m9d69+792IUBAAAAAJCepSpw7927Vw0bNlR0dLRu3bqlzJkz68qVK8qQIYOyZ89O4AYAAAAAPPNSdUp5v3791KRJE12/fl2enp76448/dOrUKZUvX17jx4+3d40AAAAAAKQ7qQrc+/bt04ABA+Tk5CRnZ2fFxsYqX758GjdunIYMGWLvGgEAAAAASHdSFbhdXV3l5HRv0ezZs+v06dOSJF9fX505c8Z+1QEAAAAAkE6l6hrucuXKaefOnXruuecUFBSkoUOH6sqVK/r+++9VsmRJe9cIAAAAAEC6k6oR7jFjxihXrlySpNGjRytTpkzq0aOHLl++rG+++cauBQIAAAAAkB6laoS7QoUK1n9nz55da9assVtBAAAAAAA8DVI1wl2rVi1FREQkaY+KilKtWrUetyYAAAAAANK9VAXukJAQxcXFJWmPiYnRb7/99thFAQAAAACQ3qXolPK//vrL+u/Q0FBduHDB+jw+Pl5r1qxRnjx57FcdAAAAAADpVIoCd9myZWWxWGSxWB546rinp6cmT55st+IAAAAAAEivUhS4w8LCZBiGChYsqB07dihbtmzW19zc3JQ9e3Y5OzvbvUgAAAAAANKbFAXuAgUKSJISEhJMKQYAAAAAgKdFqm4LJkknT57UxIkTdfjwYUlS8eLF1adPHxUqVMhuxQEAAAAAkF6lapbytWvXqnjx4tqxY4dKly6t0qVL688//1SJEiW0bt06e9cIAAAAAEC6k6oR7vfee0/9+vXTxx9/nKR98ODBqlu3rl2KAwAAAAAgvUrVCPfhw4fVpUuXJO1vvPGGQkNDH7soAAAAAADSu1QF7mzZsmnfvn1J2vft26fs2bM/bk0AAAAAAKR7KTqlfOTIkXr33XfVrVs3vfnmm/r7779VtWpVSdLWrVv1ySefqH///qYUCgAAAABAemIxDMNIbmdnZ2edP39e2bJl08SJE/XZZ5/p3LlzkqTcuXNr4MCB6t27tywWi2kF3y8qKkq+vr6KjIyUj4/PE9kmAACpUW1yNbuta2uvrXZbFwAASJmU5NAUjXAnZnOLxaJ+/fqpX79+unHjhiQpY8aMqSwXAAAAAICnT4pnKf/36DVBGwAAAACApFIcuAMDA//zlPFr166luiAAAAAAAJ4GKQ7cI0aMkK+vrxm1AAAAAADw1Ehx4G7bti23/gIAAAAA4D+k6D7cT2r2cQAAAAAA0rsUBe4U3EEMAAAAAIBnWopOKU9ISDCrDgAAAAAAniopGuEGAAAAAADJQ+AGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABA4N3GPHjlXFihWVMWNGZc+eXc2aNdPRo0cdWRIAAAAAAHbh0MC9efNm9ezZU3/88YfWrVunO3fu6OWXX9atW7ccWRYAAAAAAI/NxZEbX7Nmjc3zWbNmKXv27Nq9e7eqV6/uoKoAAAAAAHh8Dg3c/xYZGSlJypw58wNfj42NVWxsrPV5VFTUE6kLAAAAAICUSjOTpiUkJKhv376qVq2aSpYs+cA+Y8eOla+vr/WRL1++J1wlAAAAAADJk2YCd8+ePXXw4EHNnz//oX2Cg4MVGRlpfZw5c+YJVggAAAAAQPKliVPK33nnHa1cuVJbtmxR3rx5H9rP3d1d7u7uT7AyAAAAAABSx6GB2zAM9erVS0uWLFFISIgCAgIcWQ4AAAAAAHbj0MDds2dP/fjjj1q2bJkyZsyoCxcuSJJ8fX3l6enpyNIAAAAAAHgsDr2Ge8qUKYqMjFSNGjWUK1cu62PBggWOLAsAAAAAgMfm8FPKAQAAAAB4GqWZWcoBAAAAAHiaELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBi6MLAADA3soPnGOX9ez+tINd1gMAAJ5NjHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAIXRxcAAEBadXpkKfutLJOP/dYFAADSBUa4AQAAAAAwASPcaVy1ydXstq6tvbbabV0AAAAAgEdjhBsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADCBQwP3li1b1KRJE+XOnVsWi0VLly51ZDkAAAAAANiNQwP3rVu3VKZMGX311VeOLAMAAAAAALtzceTGGzRooAYNGjiyBAAAAAAATOHQwJ1SsbGxio2NtT6PiopyYDUAAAAAADxcupo0bezYsfL19bU+8uXL5+iSAAAAAAB4oHQVuIODgxUZGWl9nDlzxtElAQAAAADwQOnqlHJ3d3e5u7s7ugwAAAAAAP5TuhrhBgAAAAAgvXDoCPfNmzd14sQJ6/OwsDDt27dPmTNnVv78+R1YGQAAAAAAj8ehgXvXrl2qWbOm9Xn//v0lSR07dtSsWbMcVBUAAAAAAI/PoYG7Ro0aMgzDkSUAAAAAAGAKruEGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATODi6ALSkvID59hlPbs/7WCX9QAAAAAA0i9GuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABO4OLqAp9HpkaXst7JMPvZbFwAAAADgiWGEGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAE7g4ugAAAAAzDB8+PE2uCwDw7GCEGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwQZoI3F999ZX8/f3l4eGhSpUqaceOHY4uCQAAAACAx+LwwL1gwQL1799fw4YN0549e1SmTBnVq1dPly5dcnRpAAAAAACkmsMD9+eff65u3bqpc+fOKl68uKZOnaoMGTJoxowZji4NAAAAAIBUc3HkxuPi4rR7924FBwdb25ycnFSnTh1t3749Sf/Y2FjFxsZan0dGRkqSoqKi7FJPfOxtu6znhmu8XdYjSXdv37Xbuuz1PtnTp93+Z5f1DPz2e7us51lQ/YN5dlnPllGv2WU9gBn4ff7kpcXf5/f/zfC40uJ7DjwL+LsFaVHi/wmGYfxnX4uRnF4mOXfunPLkyaNt27apSpUq1vZBgwZp8+bN+vPPP236Dx8+XCNGjHjSZQIAAAAAYOPMmTPKmzfvI/s4dIQ7pYKDg9W/f3/r84SEBF27dk1ZsmSRxWJxYGXPjqioKOXLl09nzpyRj4+Po8sBTMFxjmcBxzmeBRzneBZwnD95hmHoxo0byp0793/2dWjgzpo1q5ydnXXx4kWb9osXLypnzpxJ+ru7u8vd3d2mzc/Pz8wS8RA+Pj78QOOpx3GOZwHHOZ4FHOd4FnCcP1m+vr7J6ufQSdPc3NxUvnx5bdiwwdqWkJCgDRs22JxiDgAAAABAeuPwU8r79++vjh07qkKFCnrhhRc0ceJE3bp1S507d3Z0aQAAAAAApJrDA3ebNm10+fJlDR06VBcuXFDZsmW1Zs0a5ciRw9Gl4QHc3d01bNiwJKf2A08TjnM8CzjO8SzgOMezgOM8bXPoLOUAAAAAADytHHoNNwAAAAAATysCNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHDDNAkJCY4uAQAAAAAchsANU3z88cd65513dOfOHUeXAgAAAAAOQeCGKfLmzaupU6fqww8/JHQDAB6IO5PiaZJ4PHNcA7gfgRt2ZxiG2rdvr4ULF+rzzz/XBx98oJiYGEeXBQBIQ0JDQ2WxWCRJM2bM0K5duxxcEfB4rl+/rtjYWN24cUMSwRtPN47v5CNww67u/+ELCgrSJ598ok8//VTjx49XXFycAysD0hbmOMCz7K+//lKjRo00YcIEDRw4UG+//bYyZ87s6LKAVPv+++/VtGlTPf/882rcuLGWLl1q/UIJeFr88ssvWr58uSTJYrEQupPJxdEF4OmS+J/LokWLNGDAANWuXVv58+fX0KFDdePGDY0aNUqurq4OrhJwrISEBDk53fu+c9myZTpx4oSyZ8+u8uXLq3jx4g6uDjBf5syZ9cYbb2jUqFGKj49XaGioChYsqLt378rFhT9NkL4sXrxYb775psaPH6/o6GiFhYWpefPmCg4OVv/+/ZUlSxZHlwg8tp9//lmtW7dWnjx5dPfuXTVv3twauvly6dH4Xw12d/ToUXXt2lVjx47VG2+8ocjISC1dulRvv/22JOmjjz6Sm5ubg6sEHMMwDGvYHjx4sObMmaMSJUro/PnzKlCggN588001a9bMsUUCJsubN6/y5MmjGzduKHfu3Fq2bJn69esnFxcXxcfHy9nZ2dElAsm2atUqvf766+rZs6e1rWrVqurQoYPu3LmjkSNHysPDw4EVAo9n7969Gj9+vLp27ar4+Hh98MEHMgxDLVq0IHQnA4EbdhcVFaXMmTOrXr16cnNzU7Zs2dStWzfFx8fr7bfflp+fn/r27StPT09Hlwo8cYn/IX3xxReaP3++lixZosqVK2vixIl67733rNcAtmnTRpL4TwxPjcQzOxKP6erVq+u3337T2rVrNXXqVMXExCg4OJiwjXTFMAydP39euXPnlvR/lwu1b99eLi4uateunYoUKaIuXbrw+xzplrOzswoUKKA+ffpIkiZMmKAPP/xQkgjdycA13LA7Dw8PhYWF6e+//5b0f//5NGzYUNmzZ9f777+vjz/+2JElAg518+ZNhYaG6t1331XlypW1dOlSDR8+XH379pWHh4fGjBmjJUuWSBL/eeGpcP9lFAcPHtTOnTuVIUMGVapUST179lTLli01e/ZsjRs3zrrM2LFjtX//fkeVDDxS4rWriV8eLVy4UKGhodYvlQzDUNu2bTVs2DANHTpUp06d4vc50p3Ev+FLly6t8ePHq0SJEipRooTeeecdValSRR9++KF+/vlnSfd+Fm7fvu3IctMsi8HV7ngMid9m/fsUwNdff12nT5/W559/rhdeeEHSvZDRr18/Va1aVVWqVFHRokUdVTbgcMeOHZOXl5ciIyPVpEkT9erVS3379tW8efPUrVs35cmTR5MmTVL9+vUdXSrwWO4f9Xj//fe1cOFCJSQk6M6dO2revLkGDhwoJycnffXVV5o3b56qVaumK1eu6ODBg/r7778Z8UaadvfuXd28eVOtW7eWm5ubJk2apEKFClnnI9i6datatGihNWvWqGzZso4uF0iVxOP5/r/39+/fry+++ELbt2/X6NGj9corr6hWrVoaNGiQGjVq5OCK0xZGuJFqiX9EbdiwQYMHD1b//v0VGhoqSXr77bfl6+ur3r17a+XKldq/f79GjRqlkJAQvfrqq4RtPDPi4+Mf2F6wYEHlyZNHv/32m3LlyqUuXbpIunfaVlBQkLp06aKXX375SZYKmCIxbH/++ef67rvv9M033+jEiROqVauW5syZo1OnTilnzpzq2bOnBgwYoLNnz8rHx0cnTpyQs7MzM/ojzZo5c6YaNWokPz8/denSRVFRURowYICOHj1qnfwvb9688vPz4/aoSLdmzZqlBg0a6O7du3J2drae3VGmTBn17t1b1apV05AhQ1S0aFGdPHmSv10egMCNVLNYLPr1119Vr149hYeHa+7cuWrTpo1mz56tF198UR988IGKFi2qpk2bqmXLlvrhhx/0008/yc/Pz9GlA6Y7d+6cJFm/Cf7iiy/Us2dPdenSRefPn7f+MWYYhq5cuaJdu3bpzp07mjt3rqpUqWId9XtYYAfSC8MwdPfuXf32228KDg5WzZo1tWLFCi1evFijR49WlSpVFBsbqxw5cqhHjx5av369fvzxR7m6uuru3bvWU9GBtMQwDN25c0dXr17V+fPn1aZNG3Xq1Em3bt1Sw4YNNWfOHP3000/q3r27fH19rWf7AemJYRiKi4tTZGSk/vnnH2vb/aH7tddeU3h4uLJly6bw8HDr7278H04pR4oljmxfunRJI0aMUJkyZfTmm29Kuncq+ZEjR/TOO++oQ4cOcnFx0dGjR2UYhjJlyqQcOXI4uHrAfMHBwZo6dar+/PNPBQYGavjw4Zo0aZIaNGigXbt26fbt25o7d66qV6+u3bt3a8CAAfr777/l4uIiLy8v7dmzR66urkxAgqdCQkKC4uLiVLt2bX311Ve6ceOGGjZsqPHjx+utt95SbGyspk2bpgoVKqhy5crWY57jH2nJg47HyMhIlSlTRo0bN9aXX34pSfrjjz80d+5cLViwQP7+/sqWLZuWLl0qV1dXZuBHmveo47xp06aaNGmSzWsRERFq2bKlzp8/r/3798vFxYXbOz4AXxsjxSwWi3bs2KHmzZvrzz//1HPPPWd9bfbs2SpWrJgmT56smTNn6ubNmypSpIiKFi1K2MYzY8CAASpevLiaNm2qQ4cO6fTp0/r111/1448/6siRI3r++efVqlUrhYSEqHz58po4caLGjx+vQYMGae/evdZvhwkbSI/+fQq4k5OTPDw8VKBAATVv3lwNGjTQV199pbfeekvSvT/mFi1apL/++svmmOf4R1ryoOPR19dXn376qTZt2qTt27dLkipXrqzJkyfrwIED2rRpk1auXGn9nU7YRlr3qON8/fr12rFjh81r//zzj7JkyaJ9+/YRth+BwI1UKVq0qCwWi/bs2aN9+/ZZTy1xdXXVnDlzVLp0aY0dO9Y6cyHwLMmaNatWrlwpHx8fNWjQQPv375e3t7eke+Fj2bJlqlKlilq3bq3NmzerbNmyat26tbp3726dlIT/sJAe3T8b+V9//aXDhw8rMjJS0r37zmfPnl0FCxZUhw4dZBiGrl+/rk6dOunu3bvq2rWrI0sH/tOYMWP02muv6ZdffrG2lSlTRm5ubtq5c6ckWU+lzZ49u7y8vGSxWJSQkMDvdKQbjzrO//jjD0n/98VqyZIltWDBAuuXShznD0bgRrL8+8oDHx8frVq1SrVq1dL333+vFStWWK81dXZ21nfffae6desqKCjIEeUCDpcpUyatXr1apUqV0t69e3X58mVJ//ef1NKlS/Xiiy+qZs2a2rt3r82yjIIgvUoM24MGDVLz5s1Vrlw5de/eXatXr7ZOsHPnzh3lzZtXQUFBql+/vi5evKhNmzbJ2dmZOQuQppUtW1anTp3S8OHD9eKLL2rbtm0KDAxU3759NXToUJ0+fdoaOO4fKWQeAqQnyTnOE29/dz/C9sNxDTf+U+L1HDt27ND27dsVExOjsmXLql69erpx44ZeeeUV3b59W0OGDFGjRo0IC3gm3T+yd7/r16+rYcOGunbtmpYvX64iRYrYXCP13nvvafTo0fzcIF27//hftWqV+vTpoylTpujq1auaPn264uPj1bdvX73yyis6e/asZsyYIWdnZ+XKlUsdOnSQs7MzoyNIF27duqX9+/fr448/1rFjx5Q3b161bNlSc+fOVZMmTTRgwAB+nyPd4zi3LwI3kmXRokV6++23Va5cOfn6+mrhwoUaPXq0goODraH7zp076tOnj5o3b84PIZ4p94eNFStW6OzZs/L391fhwoVVuHBhRUZGqm7duoqKitKyZcuShG5JTKaDp8Kvv/6q5cuXq2DBgurfv7+ke6eWDxs2TBEREXr77bfVqlWrJMtx/CM9+PcXqytWrNDmzZv11VdfKTY2Vp07d9Z3333nwAqBx8dxbn8EbjzQ/WEgNDRUdevW1QcffKAePXrozJkzCggIUP/+/TV27Fg5OzsrKipK1atXV7Zs2bRkyRLr9arAs2Tw4MH6+uuvVbBgQZ0+fVqlSpXSG2+8oU6dOikyMlL16tXTzZs3tWDBApUoUcLR5QJ2FR4erkaNGiksLEzdu3fX559/bn0tMXTfunVLbdu21RtvvOHASoHH8+9AsnfvXq1du1bvvvsuZ2ngqcFxbj9cVAIbK1askCTrJB+SdPnyZRUtWlQ9evRQWFiYqlatqm7dumncuHFydnbWkSNH5OPjo99//13Tp08nbOOZcf/1pjt37tT69eu1du1a7d+/X+vWrVORIkU0efJkzZ8/X76+vlq9erViYmI0evRoB1YN2Me/v6/39/fX1KlTVa5cOW3ZskXr1q2zvla6dGmNHDlSMTEx2rdv3xOuFEiefx/TDxuTuj+EGIahcuXK6b333rPO0gykZRznTx6BG1YnT55U06ZN1b59e0n/94N2+/ZtXbp0STt27FDNmjXVsGFD6/0mf//9d40YMUKnTp2St7e3ChQo4LD6gSclNDRU0v9NbvbJJ59o6tSpKlasmCpXrixJqlChgvr27auAgAAtXbpUd+7cUaZMmbR37159//33DqsdsIeEhATrWVAXLlxQdHS04uPj9dJLL2nUqFFyd3fX1KlTtXHjRusypUqV0syZMzVx4kQHVQ08WGLgSDym//77b5vnj/LvPoz8Ia3iOHccAjesAgICtHz5cq1Zs0YdO3a0thcuXFjZsmXTyy+/rJdeeknffPONNWgsW7ZMkZGRypgxo6PKBp6ofv36qVOnTtqyZYu17caNG5o5c6a2bdums2fPWttLlCihFi1aaNGiRTpz5owkKWPGjMzGjHQv8QvZESNGqE6dOqpdu7beffdd3b59WzVr1tSIESN04cIFffXVV9q0aZN1uUKFCsnJySnJvboBR7r/rL6xY8fqgw8+SNZy948McoUm0jqOc8chcMPKyclJDRo00OzZs7VkyRJ16NBB0r3AXb9+fbm7uytPnjwKDQ3V4cOHNWjQIH333XcaN26cMmfO7ODqgSejW7duio2N1SeffKKQkBBJ0qhRozRp0iSFh4dr1qxZunr1qrV/oUKFVLhw4SSnXzFBFNKj+4PyDz/8oC+//FL9+/fX888/r+3bt6tp06aKjo5WnTp1NGLECF2+fFnDhw/Xnj17bNbDbZKQFgwZMsR6xl7iMXnt2jUVK1ZMkh75xdD9c92sWLHC5oslIC3hOHc8/seDpP/7xioqKkqNGjXSvHnztHz5crVr107SvXuqdunSRZs2bVKZMmX0v//9T2vWrNHGjRtVsmRJR5YOPDHx8fEqXry4Fi5cqNOnT2vcuHHWU2Z79eqlUaNGadiwYRo7dqw2b96sQ4cOadiwYcqYMaMKFy7s4OqBx3P/BDorV67UuXPn9MUXX+iNN97QF198oYEDB+r69et65ZVXrKF70KBBKl68uMqWLevY4oF/+eeff3TgwAHNnz9fM2fOtLaHh4dbvyB92BdD94eQqVOnqmnTppxiizSJ4zyNMPBMS0hIsP57/fr1Rv369Y07d+4YcXFxxsqVKw1fX1/j9ddft/Y5deqUERISYhw5csS4dOmSI0oGHOru3buGYRjG0aNHjZIlSxoNGjQwNmzYYH19zJgxhsViMSwWi9GxY0ejefPmRlxcnGEYhhEfH++QmoHH0aBBA2P//v3W5zt37jQCAwMNHx8fY8mSJdb2uLg4Y9GiRUbFihWNl19+2bh586bNejj+kdaEhoYaHTt2NKpWrWpMnz7dMAzDaNq0qTFixAjDMB58zN65c8f676lTpxp+fn7Gzz///GQKBlKB49zxGOF+Rn3++edatmyZzfUcO3bskLe3t1xcXOTq6qqGDRtq7ty5+uWXX6wj3fnz51dQUJCKFCmibNmyOXIXgCfm/tOtEk8FDwwMtF6b/emnn1pHuoODgzV58mRJUvny5TVjxgy5uroqPj6e02iR7pw6dUqlS5dW0aJFrW2FChXSO++8o8yZM2v69OnWdldXVzVp0kTBwcE6cuSIhgwZIun/zqDi+Edakfg7vVixYho8eLAKFSqk6dOna+7cufL391eOHDl08uRJnTp1ShcvXtSFCxe0fft2Sf83WdQ333yjQYMGafr06WrRooXD9gV4GI7zNMTRiR9P3vXr1422bdsaXl5expo1a6ztvXv3Ntq1a2fTNz4+3li5cqWRNWtWo1mzZk+6VMDh7v/m9/Dhw8b27duNqKgo4/bt24ZhGMaRI0eMkiVLGvXr17cZ6f7oo48Mi8ViTJw40bh+/fqTLhuwu88++8zYtGmTYRiGERUVZXz99ddGqVKljE6dOtn0i4uLM0JCQqxngwBpyf2/0y9evGgYxr0zlv73v/8ZlSpVMiwWi+Hj42M899xzRo4cOYzs2bMb2bNnN1555RXrWYFff/214evry4gf0iyO87SFwP2MOn78uNGtWzfDz8/PWLFihWEYhtGvXz+ja9euhmEY1jBhGPdOK1m8eLGRP39+4+zZsw6pF3CE+y+5eP/9943AwEAjS5YsRpkyZYwJEyYYFy5cMAzjXhAvVaqU0ahRI2PVqlXWZcaNG2dYLBbj66+/tlkXkN5cuXLFaNSokeHn52ds3brVMAzDiIiIML788kujbNmyRufOnR+4HKEbacn9IWTkyJFG8+bNjd27dxuGYRiHDh0y/ve//xmVK1c2evfubURGRhoXL1409u/fbxw7dsx6LP/999+Gv7+/sXDhQofsA/BfOM7THgL3M+b+H8Jt27YZgwcPNvz8/IzffvvNmDRpkjFw4EAjJibGiIiIsPY7ffq0YRhGkuvxgGfFRx99ZOTKlctYvXq1YRiG8corrxgFChQw3n//feP8+fOGYdwb6c6ePbvRv39/m5AxYcIEIzQ01CF1A6n1oC+IDhw4YLRv397ImjWr8fvvvxuG8X+hu3z58kbTpk2fcJVA6gQHBxs5cuQwfvjhB+Off/6xtoeGhhodOnQwKleubMyePTvJcom/2xN/7wNpGcd52mExDG6o9qww7rvh/fr16zVw4ED169dP27Zt0/z58+Xm5iYfHx8lJCQoJiZG3t7eiouLU4YMGbR161ZlypTJwXsAPHmhoaF66623NGjQIDVp0kTr1q1TixYtVKlSJR07dkwdO3bU22+/rZw5c+r06dPKkyePnJ2ddffuXWbzRLp0/2zkxr0v5q3PDx48qDFjxmjdunVaunSpqlWrpsjISE2dOlVHjhzRd999x7XaSNN2796t1q1ba9q0aapdu7a1PfG4P3LkiD755BNt3bpVn3/+uRo3bmztY9w3azOQlnGcpy38NfiMuD9sz58/X6+//rokycvLS6NGjZKHh4emT5+u1157Tb1791Z4eLju3Lkji8WiwMBAwjaeWblz51bv3r1Vq1Yt/fbbb/rf//6n8ePH680331S9evU0Z84cXb9+XcOGDVP+/Pkl3bt9GGEb6dH9YXvq1KnasmWLLBaLXnjhBfXp00clS5bU+++/L8Mw1Lx5cy1ZskRVq1bVO++8owwZMlgn4iR0I626evWqDMNQmTJlrG2JXyrduXNHRYsW1bvvvqtChQqpQYMGNssSQpBecJynLfxF+AyxWCz6+eef9frrr2vx4sVasGCBDh06pBYtWqhbt266c+eOZs+erZYtW9p8GwY8y/z8/FS/fn15eXlp9uzZat68ubp06SJJ8vf315kzZ5SQkKAsWbJYl0mcyRxIbxKD8nvvvafvv/9eLVu2VMaMGTV48GBdvnxZo0aNUokSJfTBBx/I2dlZL774ovbv369SpUpJks1oOJAWubu769y5cwoPD1fWrFmtZ3FYLBZt2LBBfn5+qly5skqUKCHp3heo/E5HesNxnrbwv+IzwmKxaMmSJWrdurW+++47NWvWTDdv3tS5c+ckSSVKlFD//v3Vpk0bBQUF6ddff3VwxUDakTFjRknStWvXdOvWLd29e1eSFBkZqc8++0xffvmlLBaLuEIHT4N58+bp559/1qJFizRp0iRVqFBB8fHxGjNmjHr06CHp3v8Z7777roYOHarixYtbl2VkBGnF/bdzvF+BAgVUuXJlff755/rrr79ksViso37jxo3TihUrbPoTQpCWcZynD1zD/QxZvXq1rl+/bj2dvHfv3oqIiNCcOXOsfVauXKndu3erbdu2KlKkiKNKBdKkgQMHau3atSpcuLDOnz+vyMhIHThwQM7OzpxGi6dCfHy8vvnmG8XExKh///765Zdf1L59e40aNUqenp7q2rWrgoODNXr0aJvlmLMAacn9v49Xr16tmzdvKjY2Vu3bt5ckzZo1S99++608PT3Vrl07OTs76/vvv9elS5e0e/dujmWkCxzn6QeB+xmUeErJmDFjtHz5cm3dulXOzs4aOXKkVq1apZUrVypr1qyOLhNIM+6fQGTIkCG6ePGinJycNGXKFLm4uHAqFtKtB02OExUVpcuXL8vb21v16tVTu3btNHDgQB08eFBBQUG6fv26xowZo/fee89BVQMPd/8xHRwcrHnz5ilTpky6fPmySpUqpe+//15Zs2bVsmXLtGzZMi1cuFAlS5ZUrly5tGDBArm6uvI7HWkex3n6QuB+BiX+kH711VeaPHmyjhw5ohEjRmjUqFH6888/9fzzzzu6RCDN+X/t3XlUlfXa//H3BgFBxBFFUcnZsALHTEnK8nA0cSiHiiOKw2NGKpSAuBRBM4e0NDgmijgcOQ44HJWjOGDmrGSgOaSYYzlg5aygyH7+aHH/IPM59Tshe+PntRZrbe5pfbde7H1f3+G6H/XFpJE9sVaFR0eys7OpUqVKkRjft28f/fr1Y+PGjXh4ePDdd9/x0Ucf0bdvX1588UXdqIlFmzZtGtOnT2fdunW0bNmSuXPnMmTIEHx9fVm6dCnVq1cHfol9JycnypUrh8lk0me6WBXFuXXQ/Mcn2DPPPEPlypV57733mDRpEnv37lWyLU+MR/U1Pmp7QXLx6/VS+sISa1WQbEdHR9OtWzdatWrF4sWLuXz5MvBL7YITJ06QlJTEsWPHGDZsGFeuXMHX19d49J2IpXjw4IHx+vLlyxw+fJjY2FhatmzJmjVrCAsLY/z48Zw9e5aAgADOnz8PQLVq1XB2djbqcOgzXSyZ4tw6aYT7CbZv3z5eeOEFbG1t2b9/P82aNSvpJok8FoVH9o4ePYqNjQ329vbUq1fvof2FFZ7CdeLECWrUqGEUVBOxRgsXLiQyMpKYmBjWr19PVlYWr732GsHBwdSpU4dp06YRGRnJU089RcWKFdm9ezd2dnZ6TqtYrBMnTtCoUSNWr16Nj48PZ8+epVevXowcOZLg4GBmzpxJaGgoXl5ebNq0CVdX15Jussgfpji3LhrhfoJ5e3szfvx4Dh8+rGRbnhiFH1sUFRXF22+/zUsvvURQUBCxsbHALyN/vx7JLpxgxMbG0qdPH65evfp4Gy/yX/p1XOfm5hIVFcXgwYNZvXo1AQEBbN68mdjYWC5fvszIkSM5duwYixcvZt++fdjZ2ZGXl6dkWyzG6tWrGTduHAAhISFERESQl5dHjx49cHV1ZceOHXh6ehoFY8uXL8/AgQNp2rQplStXLsmmi/xuinPrpvkETzAHBwciIyO1Dk+eKAWJQkxMDLNnz+af//wn7u7uTJkyhREjRnD79m1GjRplJN02NjZFku34+HiioqL4/PPPqVOnTkm+FZE/pHBnU1JSEpcvXyYjIwM/Pz/jmMjISACSk5MxmUwMHTqUBg0a0KBBA+CXhF1TEcVS5ObmcvLkSSZPnsyXX37JgQMH2LNnT5EYPXHiBGfPnqVChQrcvHmTNWvW8NJLLxEaGgro+cNi+RTnpYBZROQJkJ+fb7z+6quvzK1btzZv27bNbDabzampqeby5cube/ToYS5Xrpx56tSpxrH37983Xs+ePdvs4uJiXrly5eNruMif4MGDB8brsLAws4uLi/mZZ54x29ramtu0aWM+ffp0keMnT55sdnd3N8fGxj7mlor8MTk5Oea2bduaTSaTOTg42Niel5dnNpvN5mPHjpmrVKli9vDwMDdq1Mj8zDPPFPlcF7EGinPrpm5qESn1Cq/J/vbbb3nuuefo3r07rVq1YuvWrfTv359p06bRu3dvevbsSUREhPHoo4Ie5Pj4eMLDw0lMTOT1118vybcj8ocVxP+JEyf48ccf2bp1K97e3iQkJLBo0SLGjBnDxIkT8fDwACAiIoKaNWsa0xNFLEnhz/T79+/ToUMHWrduzcKFC3F1dWXcuHHY2tpy7949mjRpwt69e1m2bBlOTk4MGzZMj3MUq6A4Lz1UNE1ESjXzr55VuXfvXtasWUPZsmWxt7dn4MCBODs78/HHH2Nvb09wcDCHDh2iQoUKrFu3DpPJRHJyMoGBgSQlJSnZFqu1bNkyRo8eTY0aNVi3bh2VKlUCfulMWrx4MR4eHnz00UcPLZXQDZtYksJJSHJyMu7u7jRv3pz8/HxmzZrFhx9+SGhoqLHeFX4pjunp6Wn8rpgWS6c4L11UNE1ESrWCZHv//v3s3LmTyZMn4+Ligr29Pbm5uWRmZpKbm4u9vT137twhOzub4OBgUlJSjHO9vb1Zt26dkm2xavn5+dSuXZujR49y9+5dY/uQIUPo27cv33//Pe+8847xWLACumETS2EuVIdg1KhRDB8+nOPHj3P37l2cnJwICgpizJgxzJgxgzFjxnD79m06d+7Mxx9/XOQ6immxZIrz0kcj3CJS6s2aNYvdu3dz7949lixZgq2trdF7PGXKFGJjY+nYsSNZWVncuXOH9PR0bG1tMZvNRb74RKxdSkoK0dHRODo6kpSUVGQ0+9NPPyUrK4u4uDjFvFi0KVOm8Mknn5CSkoK3tzd2dnbGvtzcXObMmUNYWBi1a9fG0dGRAwcOFDlGxBoozksPJdwiUupNnTqV0aNHU7t2bTZv3mxUXAb47rvvWLFiBVu3bsXd3Z34+Hjs7Ow0FUtKlcJLK/71r38RGxtLfn4+ixYtonbt2g8d96hn0YuUtNzcXPr06cMLL7xAREQE586d4+jRo8THx/P0008TEBBA06ZNycrK4siRI/j7+2Nra0teXp4q7IvVUJyXLkq4RaRUSUtL4+WXX8bGxoaYmBjc3NwYMmQIs2bNYuzYsQwaNIhhw4ZRq1atR15DX1hSGhVOulevXk1cXBwmk4mEhASeeuqp3zxOxJKYzWZu3bpFx44defbZZ2nXrh2rV6/m1q1bAOTk5ODp6UlcXBwODg7GeepAFWuiOC991H0tIqXGxYsXee+992jTpg3Dhw9n0qRJtGnTBoB3332XUaNGkZSUxLx587hw4YJxXn5+vvHabDYr2ZZSyWQyUdDH3qNHD4YPH052djbTp09/6DiRkmY2m4t8NhcoX748ISEhbNu2jVGjRtGsWTNiYmJIS0vjhRde4Pr160WSENBaVrFcivMng+4qRaTUqF69OgsXLsTPz4/Dhw+zc+dOvLy8uHv3Lo6OjoSFhWE2m401qv3796d27dpFps4q2ZDSrCDpNplMdOvWjUqVKuHj41PSzRIp4vr161SoUMH4PI6LiyMrK4sHDx4wbtw43nzzTXx8fDCZTLi7uxvnHTlyhLp165ZUs0X+EMX5k0Mj3CJi9Qp6h21sbChTpgyVK1emZs2ahIaGkpOTg6OjIzk5OQCEh4czbNgwoqOj2bx5c0k2W+RP8aiVYY/aXniku3379lqrLRYlMjKS2rVrk52dbfweHR3NmTNn2LJlC02bNiUjI4NatWrh7u7O9evX2bhxI/7+/pw/f57PPvsMeHT8i1gCxfmTRd+yImLVChd3Onz4MG5ubhw4cIBFixZx8+ZNOnToQG5uLmXLljW+mMLCwkhOTqZfv34l2XSR/1p+fr4xOnL06FG+/fZbTp06BWAUP/tPTpw4wc2bN4u1nSK/V2BgIM8++ywvvvgi58+fNxKNNWvWsH37dtq2bYufnx9ff/01AKdOnWLy5MmYTCYyMjIoU6YMDx480GwlsWiK8yeLiqaJiNUqnGyPHTuWDRs2MHHiRDp27Eh+fj7btm1j5MiRODs7s2XLFsqWLcuAAQPw9fU1km0VGRFrVbi4WVRUFGvXruXSpUs0btyYnj17MmzYMICHKo4XPi82NpbExETWrFlT5BFhIiXp5MmTBAQEcO7cOerUqcPixYtp2LAhANeuXSMoKIjdu3ezYcMGmjdvTlZWFvXr18fGxkZFL8VqKM6fHBrhFhGrVZBEjBkzhoSEBGJiYmjVqpUxtbxDhw7MnDmTGzduULduXXx9fUlLSyMgIMC4hpJtsVYFSXNMTAyzZ89m2rRpfPHFF9StW5cRI0YwefJk4Je/k4KR7sLJdnx8PFFRUURERCjZlhJXeDZGgwYNSEpKomXLlmRkZJCbm2scU7FiRebPn4+Pjw8tW7bk+PHjNGzY0IhzJSFiyRTnTyb9b4mIVTty5AjLly9nwYIF+Pn5cePGDbKystixYwdNmjTB19eXNWvWkJiYSH5+PmlpacZULCXbYo0KJ80HDhxg/fr1JCcn4+vry8aNG1m1ahXdu3fnww8/xNbWlrCwsIdGROLj4wkPD2f+/Pm8/vrrJfl2RIrMwtizZw/u7u40aNCA6dOnc/XqVbp3787u3bupVq0aZrOZihUrMnfuXBo1akSDBg2M66gegVgyxfmTS1PKRcSqHTx4kD59+pCYmEheXh7Lly9n27ZtXL16FVdXVyZMmIC/v3+Rc5Rsi7UqfMP27bffUr9+faZNm8aIESPYu3cvAQEBxMTE0Lt3b3r27MnWrVsZNWoUH330kXGNgmQ7MTGRN954o6TeighQNKZHjx5NSkoK48aNo1OnTjg5OZGVlUVgYCBXrlxh165dVK9e/aFlEppeK5ZOcf5kUxeJiFiN3yoA1bhxY2xsbBg0aBCvvvoqAJMmTWLPnj3k5eVx6dKlh85Rsi3WyGw2GzdfkZGRDB06lLt37/LBBx/g5OREUlISvXv3pn///lSsWJHGjRvTrl07Dh06ZBQMTE5OJiQkhPnz5yvZFotQENPjxo0jMTGR6dOn4+fnh5OTEwANGzZk6dKlVKlShfbt23PhwoWHRviUhIilU5w/2fQ/JyJWoXBPb3p6ulGduXXr1mRkZJCSkoKrqys+Pj7GcS4uLr+rSrOINSiYRr5//3527tzJtGnTcHFxASA3N5fMzExatWqFvb09d+7cITs7m+DgYN58803jGt7e3qxbt87onBKxBKdOnWLlypXEx8fTsWNHfvzxR06ePMmmTZt46qmn6N27NytWrODll18mNDSUZcuWlXSTRf4wxfmTSwm3iFi8wiN7ERERLFmyBJPJxOXLl3nrrbcYO3asMVp3+/Ztrl27xuDBg8nJyWHQoEEl2XSRP9WsWbPYvXs3NWrUoGXLlsAvnVEODg707t2b2NhYgoKCyMrK4s6dO/Tq1Qv45W/IbDbTsGFDowquiKUoU6YM9vb2XL9+nS1btrBkyRK+/vprcnNzuXPnDlevXmXIkCFs27aNGjVqlHRzRf6/KM6fXJpSLiIWr2BkLy4ujsTERJYuXcqmTZtISUkhNTWViIgIzp49C0BCQgLdunXj1q1b7Nu3D1tbWx48eFCSzRf509y6dYulS5eSnp7O6dOngf83VbHgUWAXLlygUaNGReLfZDKp0I5YhN+adeTm5oabmxszZszAz88PFxcXJk+ezO7du2nYsCE///wzALVq1dJnulgFxbkUphFuEbEa6enpvPHGG7Rt2xaz2Uzjxo3ZsGED7du35+mnn2b8+PH069cPFxcXAgMDsbW1VZERsVppaWm8/PLL2NjYEBMTg5ubG+Hh4Tg7OzN27Fjmzp3LsGHDqFWrFgD169cnIiKCiIgI4xqKf7EkhZcGHTlyBHt7e8xmM40aNWLVqlXs27cPZ2dnWrRoYZxz9+7dh+puqA6HWDLFufyaqpSLiEUq/OgjgPv379OpUydq1arFggULyM/PJy8vD3t7ez755BNmz57Nnj17qFKlinGOqpGLtbp48SIdOnSgfPnytGnThjlz5rBv3z68vLwA+Pjjj5k5cyaDBw9m8ODB1KxZEyh6o/frvyGRklQ4HqOjo1mxYgV37tzB3t6eyMhI+vXrZxx769YtowbBxYsX+eqrr9RxJFZBcS6/RfPLRMTiFBREg1+KjGRnZ2NnZ0dgYCArVqwgLS0NGxsb7OzsAHBwcKBq1aqUL1++yHWUbIu1ql69OgsXLiQrK4uEhAR27tyJl5cXd+/eBSAsLIzhw4czb9485s2bx/nz54Giz2dVsi2WpHASMmvWLD799FM2btxIy5YtCQoKIj4+3jh20aJFBAYGcu/ePdLT0ylTpoym14pVUJzLb1HCLSIWp/CzKrt27Yqnp6cxlXbAgAEEBweTmppKfn4+169fJyUlBXd3dyMBF7FWBev+bGxsKFOmDJUrV6ZmzZqEhoaSk5ODo6MjOTk5AISHhzNs2DCio6PZvHlzSTZb5Hc5cOAAX375JUuXLqVjx46cOHGCf//737z22msMHTqUuXPnAjBw4EDef/99Nm3ahJ2dHXl5eepAFauhOJdf05RyEbEYhafDJicnExoaSlxcHIcOHSI1NZU6derQpk0bfvjhBz799FPq1auHra0tDg4OpKenY2dnp2m0YrUKx//hw4epXLkyTk5OHD16lHfffRcnJye++OILHBwcisT5qlWr6Natm27UxOL8+vP4+++/JykpiZCQEHbt2sXf/vY3oqKi6Nu3Lz169GDLli1MmTKFsLAw4xwtDRJLpziX/0QJt4hYnO3bt7Ny5Uq8vLwYMGAAAGvXriU2NpZKlSoxePBgqlWrZhQe6dOnjwqkiVUrnGyPHTuWDRs2MHHiRDp27Eh+fj7btm1j5MiRODs7s2XLFsqWLcuAAQPw9fU11gTqhk0sSeF4/O6773B2dqZ69epGrPfv3x8nJydmzpyJnZ0d77zzDgcOHKBs2bJs375dHadiFRTn8ntoSrmIWJRLly4xYMAAFixYwI0bN4ztXbt2Zfjw4fz000/MmjWL3Nxc/ud//oe3337beHyGkm2xVgXJ9pgxY0hISCAmJoZWrVoZU8s7dOjAzJkzuXHjBnXr1sXX15e0tDQCAgKMayjZFkvw+eefk5mZacRjZGQk3bp1o2nTpoSHh3PgwAEADh48SLly5bCzs+Pu3btcuXKF6OhoduzYgclkQuNBYskU5/JHaIRbRCzOoUOH6NWrFx4eHkyfPp1nn33W2Ld+/XoiIiLo0qULkyZNKsFWivy5jhw5Qo8ePYiNjcXPz48bN25w+fJlduzYQZMmTWjbti2nT58mMTGR/Px8YmJijCI7SrbFEpw+fZr27dvTqVMnwsPDjeUQBUuD1q9fT82aNRkzZgw7d+5k5MiRBAUFkZmZyf3790lPT8fW1lZLg8SiKc7lj1LCLSIW6eDBgwQFBdGyZUtGjBhB06ZNjX27d+/m+eefV5IhpcrBgwfp06cPiYmJ5OXlsXz5crZt28bVq1dxdXVlwoQJ+Pv7FzlHybZYmszMTAYNGsSLL76IjY0Nnp6eDBw4EICUlBSmT59OpUqVePPNN/nxxx9Zu3Yt7u7uzJ49Gzs7O8W0WAXFufwRmlIuIhbJy8uLefPmceDAAWbOnMnRo0eNfW3btjWmkYtYo4Jq5IU1btwYGxsbBg0axKuvvgrApEmT2LNnD3l5eVy6dOmhc3TDJpbG29ubOXPmsHPnTubPn8/NmzeNfV26dOH999/nxo0bLF++HC8vL1JTU5k3b56qNItVUZzLH6GEW0QsVrNmzUhISCAzM5Nx48Zx+vTpIvv1hSXWqHCBtPT0dPbt28f+/fspW7YsGRkZTJgwgS1btvDZZ5/h7+9PnTp1cHFx+c0kXcQSNW/enMTERCpVqsT69ev55ptvjH3+/v6EhoZy/Phx1q1bZ2w3m82qwyFWRXEuv5emlIuIxdu/fz+zZ88mISHBSFRErFHhNXsREREsWbIEk8nE5cuXeeuttxg7diz16tUD4Pbt21y7do3Bgwdz6dIlY92fiLXQ0iB5EijO5T9Rwi0iVqEgUSk8OihireLi4oiJiWHNmjVUqVKF8+fP07dvX3x8fJg2bRoeHh7MnDmTf/zjHzg5OZGWlqZ1f2KVMjIyGDRoEC1atCAkJARPT88i+xXTUhoozuX/ooRbRKyGKnpKadGvXz8cHR2ZPXu2EdeZmZm0b9+ekJAQxo8fz7Vr11i9ejWBgYF6zrxYtYyMDIYMGYKHhwdTp06lbt26Jd0kkT+d4lweRcNEImI1lGyLNfp1v/b9+/f54YcfyMnJMfbfu3cPb29voqOjWbp0KT/99BMVK1YkKChIz5kXq9esWTPi4uIoX748Hh4eJd0ckWKhOJdHUcItIiJSTPLz842OolOnTpGdnY2dnR2BgYGsWLGCtLQ0bGxssLOzA8DBwYGqVatSvnz5ItfRVESxdq1bt2bevHnY2NioAKCUWopz+S1KuEVERIpJQb2B0aNH07VrVzw9PQkPD8fZ2ZkBAwYQHBxMamoq+fn5XL9+nZSUFNzd3Y0EXKQ0MZlMmM1m1eGQUk1xLr+m+WkiIiJ/ssLF/ZKTk1m0aBFxcXEcOnSI1NRUzp07R5s2bfD396dLly7Uq1cPW1tbHBwcSE9PN27YtIxCShvFtDwJFOdSmIqmiYiIFJPt27ezcuVKvLy8GDBgAABr164lNjaWSpUqMXjwYKpVq8a+fftwdnamT58+KpAmIiJSiijhFhERKQaXLl3Cx8eHK1euEBMTQ0hIiLFv3bp1zJgxAxcXFyIjI2ndurWxT4+PERERKT20uEBERKQYuLm5sWrVKtzc3Fi/fj3ffPONsc/f358PPviAkydPsnr16iLnKdkWEREpPTTCLSIiUowOHjxIUFAQLVu2ZMSIETRt2tTYt3v3bp5//nkl2SIiIqWUEm4REZFilpGRwaBBg2jRogUhISF4enoW2a9p5CIiIqWTEm4REZHHICMjgyFDhuDh4cHUqVOpW7duSTdJREREipnWcIuIiDwGzZo1Iy4ujvLly+Ph4VHSzREREZHHQCPcIiIij1HB87ULP6tbRERESicl3CIiIo9ZQdItIiIipZu61kVERB4zJdsiIiJPBiXcIiIiIiIiIsVACbeIiIiIiIhIMVDCLSIiIiIiIlIMlHCLiIiIiIiIFAMl3CIiIiIiIiLFQAm3iIhIKXXmzBlMJhOZmZkl3RQREZEnkhJuERERC2Yymf7Pn+jo6JJuooiIiDxCmZJugIiIiDzaxYsXjdfLli0jKiqK48ePG9ucnZ1LolkiIiLyO2iEW0RExIK5ubkZPxUqVMBkMhm/V6tWjU8++YRatWrh4OCAt7c3qampj7zWgwcPGDBgAE2aNOHcuXMArFmzhubNm1O2bFnq1atHTEwMeXl5xjkmk4mEhAR69OiBk5MTDRs2ZO3atcb+q1evEhAQgKurK46OjjRs2JD58+cX3z+IiIiIFVHCLSIiYqVmzpzJ9OnTmTZtGocOHcLPz4+uXbuSlZX10LG5ubn06tWLzMxMduzYQZ06ddixYweBgYGMGDGCo0ePEh8fz4IFC5g4cWKRc2NiYujduzeHDh2ic+fOBAQE8PPPPwMwduxYjh49yoYNGzh27Biff/45VatWfSzvX0RExNKZzGazuaQbISIiIv/ZggULCAkJ4dq1awC4u7sTHBzM6NGjjWNat25Nq1at+Pvf/86ZM2eoW7cuO3bsIDo6mtzcXFJSUqhQoQIAr776Kq+88gqRkZHG+YsXLyY8PJwLFy4Av4xwjxkzhgkTJgBw+/ZtnJ2d2bBhA3/961/p2rUrVatWJTEx8TH9K4iIiFgPreEWERGxQjdu3ODChQu0a9euyPZ27dpx8ODBItveeustatWqxdatW3F0dDS2Hzx4kF27dhUZ0X7w4AE5OTncuXMHJycnAJ577jljf7ly5XBxcSE7OxuAoUOH8sYbb/D111/zl7/8he7du9O2bds//f2KiIhYI00pFxERKeU6d+7MoUOH2LNnT5Htt27dIiYmhszMTOPnm2++ISsri7JlyxrH2dnZFTnPZDKRn58PQKdOnTh79iyhoaFcuHCBV155hZEjRxb/mxIREbECSrhFRESskIuLCzVr1mTXrl1Ftu/atQtPT88i24YOHcrkyZPp2rUrX375pbG9efPmHD9+nAYNGjz0Y2Pz+28RXF1d6devH4sXL2bGjBnMmTPnv3tzIiIipYSmlIuIiFipsLAwxo0bR/369fH29mb+/PlkZmaSlJT00LHDhg3jwYMHdOnShQ0bNuDj40NUVBRdunShTp069OzZExsbGw4ePMjhw4f58MMPf1cboqKiaNGiBU2bNjXWiD/99NN/9lsVERGxSkq4RURErNTw4cO5fv06H3zwAdnZ2Xh6erJ27VoaNmz4m8eHhISQn59P586dSU1Nxc/Pj5SUFMaPH8+UKVOws7OjSZMmDBo06He3wd7ensjISM6cOYOjoyMvvvgiS5cu/bPeooiIiFVTlXIRERERERGRYqA13CIiIiIiIiLFQAm3iIiIiIiISDFQwi0iIiIiIiJSDJRwi4iIiIiIiBQDJdwiIiIiIiIixUAJt4iIiIiIiEgxUMItIiIiIiIiUgyUcIuIiIiIiIgUAyXcIiIiIiIiIsVACbeIiIiIiIhIMVDCLSIiIiIiIlIM/hc7cuL3Aimg1gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAMGCAYAAACOL8UoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeIklEQVR4nOzdeZiN9f/H8deZYRZmsRvDYGQnSyhLGUT2yN7yGxRFdipRyRJTIaQila2IZE2yGwplHdlLzRgxY4mZwZjBzP37wzXn6zSDczgz52aej+s61+V87s/9ud/3OffgNZ97sRiGYQgAAAAAALicm6sLAAAAAAAANxDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQD3LDw8XBaLReHh4S7ZfoMGDdSgQQPr+6ioKFksFs2ePdsl9ThDt27dVLJkSVeXkWVGjhwpi8Wic+fOubqULPXfYxe20o4LAMhOCOkAcJ+yWCx2vewJzuPGjdOyZcsyveY0f/31l1555RWVKlVKXl5e8vPzU7169TRlyhRduXIly+rIyLZt2zRy5EjFxcW5tI77QVqAutOLEHrvSpYsafOZFipUSE888YSWLl3q1O1w/AOA6+VwdQEAgLvz9ddf27yfO3eu1q1bl669QoUKdxxr3Lhx6tChg9q2bevMEjP0448/qmPHjvL09FRoaKgqV66sq1ev6pdfftHrr7+ugwcPasaMGZlex61s27ZNo0aNUrdu3ZQnTx6X1XE/aNeunUqXLm19f+nSJfXu3VvPPPOM2rVrZ20vXLiwK8p74FSrVk1DhgyRJJ06dUqff/652rVrp2nTpqlXr15O2QbHPwC4HiEdAO5TL7zwgs37X3/9VevWrUvXbiaRkZHq0qWLSpQooY0bN6pIkSLWZX369NGxY8f0448/urDCzJOYmKhcuXK5uoy7cv36daWmpsrDw8OmvUqVKqpSpYr1/blz59S7d29VqVLF1Mfh/apo0aI2n2toaKhKly6tSZMm3TKk3+q7AwCYF6e7A8AD7PLlyxoyZIiCgoLk6empcuXKacKECTIMw9rHYrHo8uXLmjNnjvVU2m7dukmSjh8/rldffVXlypWTt7e38ufPr44dOyoqKuqu6vnwww916dIlffXVVzYBPU3p0qU1YMAA6/vr169rzJgxeuihh+Tp6amSJUtq+PDhSk5Odnjbv//+u7p162Y9xT4gIEAvvvii/v33X2ufkSNH6vXXX5ckBQcHWz+Pm/f3m2++UY0aNeTt7a18+fKpS5cuOnHihM22GjRooMqVK2v37t2qX7++cuXKpeHDh0uSli9frpYtWyowMFCenp566KGHNGbMGKWkpDi8T9KN06BbtWqltWvXqlq1avLy8lLFihW1ZMmSdH3j4uI0cOBA6/FQunRpffDBB0pNTbX2Sbuef8KECZo8ebL1sz906NBd1SdJGzdu1BNPPKHcuXMrT548atOmjQ4fPnzH9Y4fP67SpUurcuXKOn369F3tw4wZM6z7UKtWLe3cufOO2z1//rxee+01Pfzww/Lx8ZGfn5+aN2+uffv22fRLuxfDd999p7Fjx6pYsWLy8vLSk08+qWPHjqUbN60Wb29vPfroo/r555/vWMvtBAQEqEKFCoqMjEy33xl9d3f6Hu50/Dvy8/jTTz8pJCREvr6+8vPzU61atTR//nybPosWLbL+LBUoUEAvvPCCTp48eU+fCQA8CJhJB4AHlGEYevrpp7Vp0ya99NJLqlatmtasWaPXX39dJ0+e1KRJkyTdOG2+R48eevTRR/Xyyy9Lkh566CFJ0s6dO7Vt2zZ16dJFxYoVU1RUlKZNm6YGDRro0KFDDs8M//DDDypVqpTq1q1rV/8ePXpozpw56tChg4YMGaLffvtNYWFhOnz4sMPX4q5bt05///23unfvroCAAOtp9QcPHtSvv/4qi8Widu3a6Y8//tC3336rSZMmqUCBApKkggULSpLGjh2rd955R506dVKPHj109uxZTZ06VfXr19fevXttTg/+999/1bx5c3Xp0kUvvPCC9ZTv2bNny8fHR4MHD5aPj482btyoESNGKCEhQePHj3don9L8+eef6ty5s3r16qWuXbtq1qxZ6tixo1avXq0mTZpIujGTHxISopMnT+qVV15R8eLFtW3bNg0bNkwxMTGaPHmyzZizZs1SUlKSXn75ZXl6eipfvnx3Vdv69evVvHlzlSpVSiNHjtSVK1c0depU1atXT3v27LnlzfH++usvNWrUSPny5dO6detUoEABh/dh/vz5unjxol555RVZLBZ9+OGHateunf7++2/lzJnzljX//fffWrZsmTp27Kjg4GCdPn1an3/+uUJCQnTo0CEFBgba9H///ffl5uam1157TfHx8frwww/1/PPP67fffrP2+eqrr/TKK6+obt26GjhwoP7++289/fTTypcvn4KCgu7qs7127ZpOnDih/Pnz27Rn9N3Z8z3c6fi39+dx9uzZevHFF1WpUiUNGzZMefLk0d69e7V69Wo999xz1j7du3dXrVq1FBYWptOnT2vKlCnaunVrup8lAMh2DADAA6FPnz7GzX+tL1u2zJBkvPfeezb9OnToYFgsFuPYsWPWtty5cxtdu3ZNN2ZiYmK6tu3btxuSjLlz51rbNm3aZEgyNm3adMv64uPjDUlGmzZt7NqfiIgIQ5LRo0cPm/bXXnvNkGRs3LjR2hYSEmKEhIRY30dGRhqSjFmzZt12X7799ltDkrFlyxZr2/jx4w1JRmRkpE3fqKgow93d3Rg7dqxN+/79+40cOXLYtIeEhBiSjOnTp6fbZkZ1vPLKK0auXLmMpKQka1vXrl2NEiVKpOv7XyVKlDAkGYsXL7a2xcfHG0WKFDGqV69ubRszZoyRO3du448//rBZ/8033zTc3d2N6OhowzD+99n5+fkZZ86cueP2b3b27FlDkvHuu+9a26pVq2YUKlTI+Pfff61t+/btM9zc3IzQ0FBr27vvvmtIMs6ePWscPnzYCAwMNGrVqmWcP3/+rvchf/78NusvX77ckGT88MMPt92PpKQkIyUlxaYtMjLS8PT0NEaPHm1tSzvuK1SoYCQnJ1vbp0yZYkgy9u/fbxiGYVy9etUoVKiQUa1aNZt+M2bMMCTZHLu3UqJECeOpp54yzp49a5w9e9bYt2+f0aVLF0OS0a9fP5v9zui7s/d7uNXxb+/PY1xcnOHr62s89thjxpUrV2z6pqam2nwelStXtumzcuVKQ5IxYsQIa1vacQEA2QmnuwPAA2rVqlVyd3dX//79bdqHDBkiwzD0008/3XEMb29v65+vXbumf//9V6VLl1aePHm0Z88eh+pJSEiQJPn6+trVf9WqVZKkwYMH27Sn3TjL0WvXb96XpKQknTt3TrVr15Yku/ZlyZIlSk1NVadOnXTu3DnrKyAgQGXKlNGmTZts+nt6eqp79+63rePixYs6d+6cnnjiCSUmJurIkSMO7VOawMBAPfPMM9b3fn5+Cg0N1d69exUbGyvpxqnFTzzxhPLmzWtTf+PGjZWSkqItW7bYjNm+fXvrDOrdiomJUUREhLp162YzE1+lShU1adLE+h3f7MCBAwoJCVHJkiW1fv165c2b17rM0X3o3LmzzfpPPPGEpBsz5bfj6ekpN7cb/0VKSUnRv//+Kx8fH5UrVy7DY6V79+4213z/dzu7du3SmTNn1KtXL5t+3bp1k7+//21rudnatWtVsGBBFSxYUFWrVtWiRYv0f//3f/rggw9s+v33u7ub7+G/7P15XLdunS5evKg333xTXl5eNn3THqWW9nm8+uqrNn1atmyp8uXLP7D3pQAAe2XrkL5lyxa1bt1agYGBslgsd/X4oTVr1qh27dry9fVVwYIF1b59+7u+VhMAnOn48eMKDAxMF4rT7vZ+/PjxO45x5coVjRgxwnr9b4ECBVSwYEHFxcUpPj7eoXr8/Pwk3Qim9tbv5uZmc/dw6cZ1uHny5LGr/pudP39eAwYMUOHCheXt7a2CBQsqODhYkuzalz///FOGYahMmTLWoJT2Onz4sM6cOWPTv2jRohnerOvgwYN65pln5O/vLz8/PxUsWNB6MzBHP9M0pUuXTvcs6bJly0qS9d+kP//8U6tXr05Xe+PGjSUpXf1pn829SPuOypUrl25ZhQoVdO7cOV2+fNmmvXXr1vL19dWaNWusx0waR/ehePHiNu/TAvuFCxduW3dqaqomTZqkMmXK2Bz3v//+e4bf0Z22k/Y5lClTxqZfzpw5VapUqdvWcrPHHntM69at0/r167Vt2zadO3dOc+fOtfnFj5T+u7ub7+G/7P15/OuvvyRJlStXvu1Yt6qnfPnyDv9sA8CDJltfk3758mVVrVpVL774os2jYuwVGRmpNm3aaPDgwZo3b57i4+M1aNAgtWvXzuEZJgAwo379+mnWrFkaOHCg6tSpI39/f1ksFnXp0sXmRl328PPzU2BgoA4cOODQev8Nn3erU6dO2rZtm15//XVVq1ZNPj4+Sk1NVbNmzezal9TUVFksFv30009yd3dPt9zHx8fm/X+Dk3TjpmchISHy8/PT6NGj9dBDD8nLy0t79uzR0KFDHf5MHZGamqomTZrojTfeyHB5WqhPk1H9WaF9+/aaM2eO5s2bp1deecVmmaP7kNH3JMnmxokZGTdunN555x29+OKLGjNmjPLlyyc3NzcNHDgww+/obrfjqAIFClh/IXE7mfndOevnEQBwa9k6pDdv3lzNmze/5fLk5GS99dZb+vbbbxUXF6fKlSvrgw8+UIMGDSRJu3fvVkpKit577z3raXGvvfaa2rRpo2vXrt32pjQAkNlKlCih9evX6+LFizaz6WmnVJcoUcLadqv/eH///ffq2rWrJk6caG1LSkpSXFzcXdXUqlUrzZgxQ9u3b1edOnXuWH9qaqr+/PNPm2e9nz59WnFxcTb138mFCxe0YcMGjRo1SiNGjLC2//nnn+n63uqzeOihh2QYhoKDg9OFQXuFh4fr33//1ZIlS1S/fn1re9rdue/WsWPHZBiGTe1//PGHJFlvzPbQQw/p0qVLdoU8Z0n7jo4ePZpu2ZEjR1SgQAHlzp3bpn38+PHKkSOHXn31Vfn6+lpvNCZl3T58//33atiwob766iub9ri4OOvN1ByR9jn8+eefatSokbX92rVrioyMVNWqVe+tYDu3b8/3cKvj396fx7SbTh44cCDdrHtG9dz8eaS1OfKzDQAPomx9uvud9O3bV9u3b9eCBQv0+++/q2PHjmrWrJn1P3U1atSQm5ubZs2apZSUFMXHx+vrr79W48aNCegAXK5FixZKSUnRJ598YtM+adIkWSwWm19S5s6dO8Pg7e7unm42cOrUqXf9uLA33nhDuXPnVo8ePayP1LrZX3/9pSlTpljrl5Tujt0fffSRpBvXr9orbabzv/vy37ElWcPKfz+Pdu3ayd3dXaNGjUo3jmEYNo9yc6SOq1ev6rPPPrvjurdz6tQpm7trJyQkaO7cuapWrZoCAgIk3TiTYPv27VqzZk269ePi4nT9+vV7qiEjRYoUUbVq1TRnzhybz/PAgQNau3at9Tu+mcVi0YwZM9ShQwd17dpVK1assC7Lqn3I6LhftGjRXT8erGbNmipYsKCmT5+uq1evWttnz55917/wcoQj38Otjn97fx6feuop+fr6KiwsTElJSTZ90z7TmjVrqlChQpo+fbrN49t++uknHT582KGfbQB4EGXrmfTbiY6O1qxZsxQdHW191Mprr72m1atXa9asWRo3bpyCg4O1du1aderUSa+88opSUlJUp04du27AAgCZrXXr1mrYsKHeeustRUVFqWrVqlq7dq2WL1+ugQMHWme8pBu/dFy/fr0++ugjBQYGKjg4WI899phatWqlr7/+Wv7+/qpYsaK2b9+u9evXp3vkk70eeughzZ8/X507d1aFChUUGhqqypUr6+rVq9q2bZsWLVpkfUZ71apV1bVrV82YMcN6mviOHTs0Z84ctW3bVg0bNrR7u35+fqpfv74+/PBDXbt2TUWLFtXatWsznMGuUaOGJOmtt95Sly5dlDNnTrVu3VoPPfSQ3nvvPQ0bNkxRUVFq27atfH19FRkZqaVLl+rll1/Wa6+9dts66tatq7x586pr167q37+/LBaLvv7663s+Lbps2bJ66aWXtHPnThUuXFgzZ87U6dOnNWvWLGuf119/XStWrFCrVq3UrVs31ahRQ5cvX9b+/fv1/fffKyoq6q5mie9k/Pjxat68uerUqaOXXnrJ+ugvf39/jRw5MsN13Nzc9M0336ht27bq1KmTVq1apUaNGmXZPrRq1UqjR49W9+7dVbduXe3fv1/z5s1z6Prxm+XMmVPvvfeeXnnlFTVq1EidO3dWZGSkZs2adddjOsre7+FWx7+9P49+fn6aNGmSevTooVq1aum5555T3rx5tW/fPiUmJmrOnDnKmTOnPvjgA3Xv3l0hISF69tlnrY9gK1mypAYNGpQlnwkAmJYrbilvRpKMpUuXWt+nPQYkd+7cNq8cOXIYnTp1MgzDMGJiYowyZcoYr7/+urFnzx5j8+bNRkhIiPHkk09aHzMCAFnlv49gMwzDuHjxojFo0CAjMDDQyJkzp1GmTBlj/Pjx6f6OOnLkiFG/fn3D29vbkGR9HNuFCxeM7t27GwUKFDB8fHyMpk2bGkeOHDFKlChh88g2ex7BdrM//vjD6Nmzp1GyZEnDw8PD8PX1NerVq2dMnTrV5jFk165dM0aNGmUEBwcbOXPmNIKCgoxhw4bZ9DEM+x7B9s8//xjPPPOMkSdPHsPf39/o2LGjcerUqXSPDDOMG4/6Klq0qOHm5pbucVSLFy82Hn/8ceu/C+XLlzf69OljHD161KaeSpUqZbjvW7duNWrXrm14e3sbgYGBxhtvvGGsWbMm3efnyCPYWrZsaaxZs8aoUqWK4enpaZQvX95YtGhRur4XL140hg0bZpQuXdrw8PAwChQoYNStW9eYMGGCcfXqVZvPbvz48Xfc9n9l9Ag2wzCM9evXG/Xq1TO8vb0NPz8/o3Xr1sahQ4ds+tz8CLY0iYmJRkhIiOHj42P8+uuvTtmHjOr7r6SkJGPIkCFGkSJFDG9vb6NevXrG9u3b0x1nacf9fz/rjI4/wzCMzz77zAgODjY8PT2NmjVrGlu2bEk35q2kfc+3c6fvzp7vwTBuffzb+/NoGIaxYsUKo27dutZtPfroo8a3335r02fhwoVG9erVDU9PTyNfvnzG888/b/zzzz82fXgEG4DsyGIYTr6ryX3KYrFo6dKlatu2rSRp4cKFev7553Xw4MF0N4Tx8fFRQECA3nnnHa1evVo7d+60Lvvnn38UFBSk7du3Wx/tAwBAZilZsqQqV66slStXuroUAADgBJzufgvVq1dXSkqKzpw5Y33e6X8lJiZabxiXJi3QZ+YdegEAAAAAD6ZsfeO4S5cuKSIiQhEREZJu3F03IiJC0dHRKlu2rJ5//nmFhoZqyZIlioyM1I4dOxQWFqYff/xR0o2bpOzcuVOjR4/Wn3/+qT179qh79+4qUaKEqlev7sI9AwAAAADcj7J1SN+1a5eqV69uDdSDBw9W9erVrY/nmTVrlkJDQzVkyBCVK1dObdu21c6dO1W8eHFJUqNGjTR//nwtW7ZM1atXV7NmzeTp6anVq1e77PmyAAAAAID7F9ekAwAAAABgEtl6Jh0AAAAAADMhpAMAAAAAYBLZ7u7uqampOnXqlHx9fWWxWFxdDgAAAADgAWcYhi5evKjAwMB0Twj7r2wX0k+dOqWgoCBXlwEAAAAAyGZOnDihYsWK3bZPtgvpvr6+km58OH5+fi6uBgAAAADwoEtISFBQUJA1j95Otgvpaae4+/n5EdIBAAAAAFnGnkuuuXEcAAAAAAAmQUgHAAAAAMAkCOkAAAAAAJhEtrsmHQAAAAAeFKmpqbp69aqry4AkDw+POz5ezR6EdAAAAAC4D129elWRkZFKTU11dSmQ5ObmpuDgYHl4eNzTOIR0AAAAALjPGIahmJgYubu7KygoyCkzuLh7qampOnXqlGJiYlS8eHG77uJ+K4R0AAAAALjPXL9+XYmJiQoMDFSuXLlcXQ4kFSxYUKdOndL169eVM2fOux6HX7cAAAAAwH0mJSVFku751Go4T9p3kfbd3C1COgAAAADcp+7ltGo4l7O+C0I6AAAAAAAmQUgHAAAAADzQRo4cqWrVqrm6DLsQ0gEAAAAA6XTr1k0Wi0UWi0UeHh4qXbq0Ro8erevXr9/TmG3btnVekQ8g7u4OAAAAAMhQs2bNNGvWLCUnJ2vVqlXq06ePcubMqWHDhtn0u3r1KjexcxJm0gEAAAAAGfL09FRAQIBKlCih3r17q3HjxlqxYoV1Rnzs2LEKDAxUuXLlJEn79+9Xo0aN5O3trfz58+vll1/WpUuXJN045XzOnDlavny5dYY+PDz8juulmTlzpipVqiRPT08VKVJEffv2tS6Ljo5WmzZt5OPjIz8/P3Xq1EmnT5/Omg/JyQjpAAAAAAC7eHt76+rVq5KkDRs26OjRo1q3bp1Wrlypy5cvq2nTpsqbN6927typRYsWaf369dYw/dprr6lTp05q1qyZYmJiFBMTo7p1695xPUmaNm2a+vTpo5dffln79+/XihUrVLp0aUlSamqq2rRpo/Pnz2vz5s1at26d/v77b3Xu3DnrPyAn4HR3AAAAAMBtGYahDRs2aM2aNerXr5/Onj2r3Llz68svv7Se5v7FF18oKSlJc+fOVe7cuSVJn3zyiVq3bq0PPvhAhQsXlre3t5KTkxUQEGAde86cOXdc77333tOQIUM0YMAA63q1atWSdOOXBfv371dkZKSCgoIkSXPnzlWlSpW0c+dOa7/7BTPpAAAAAIAMrVy5Uj4+PvLy8lLz5s3VuXNnjRw5UpL08MMP21yHfvjwYVWtWtUatCWpXr16Sk1N1dGjR2+5jTutd+bMGZ06dUpPPvnkLdcPCgqyBnRJqlixovLkyaPDhw/f7a67DDPpAAAAAIAMNWzYUNOmTZOHh4cCAwOVI8f/IuTNoTozeXt7Z8l2zIKZdAAAAABAhnLnzq3SpUurePHiNgE9IxUqVNC+fft0+fJla9vWrVvl5uZmvbGch4eHUlJSHFrP19dXJUuW1IYNG2653RMnTujEiRPWtkOHDikuLk4VK1Z0eJ9djZAOAAAAALhnzz//vLy8vNS1a1cdOHBAmzZtUr9+/fR///d/Kly4sCSpZMmS+v3333X06FGdO3dO165ds2u9kSNHauLEifr444/1559/as+ePZo6daokqXHjxnr44Yf1/PPPa8+ePdqxY4dCQ0MVEhKimjVruuzzuFuEdAAAAADAPcuVK5fWrFmj8+fPq1atWurQoYOefPJJffLJJ9Y+PXv2VLly5VSzZk0VLFhQW7dutWu9rl27avLkyfrss89UqVIltWrVSn/++ackyWKxaPny5cqbN6/q16+vxo0bq1SpUlq4cGGWfwbOYDEMw3B1EVkpISFB/v7+io+Pl5+fn6vLAQAAAACHJSUlKTIyUsHBwfLy8nJ1OdDtvxNHcigz6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABM4vYPugMAAC5Tb2o9p421td9Wp40FAAAyDzPpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgElwd3cAAAAAeEDUeH1ulm5v9/hQh/o3aNBA1apV0+TJk23aZ8+erYEDByouLk6JiYkaM2aMvvvuO508eVK+vr6qWLGiBg8erDZt2ljH2bx5syTJw8NDBQoU0COPPKLu3burXbt26ba7adMmjR8/Xr/99puuXLmikiVLqnnz5ho8eLCKFi16dzufSZhJBwAAAACYRq9evbRkyRJNnTpVR44c0erVq9WhQwf9+++/Nv169uypmJgY/fXXX1q8eLEqVqyoLl266OWXX7bp9/nnn6tx48YKCAjQ4sWLdejQIU2fPl3x8fGaOHFiVu6aXZhJBwAAAACYxooVKzRlyhS1aNFCklSyZEnVqFEjXb9cuXIpICBAklSsWDHVrl1b5cuX14svvqhOnTqpcePG+ueff9S/f3/1799fkyZNsq5bsmRJ1a9fX3FxcVmyT44wzUz6+++/L4vFooEDB96236JFi1S+fHl5eXnp4Ycf1qpVq7KmQAAAAABApgsICNCqVat08eJFh9ft2rWr8ubNqyVLlki6kR+vXr2qN954I8P+efLkuZdSM4UpQvrOnTv1+eefq0qVKrftt23bNj377LN66aWXtHfvXrVt21Zt27bVgQMHsqhSAAAAAEBmmjFjhrZt26b8+fOrVq1aGjRokLZu3WrXum5ubipbtqyioqIkSX/++af8/PxUpEiRTKzYuVwe0i9duqTnn39eX3zxhfLmzXvbvlOmTFGzZs30+uuvq0KFChozZoweeeQRffLJJ1lULQAAAAAgM9WvX19///23NmzYoA4dOujgwYN64oknNGbMGLvWNwxDFosl3Z/vFy4P6X369FHLli3VuHHjO/bdvn17un5NmzbV9u3bb7lOcnKyEhISbF4AAAAAgKzn5+en+Pj4dO1xcXHy9/e3vs+ZM6eeeOIJDR06VGvXrtXo0aM1ZswYXb169bbjp6Sk6M8//1RwcLAkqWzZsoqPj1dMTIxzdyQTuTSkL1iwQHv27FFYWJhd/WNjY1W4cGGbtsKFCys2NvaW64SFhcnf39/6CgoKuqeaAQAAAAB3p1y5ctqzZ0+69j179qhs2bK3XK9ixYq6fv26kpKSbjv+nDlzdOHCBbVv316S1KFDB3l4eOjDDz/MsL8Zbxznsru7nzhxQgMGDNC6devk5eWVadsZNmyYBg8ebH2fkJBAUAcAAAAAF+jdu7c++eQT9e/fXz169JCnp6d+/PFHffvtt/rhhx8k3XgG+rPPPquaNWsqf/78OnTokIYPH66GDRvKz8/POlZiYqJiY2N1/fp1/fPPP1q6dKkmTZqk3r17q2HDhpKkoKAgTZo0SX379lVCQoJCQ0NVsmRJ/fPPP5o7d658fHxM9xg2l4X03bt368yZM3rkkUesbSkpKdqyZYs++eQTJScny93d3WadgIAAnT592qbt9OnT1tvuZ8TT01Oenp7OLR4AAAAATGj3+FBXl3BbpUqV0pYtW/TWW2+pcePGunr1qsqXL69FixapWbNmkm5c0jxnzhwNHz5ciYmJCgwMVKtWrTRixAibsb744gt98cUX8vDwUP78+VWjRg0tXLhQzzzzjE2/V199VWXLltWECRP0zDPP6MqVKypZsqRatWplM6FrFhbDMAxXbPjixYs6fvy4TVv37t1Vvnx5DR06VJUrV063TufOnZWYmGj9DYsk1a1bV1WqVNH06dPt2m5CQoL8/f0VHx9v81sYAADMpt7Uek4ba2s/++6KCwC4PyQlJSkyMlLBwcGZemYy7He778SRHOqymXRfX990QTx37tzKnz+/tT00NFRFixa1XrM+YMAAhYSEaOLEiWrZsqUWLFigXbt2acaMGVlePwAAAAAAzubyu7vfTnR0tM1d+OrWrav58+drxowZqlq1qr7//nstW7Ysw1l3AAAAAADuNy6bSc9IeHj4bd9LUseOHdWxY8esKQgAAAAAgCxk6pl0AAAAAACyE0I6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKmegQbAAAAAODuRY9+OEu3V3zE/izdXnbATDoAAAAAIEs0aNBAAwcOTNc+e/Zs5cmTR5KUmJioYcOG6aGHHpKXl5cKFiyokJAQLV++3GYci8Uii8UiT09PFS1aVK1bt9aSJUtsxkzrc6tXVFRUJu+x4wjpAAAAAADT6NWrl5YsWaKpU6fqyJEjWr16tTp06KB///3Xpl/Pnj0VExOjv/76S4sXL1bFihXVpUsXvfzyy5Kkzp07KyYmxvqqU6eOdZ20V1BQkCt28bY43R0AAAAAYBorVqzQlClT1KJFC0lSyZIlVaNGjXT9cuXKpYCAAElSsWLFVLt2bZUvX14vvviiOnXqpMaNG8vb29va38PDw2Yds2ImHQAAAABgGgEBAVq1apUuXrzo8Lpdu3ZV3rx5bU57v98Q0gEAAAAApjFjxgxt27ZN+fPnV61atTRo0CBt3brVrnXd3NxUtmxZU15rbi9COgAAAADANOrXr6+///5bGzZsUIcOHXTw4EE98cQTGjNmjF3rG4Yhi8WSyVVmHkI6AAAAACBL+Pn5KT4+Pl17XFyc/P39re9z5sypJ554QkOHDtXatWs1evRojRkzRlevXr3t+CkpKfrzzz8VHBzs9NqzCiEdAAAAAJAlypUrpz179qRr37Nnj8qWLXvL9SpWrKjr168rKSnptuPPmTNHFy5cUPv27e+5Vlfh7u4AAAAAgCzRu3dvffLJJ+rfv7969OghT09P/fjjj/r222/1ww8/SLrxDPRnn31WNWvWVP78+XXo0CENHz5cDRs2lJ+fn3WsxMRExcbG6vr16/rnn3+0dOlSTZo0Sb1791bDhg1dtYv3jJAOAAAAAA+I4iP2u7qE2ypVqpS2bNmit956S40bN9bVq1dVvnx5LVq0SM2aNZMkNW3aVHPmzNHw4cOVmJiowMBAtWrVSiNGjLAZ64svvtAXX3whDw8P5c+fXzVq1NDChQv1zDPPuGLXnMZiGIbh6iKyUkJCgvz9/RUfH2/zWxgAAMym3tR6Thtraz/77ooLALg/JCUlKTIyUsHBwfLy8nJ1OdDtvxNHcijXpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBI5XF0AAAAAAMA56k2tl6Xb29pva5ZuLztgJh0AAAAAkGXOnj2r3r17q3jx4vL09FRAQICaNm2qsWPHymKx3PYVHh6u2bNnW9+7ubmpSJEi6ty5s6Kjo22206BBAw0cONCmbcqUKfL09NSCBQuycI8dw0w6AAAAACDLtG/fXlevXtWcOXNUqlQpnT59Whs2bFClSpUUExNj7TdgwAAlJCRo1qxZ1rZ8+fIpKipKfn5+Onr0qAzDUGRkpF599VV17NhRv/322y23++6772rChAlavny5mjVrlqn7eC8I6QAAAACALBEXF6eff/5Z4eHhCgkJkSSVKFFCjz76aLq+3t7eSk5OVkBAQLplFovF2l6kSBG99NJL6t+/vxISEuTn52fT1zAM9e/fX998843WrVununXrZsKeOQ+nuwMAAAAAsoSPj498fHy0bNkyJScnO2XMM2fOaOnSpXJ3d5e7u7vNsuvXr+uFF17Q999/r82bN5s+oEvMpAMAAAAAskiOHDk0e/Zs9ezZU9OnT9cjjzyikJAQdenSRVWqVLF7nPj4ePn4+MgwDCUmJkqS+vfvr9y5c9v0++KLLyRJ+/btU/ny5Z23I5mImXQAAAAAQJZp3769Tp06pRUrVqhZs2YKDw/XI488otmzZ9s9hq+vryIiIrRr1y5NnDhRjzzyiMaOHZuu3+OPPy4fHx+98847un79uhP3IvMQ0gEAAAAAWcrLy0tNmjTRO++8o23btqlbt25699137V7fzc1NpUuXVoUKFTR48GDVrl1bvXv3Ttfv4Ycf1oYNG7Rp0yZ17tz5vgjqhHQAAAAAgEtVrFhRly9fvuv133zzTS1cuFB79uxJt6xatWrasGGDtmzZok6dOunatWv3UmqmI6QDAAAAALLEv//+q0aNGumbb77R77//rsjISC1atEgffvih2rRpc9fjBgUF6ZlnntGIESMyXF61alVt3LhRv/zyi+mDOjeOAwAAAIAHxNZ+W11dwm35+Pjoscce06RJk/TXX3/p2rVrCgoKUs+ePTV8+PB7GnvQoEGqU6eOduzYkeEj3R5++GFt3LhRTz75pDp27KjvvvtOHh4e97TNzGAxDMNwdRFZKSEhQf7+/oqPj0/3/DwAAMyk3tR6ThvL7P9pAwA4JikpSZGRkQoODpaXl5ery4Fu/504kkM53R0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJPI4eoCAAAAAADOsbl+SJZuL2TL5izdXnbATDoAAAAAIMt069ZNFosl3cvLyyvD9ptf4eHhmj17tvLkyZPh2BaLRcuWLcvS/XE2ZtIBAAAAAFmqWbNmmjVrlk2bxWKRYRjW9wMGDFBCQoJNv3z58ikqKiqrynQJQjoAAAAAIEt5enoqICDgtn28vb2VnJx8x34PGk53BwAAAADAJAjpAAAAAIAstXLlSvn4+Ni8xo0bZ/f68fHx6db38fHJxIqzDqe7AwAAAACyVMOGDTVt2jSbtnz58tm9vq+vr/bs2ZOuvUyZMvdcm6sR0gEAAAAAWSp37twqXbr0Xa/v5uZ2T+ubGae7AwAAAABgEsykAwAAAACyVHJysmJjY23acuTIoQIFCrioIvMgpAMAAADAAyJky2ZXl2CX1atXq0iRIjZt5cqV05EjR1xUkXlYjJufFp8NJCQkyN/fX/Hx8fLz83N1OQAA3FK9qfWcNtbWfludNhYAwPWSkpIUGRmp4OBgeXl5uboc6PbfiSM51KXXpE+bNk1VqlSRn5+f/Pz8VKdOHf3000+37D979mxZLBabFwckAAAAAOBB4dLT3YsVK6b3339fZcqUkWEYmjNnjtq0aaO9e/eqUqVKGa7j5+eno0ePWt9bLJasKhcAAAAAgEzl0pDeunVrm/djx47VtGnT9Ouvv94ypFssFgUEBGRFeQAAAAAAZCnTPIItJSVFCxYs0OXLl1WnTp1b9rt06ZJKlCihoKAgtWnTRgcPHrztuMnJyUpISLB5AQAAAABgRi4P6fv375ePj488PT3Vq1cvLV26VBUrVsywb7ly5TRz5kwtX75c33zzjVJTU1W3bl39888/txw/LCxM/v7+1ldQUFBm7QoAAAAAAPfE5SG9XLlyioiI0G+//abevXura9euOnToUIZ969Spo9DQUFWrVk0hISFasmSJChYsqM8///yW4w8bNkzx8fHW14kTJzJrVwAAAAAAuCcuf066h4eHSpcuLUmqUaOGdu7cqSlTptw2eKfJmTOnqlevrmPHjt2yj6enpzw9PZ1WLwAAAAAAmcXlM+n/lZqaquTkZLv6pqSkaP/+/SpSpEgmVwUAAAAAQOZz6Uz6sGHD1Lx5cxUvXlwXL17U/PnzFR4erjVr1kiSQkNDVbRoUYWFhUmSRo8erdq1a6t06dKKi4vT+PHjdfz4cfXo0cOVuwEAAAAAgFO4NKSfOXNGoaGhiomJkb+/v6pUqaI1a9aoSZMmkqTo6Gi5uf1vsv/ChQvq2bOnYmNjlTdvXtWoUUPbtm275Y3mAAAAACA7+WTID1m6vb4TW9+5Exzi0tPdv/rqK0VFRSk5OVlnzpzR+vXrrQFdksLDwzV79mzr+0mTJun48eNKTk5WbGysfvzxR1WvXt0FlQMAAAAAMlN4eLgsFov15e3trUqVKmnGjBnWPjcvz+g1cuRISdLevXvVsWNHFS5cWF5eXipTpox69uypP/74w0V7d2umuyYdAAAAAIA0R48eVUxMjA4dOqRXXnlFvXv31oYNGyRJMTEx1tfkyZPl5+dn0/baa69p5cqVql27tpKTkzVv3jwdPnxY33zzjfz9/fXOO++4eO/SI6QDAAAAALLEypUrlSdPHqWkpEiSIiIiZLFY9Oabb1r79OjRQy+88IL1faFChRQQEKDg4GD1799fwcHB2rNnjyQpICDA+vL395fFYrFpc3NzU/fu3dWiRQutWLFCjRs3VnBwsB577DFNmDDBrqeKZTVCOgAAAAAgSzzxxBO6ePGi9u7dK0navHmzChQooPDwcGufzZs3q0GDBunWNQxDq1evVnR0tB577DG7trdmzRqdO3dOb7zxRobL8+TJ4+guZDpCOgAAAAAgS/j7+6tatWrWUB4eHq5BgwZp7969unTpkk6ePKljx44pJCTEuk6xYsXk4+MjDw8PtWzZUu+++67q169v1/b+/PNPSVL58uWdvi+ZhZAOAAAAAMgyISEhCg8Pl2EY+vnnn9WuXTtVqFBBv/zyizZv3qzAwECVKVPG2v/nn39WRESEIiIi9OWXX2rcuHGaNm2aXdsyDCOzdiPTuPQRbAAAAACA7KVBgwaaOXOm9u3bp5w5c6p8+fJq0KCBwsPDdeHCBZtZdEkKDg62npZeqVIl/fbbbxo7dqx69+59x22VLVtWknTkyBHVqVPH6fuSGZhJBwAAAABkmbTr0idNmmQN5GkhPTw8PMPr0W/m7u6uK1eu2LWtp556SgUKFNCHH36Y4fK4uDhHSs8SzKQDAAAAALJM3rx5VaVKFc2bN0+ffPKJJKl+/frq1KmTrl27lm4m/cyZM0pKSlJycrJ27Nihr7/+Wh06dLBrW7lz59aXX36pjh076umnn1b//v1VunRpnTt3Tt99952io6O1YMECp+/jvSCkAwAAAMADou/E1q4uwS4hISGKiIiwzprny5dPFStW1OnTp1WuXDmbvmnvc+TIoaCgIL3yyisaOXKk3dtq06aNtm3bprCwMD333HNKSEhQUFCQGjVqpPfee89Zu+Q0FuN+vJL+HiQkJMjf31/x8fHy8/NzdTkAANxSvan1nDbW1n5bnTYWAMD1kpKSFBkZqeDgYHl5ebm6HOj234kjOZRr0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMIkcri4AAAAAAOAcY1/okKXbe+ub7x1ep1u3bpozZ44kKUeOHMqXL5+qVKmiZ599Vt26dZObm+1cctOmTbV+/Xr9+uuvqlWrVrqx4uLitGzZsrveB7NhJh0AAAAAkKWaNWummJgYRUVF6aefflLDhg01YMAAtWrVStevX7f2i46O1rZt29S3b1/NnDnThRVnHUI6AAAAACBLeXp6KiAgQEWLFtUjjzyi4cOHa/ny5frpp580e/Zsa79Zs2apVatW6t27t7799ltduXLFdUVnEUI6AAAAAMDlGjVqpKpVq2rJkiWSJMMwNGvWLL3wwgsqX768Spcure+/d/z0+vsNIR0AAAAAYArly5dXVFSUJGn9+vVKTExU06ZNJUkvvPCCvvrqKxdWlzUI6QAAAAAAUzAMQxaLRZI0c+ZMde7cWTly3Ljf+bPPPqutW7fqr7/+cmWJmY6QDgAAAAAwhcOHDys4OFjnz5/X0qVL9dlnnylHjhzKkSOHihYtquvXrz/wN5AjpAMAAAAAXG7jxo3av3+/2rdvr3nz5qlYsWLat2+fIiIirK+JEydq9uzZSklJcXW5mYbnpAMAAAAAslRycrJiY2OVkpKi06dPa/Xq1QoLC1OrVq0UGhqqGjVqqEOHDqpcubLNekFBQRo2bJhWr16tli1buqj6zMVMOgAAAAAgS61evVpFihRRyZIl1axZM23atEkff/yxli9froiICO3bt0/t27dPt56/v7+efPLJB/oGchbDMAxXF5GVEhIS5O/vr/j4ePn5+bm6HAAAbqne1HpOG2trv61OGwsA4HpJSUmKjIxUcHCwvLy8XF0OdPvvxJEcykw6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkcri6AAAAAACAcxweuzFLt1fhrUZZur004eHhatiwoS5cuKA8efJY27t166Y5c+ak69+0aVO9+eabatiw4W3H3bRpk6KiojRw4EDFxcWlW26xWLR06VK1bdv2Hvfg1gjpAAAAAIAHRrNmzTRr1iybNk9PT+XOnVsxMTHWtgEDBighIcGmb758+RQVFZVVpWaI090BAAAAAFli5cqVypMnj1JSUiRJERERslgsevPNN619evTooRdeeEHHjx9X69atlTdvXuXOnVuVKlXSqlWrFBUVZZ0Rz5s3rywWi7p162Zd39PTUwEBATavvHnzysPDw6bN29s7XV8PD48s/Twywkw6AAAAACBLPPHEE7p48aL27t2rmjVravPmzSpQoIDCw8OtfTZv3qyhQ4eqT58+unr1qrZs2aLcuXPr0KFD8vHxUVBQkBYvXqz27dvr6NGj8vPzk7e3t+t2ysmYSQcAAAAAZAl/f39Vq1bNGsrDw8M1aNAg7d27V5cuXdLJkyd17NgxhYSEKDo6WvXq1dPDDz+sUqVKqVWrVqpfv77c3d2VL18+SVKhQoUUEBAgf39/6zZWrlwpHx8fm9e4ceMcqjM+Pj7dGD4+Pk77HG6HmXQAAAAAQJYJCQlReHi4hgwZop9//llhYWH67rvv9Msvv+j8+fMKDAxUmTJl1L9/f/Xu3Vtr165V48aN1b59e1WpUuWO4zds2FDTpk2zaUsL9fby9fXVnj170rWXKVPGoXHuBiEdAAAAAJBlGjRooJkzZ2rfvn3KmTOnypcvrwYNGig8PFwXLlxQSEiIpBvXpjdt2lQ//vij1q5dq7CwME2cOFH9+vW77fi5c+dW6dKl76lGNze3ex7jrrftkq0CAAAAALKltOvSJ02aZA3kaSE9PDxcDRo0sPYNCgpSr169tGTJEg0ZMkRffPGFJFlv8JZ2A7oHCSEdAAAAAJBl8ubNqypVqmjevHnWQF6/fn3t2bNHf/zxhzW4Dxw4UGvWrFFkZKT27NmjTZs2qUKFCpKkEiVKyGKxaOXKlTp79qwuXbpkHT85OVmxsbE2r3PnzmX5ft4tQjoAAAAAIEuFhIQoJSXFGtLz5cunihUrKiAgQOXKlZN0Y5a8T58+qlChgpo1a6ayZcvqs88+kyQVLVpUo0aN0ptvvqnChQurb9++1rFXr16tIkWK2Lwef/zxLN/Hu2UxDMNwdRFZKSEhQf7+/oqPj5efn5+rywEA4JbqTa3ntLG29tvqtLEAAK6XlJSkyMhIBQcHy8vLy9XlQLf/ThzJocykAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMIocrNz5t2jRNmzZNUVFRkqRKlSppxIgRat68+S3XWbRokd555x1FRUWpTJky+uCDD9SiRYssqhgAAAAAzGvkyJGm3163bt0UFxenZcuWpVt25coVvf/++/r22291/Phx+fr6qmHDhho5cqQqVapks91Ro0ZJktzc3BQYGKjmzZvr/fffV758+az9SpYsqePHj0uSvLy8VLhwYT366KPq1auXGjVqZLPtpUuX6oMPPtDhw4eVmpqq4sWLq0mTJpo8ebLD+3gvXDqTXqxYMb3//vvavXu3du3apUaNGqlNmzY6ePBghv23bdumZ599Vi+99JL27t2rtm3bqm3btjpw4EAWVw4AAAAAcKbk5GQ1btxYM2fO1Hvvvac//vhDq1at0vXr1/XYY4/p119/telfqVIlxcTEKDo6WrNmzdLq1avVu3fvdOOOHj1aMTExOnr0qObOnas8efKocePGGjt2rLXPhg0b1LlzZ7Vv3147duzQ7t27NXbsWF27di3T9/u/XDqT3rp1a5v3Y8eO1bRp0/Trr7/a/JYkzZQpU9SsWTO9/vrrkqQxY8Zo3bp1+uSTTzR9+vQsqRkAAAAA4HyTJ0/W9u3btXfvXlWtWlWSVKJECS1evFiPPfaYXnrpJR04cEAWi0WSlCNHDgUEBEiSihYtqo4dO2rWrFnpxvX19bX2K168uOrXr68iRYpoxIgR6tChg8qVK6cffvhB9erVs2ZNSSpbtqzatm2byXudnmmuSU9JSdGCBQt0+fJl1alTJ8M+27dvV+PGjW3amjZtqu3bt99y3OTkZCUkJNi8AAAAAADmMn/+fDVp0sQa0NO4ublp0KBBOnTokPbt25fhulFRUVqzZo08PDzs2taAAQNkGIaWL18uSQoICNDBgwdNcZa2y0P6/v375ePjI09PT/Xq1UtLly5VxYoVM+wbGxurwoUL27QVLlxYsbGxtxw/LCxM/v7+1ldQUJBT6wcAAAAA3Ls//vhDFSpUyHBZWvsff/xhbUvLkt7e3goODtbBgwc1dOhQu7aVL18+FSpUyHp/tH79+qlWrVp6+OGHVbJkSXXp0kUzZ85UcnLyve3UXXB5SC9XrpwiIiL022+/qXfv3uratasOHTrktPGHDRum+Ph46+vEiRNOGxsAAAAA4DyGYdjdNy1L7ty5U0OHDlXTpk3Vr18/h7aVdup87ty59eOPP+rYsWN6++235ePjoyFDhujRRx9VYmKiw/txL1we0j08PFS6dGnVqFFDYWFhqlq1qqZMmZJh34CAAJ0+fdqm7fTp09brCzLi6ekpPz8/mxcAAAAAwFzKli2rw4cPZ7gsrb1s2bLWtrQsWblyZb3//vtyd3e33vH9Tv7991+dPXtWwcHBNu0PPfSQevTooS+//FJ79uzRoUOHtHDhwrvco7vj8pD+X6mpqbc8paBOnTrasGGDTdu6detueQ07AAAAAOD+0KVLF61fvz7ddeepqamaNGmSKlasmO569Zu9/fbbmjBhgk6dOnXHbU2ZMkVubm63vTFcyZIllStXLl2+fNnufXAGl97dfdiwYWrevLmKFy+uixcvav78+QoPD9eaNWskSaGhoSpatKjCwsIk3bi4PyQkRBMnTlTLli21YMEC7dq1SzNmzHDlbgAAAAAAHBAfH6+IiAibthdeeEHLly9X69atNXHiRD322GM6ffq0xo0bp8OHD2v9+vXW09MzUqdOHVWpUkXjxo3TJ598Ym2/ePGiYmNjde3aNUVGRuqbb77Rl19+qbCwMJUuXVrSjeeuJyYmqkWLFipRooTi4uL08ccf69q1a2rSpEmmfAa34tKQfubMGYWGhiomJkb+/v6qUqWK1qxZY/0QoqOj5eb2v8n+unXrav78+Xr77bc1fPhwlSlTRsuWLVPlypVdtQsAAAAAAAeFh4erevXqNm0vvfSSNm7cqHHjxmn48OE6fvy4fH191bBhQ/3666925b5BgwapW7duGjp0qPWm4SNGjNCIESPk4eGhgIAA1a5dWxs2bFDDhg2t64WEhOjTTz9VaGioTp8+rbx586p69epau3atypUr59ydvwOL4ciV+Q+AhIQE+fv7Kz4+nuvTAQCmVm9qPaeNtbXfVqeNBQBwvaSkJEVGRio4OFheXl6uLge6/XfiSA413TXpAAAAAABkV4R0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAACA+1Q2e1iXqTnru3Dpc9IBAAAAAI7LmTOnLBaLzp49q4IFC8pisbi6pGzNMAydPXtWFotFOXPmvKexCOkAAAAAcJ9xd3dXsWLF9M8//ygqKsrV5UCSxWJRsWLF5O7ufk/jENIBAAAA4D7k4+OjMmXK6Nq1a64uBbpxdsO9BnSJkA4AAAAA9y13d3enBEOYBzeOAwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYRA5HV4iMjNTPP/+s48ePKzExUQULFlT16tVVp04deXl5ZUaNAAAAAABkC3aH9Hnz5mnKlCnatWuXChcurMDAQHl7e+v8+fP666+/5OXlpeeff15Dhw5ViRIlMrNmAAAAAAAeSHaF9OrVq8vDw0PdunXT4sWLFRQUZLM8OTlZ27dv14IFC1SzZk199tln6tixY6YUDAAAAADAg8qukP7++++radOmt1zu6empBg0aqEGDBho7dqyioqKcVR8AAAAAANmGXSH9dgH9v/Lnz6/8+fPfdUEAAAAAAGRXDt84Lj4+XuvWrVNUVJQsFouCg4PVuHFj+fn5ZUZ9AAAAAABkGw6F9G+++UZ9+/ZVQkKCTbu/v7+mT5+uzp07O7U4AAAAAACyE7ufk75nzx51795dbdu21d69e3XlyhUlJiZq165dat26tf7v//5P+/bty8xaAQAAAAB4oNk9kz516lS1bdtWs2fPtml/5JFHNHfuXCUmJmrKlCmaOXOms2sEAAAAACBbsHsmfevWrXrllVduubxXr1765ZdfnFIUAAAAAADZkd0h/dSpUypbtuwtl5ctW1YnT550SlEAAAAAAGRHdof0xMREeXl53XK5p6enkpKSnFIUAAAAAADZkUN3d1+zZo38/f0zXBYXF+eMegAAAAAAyLYcCuldu3a97XKLxXJPxQAAAAAAkJ3ZHdJTU1Mzsw4AAAAAALI9u69JBwAAAAAAmcvukP7HH39ox44dNm0bNmxQw4YN9eijj2rcuHFOLw4AAAAAgOzE7pA+dOhQrVy50vo+MjJSrVu3loeHh+rUqaOwsDBNnjzZoY2HhYWpVq1a8vX1VaFChdS2bVsdPXr0tuvMnj1bFovF5nW7u84DAAAAAHC/sDuk79q1S82bN7e+nzdvnsqWLas1a9ZoypQpmjx5smbPnu3Qxjdv3qw+ffro119/1bp163Tt2jU99dRTunz58m3X8/PzU0xMjPV1/Phxh7YLAAAAAIAZ2X3juHPnzqlYsWLW95s2bVLr1q2t7xs0aKAhQ4Y4tPHVq1fbvJ89e7YKFSqk3bt3q379+rdcz2KxKCAgwKFtAQAAAABgdnbPpOfLl08xMTGSbtzpfdeuXapdu7Z1+dWrV2UYxj0VEx8fb93W7Vy6dEklSpRQUFCQ2rRpo4MHD96yb3JyshISEmxeAAAAAACYkd0hvUGDBhozZoxOnDihyZMnKzU1VQ0aNLAuP3TokEqWLHnXhaSmpmrgwIGqV6+eKleufMt+5cqV08yZM7V8+XJ98803Sk1NVd26dfXPP/9k2D8sLEz+/v7WV1BQ0F3XCAAAAABAZrIYdk5/R0VFqUmTJvrrr7/k7u6ujz/+WL1797Yub9u2rYKDgzVp0qS7KqR379766aef9Msvv9icVn8n165dU4UKFfTss89qzJgx6ZYnJycrOTnZ+j4hIUFBQUGKj4+Xn5/fXdUKAEBWqDe1ntPG2tpvq9PGAgAAjklISJC/v79dOdTua9JLliypw4cP6+DBgypYsKACAwNtlo8aNcqhcH2zvn37auXKldqyZYvDY+TMmVPVq1fXsWPHMlzu6ekpT0/Pu6oLAAAAAICsZPfp7pKUI0cOVa1aNV1Al6SqVasqf/78Dm3cMAz17dtXS5cu1caNGxUcHOzQ+pKUkpKi/fv3q0iRIg6vCwAAAACAmdg9k96uXbsM2/39/VW2bFn16NFDBQsWdGjjffr00fz587V8+XL5+voqNjbWOqa3t7ckKTQ0VEWLFlVYWJgkafTo0apdu7ZKly6tuLg4jR8/XsePH1ePHj0c2jYAAAAAAGZj90z6zTdfu/kVFxenL774QuXKldOBAwcc2vi0adMUHx+vBg0aqEiRItbXwoULrX2io6Otd5WXpAsXLqhnz56qUKGCWrRooYSEBG3btk0VK1Z0aNsAAAAAAJiN3TeOu53U1FT17NlTZ86c0Q8//OCMujKNIxfsAwDgStw4DgCAB4MjOdSha9JvOYibm/r376/du3c7YzgAAAAAALIlp4R0ScqdO7cSExOdNRwAAAAAANmO00L6unXrVLZsWWcNBwAAAABAtmP33d1XrFiRYXt8fLx2796tL7/8Ul9++aXTCgMAAAAAILuxO6S3bds2w3ZfX1+VK1dOX375pbp06eKsugAAAAAAyHbsDumpqamZWQcAAAAAANme065JBwAAAAAA98aukL5gwQK7Bzxx4oS2buVZrAAAAAAAOMqukD5t2jRVqFBBH374oQ4fPpxueXx8vFatWqXnnntOjzzyiP7991+nFwoAAAAAwIPOrmvSN2/erBUrVmjq1KkaNmyYcufOrcKFC8vLy0sXLlxQbGysChQooG7duunAgQMqXLhwZtcNAAAAAMADx+4bxz399NN6+umnde7cOf3yyy86fvy4rly5ogIFCqh69eqqXr263Ny4xB0AAAAAgLtld0hPU6BAgVs+jg0AAAAAANw9pr4BAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAk7Dr7u6DBw+2e8CPPvrorosBAAAAACA7syuk7927167BLBbLPRUDAAAAAEB2ZldI37RpU2bXAQAAAABAtsc16QAAAAAAmIRdM+n/tWvXLn333XeKjo7W1atXbZYtWbLEKYUBAAAAAJDdODyTvmDBAtWtW1eHDx/W0qVLde3aNR08eFAbN26Uv79/ZtQIAAAAAEC24HBIHzdunCZNmqQffvhBHh4emjJlio4cOaJOnTqpePHimVEjAAAAAADZgsMh/a+//lLLli0lSR4eHrp8+bIsFosGDRqkGTNmOL1AAAAAAACyC4dDet68eXXx4kVJUtGiRXXgwAFJUlxcnBITE51bHQAAAAAA2YjDN46rX7++1q1bp4cfflgdO3bUgAEDtHHjRq1bt05PPvlkZtQIAAAAAEC24HBI/+STT5SUlCRJeuutt5QzZ05t27ZN7du319tvv+30AgEAAAAAyC4cCunXr1/XypUr1bRpU0mSm5ub3nzzzUwpDAAAAACA7Maha9Jz5MihXr16WWfSAQAAAACA8zh847hHH31UERERmVAKAAAAAADZm8PXpL/66qsaPHiwTpw4oRo1aih37tw2y6tUqeK04gAAAAAAyE4cDuldunSRJPXv39/aZrFYZBiGLBaLUlJSnFcdAAAAAADZiMMhPTIyMjPqAAAAAAAg23M4pJcoUSIz6gAAAAAAINtz+MZxkvT111+rXr16CgwM1PHjxyVJkydP1vLly51aHAAAAAAA2YnDIX3atGkaPHiwWrRoobi4OOs16Hny5NHkyZOdXR8AAAAAANmGwyF96tSp+uKLL/TWW2/J3d3d2l6zZk3t37/fqcUBAAAAAJCdOBzSIyMjVb169XTtnp6eunz5slOKAgAAAAAgO3I4pAcHBysiIiJd++rVq1WhQgVn1AQAAAAAQLbk8N3dBw8erD59+igpKUmGYWjHjh369ttvFRYWpi+//DIzagQAAAAAIFtwOKT36NFD3t7eevvtt5WYmKjnnntOgYGBmjJlirp06ZIZNQIAAAAAkC04HNIl6fnnn9fzzz+vxMREXbp0SYUKFXJ2XQAAAAAAZDsOX5PeqFEjxcXFSZJy5cplDegJCQlq1KiRU4sDAAAAACA7cTikh4eH6+rVq+nak5KS9PPPPzulKAAAAAAAsiO7T3f//fffrX8+dOiQYmNjre9TUlK0evVqFS1a1LnVAQAAAACQjdgd0qtVqyaLxSKLxZLhae3e3t6aOnWqU4sDAAAAACA7sTukR0ZGyjAMlSpVSjt27FDBggWtyzw8PFSoUCG5u7tnSpEAAAAAAGQHdof0EiVKSJJSU1MzrRgAAAAAALKzu3oEm3TjuvTo6Oh0N5F7+umn77koAAAAAACyI4dD+t9//61nnnlG+/fvl8VikWEYkiSLxSLpxk3kAAAAAACA4xx+BNuAAQMUHBysM2fOKFeuXDp48KC2bNmimjVrKjw8PBNKBAAAAAAge3B4Jn379u3auHGjChQoIDc3N7m5uenxxx9XWFiY+vfvr71792ZGnQAAAAAAPPAcnklPSUmRr6+vJKlAgQI6deqUpBs3ljt69KhzqwMAAAAAIBtxeCa9cuXK2rdvn4KDg/XYY4/pww8/lIeHh2bMmKFSpUplRo0AAAAAAGQLDof0t99+W5cvX5YkjR49Wq1atdITTzyh/Pnza+HChU4vEAAAAACA7MLhkN60aVPrn0uXLq0jR47o/Pnzyps3r/UO7wAAAAAAwHF3/Zz0m+XLl88ZwwAAAAAAkK3ZFdLbtWtn94BLliy562IAAAAAAMjO7Arp/v7+mV0HAAAAAADZnl0hfdasWZldBwAAAAAA2Z7Dz0l3prCwMNWqVUu+vr4qVKiQ2rZta9ez1hctWqTy5cvLy8tLDz/8sFatWpUF1QIAAAAAkLnsmkmvXr263Xdu37Nnj90b37x5s/r06aNatWrp+vXrGj58uJ566ikdOnRIuXPnznCdbdu26dlnn1VYWJhatWql+fPnq23bttqzZ48qV65s97YBAAAAADAbi2EYxp06jRo1yu4B33333bsu5uzZsypUqJA2b96s+vXrZ9inc+fOunz5slauXGltq127tqpVq6bp06ffcRsJCQny9/dXfHy8/Pz87rpWAAAyW72p9Zw21tZ+W502FgAAcIwjOdSumfR7Cd6OiI+Pl3T7R7pt375dgwcPtmlr2rSpli1blmH/5ORkJScnW98nJCTce6EAAAAAAGSCu35O+u7du3X48GFJUqVKlVS9evV7KiQ1NVUDBw5UvXr1bnvaemxsrAoXLmzTVrhwYcXGxmbYPywszKEzAQAAAAAAcBWHQ/qZM2fUpUsXhYeHK0+ePJKkuLg4NWzYUAsWLFDBggXvqpA+ffrowIED+uWXX+5q/VsZNmyYzcx7QkKCgoKCnLoNAAAAAACcweG7u/fr108XL17UwYMHdf78eZ0/f14HDhxQQkKC+vfvf1dF9O3bVytXrtSmTZtUrFix2/YNCAjQ6dOnbdpOnz6tgICADPt7enrKz8/P5gUAAAAAgBk5HNJXr16tzz77TBUqVLC2VaxYUZ9++ql++uknh8YyDEN9+/bV0qVLtXHjRgUHB99xnTp16mjDhg02bevWrVOdOnUc2jYAAAAAAGbj8OnuqampypkzZ7r2nDlzKjU11aGx+vTpo/nz52v58uXy9fW1Xlfu7+8vb29vSVJoaKiKFi2qsLAwSdKAAQMUEhKiiRMnqmXLllqwYIF27dqlGTNmOLorAAAAAACYisMz6Y0aNdKAAQN06tQpa9vJkyc1aNAgPfnkkw6NNW3aNMXHx6tBgwYqUqSI9bVw4UJrn+joaMXExFjf161bV/Pnz9eMGTNUtWpVff/991q2bBnPSAcAAAAA3Pfsek76zU6cOKGnn35aBw8etN6A7cSJE6pcubJWrFhxx2vKXY3npAMA7hc8Jx0AgAeD05+TfrOgoCDt2bNH69ev15EjRyRJFSpUUOPGje+uWgAAAAAAIOkun5NusVjUpEkTNWnSxNn1AAAAAACQbdl9TfrGjRtVsWJFJSQkpFsWHx+vSpUq6eeff3ZqcQAAAAAAZCd2h/TJkyerZ8+eGZ4/7+/vr1deeUUfffSRU4sDAAAAACA7sTuk79u3T82aNbvl8qeeekq7d+92SlEAAAAAAGRHdof006dPZ/h89DQ5cuTQ2bNnnVIUAAAAAADZkd0hvWjRojpw4MAtl//+++8qUqSIU4oCAAAAACA7sjukt2jRQu+8846SkpLSLbty5YreffddtWrVyqnFAQAAAACQndj9CLa3335bS5YsUdmyZdW3b1+VK1dOknTkyBF9+umnSklJ0VtvvZVphQIAAAAA8KCzO6QXLlxY27ZtU+/evTVs2DAZhiHpxjPTmzZtqk8//VSFCxfOtEIBAAAAAHjQ2R3SJalEiRJatWqVLly4oGPHjskwDJUpU0Z58+bNrPoAAAAAAMg2HArpafLmzatatWo5uxYAAAAAALI1u28cBwAAAAAAMhchHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMwq4bx61YscLuAZ9++um7LgYAAAAAgOzMrpDetm1buwazWCxKSUm5l3oAAAAAAMi27ArpqampmV0HAAAAAADZHtekAwAAAABgEnbNpP/X5cuXtXnzZkVHR+vq1as2y/r37++UwgAAAAAAyG4cDul79+5VixYtlJiYqMuXLytfvnw6d+6ccuXKpUKFChHSAQAAAAC4Sw6f7j5o0CC1bt1aFy5ckLe3t3799VcdP35cNWrU0IQJEzKjRgAAAAAAsgWHQ3pERISGDBkiNzc3ubu7Kzk5WUFBQfrwww81fPjwzKgRAAAAAIBsweGQnjNnTrm53VitUKFCio6OliT5+/vrxIkTzq0OAAAAAIBsxOFr0qtXr66dO3eqTJkyCgkJ0YgRI3Tu3Dl9/fXXqly5cmbUCAAAAABAtuDwTPq4ceNUpEgRSdLYsWOVN29e9e7dW2fPntXnn3/u9AIBAAAAAMguHJ5Jr1mzpvXPhQoV0urVq51aEAAAAAAA2ZXDM+mNGjVSXFxcuvaEhAQ1atTIGTUBAAAAAJAtORzSw8PDdfXq1XTtSUlJ+vnnn51SFAAAAAAA2ZHdp7v//vvv1j8fOnRIsbGx1vcpKSlavXq1ihYt6tzqAAAAAADIRuwO6dWqVZPFYpHFYsnwtHZvb29NnTrVqcUBAAAAAJCd2B3SIyMjZRiGSpUqpR07dqhgwYLWZR4eHipUqJDc3d0zpUgAAAAAALIDu0N6iRIlJEmpqamZVgwAAAAAANmZw49gk6S//vpLkydP1uHDhyVJFStW1IABA/TQQw85tTgAAAAAALITh+/uvmbNGlWsWFE7duxQlSpVVKVKFf3222+qVKmS1q1blxk1AgAAAACQLTg8k/7mm29q0KBBev/999O1Dx06VE2aNHFacQAAAAAAZCcOz6QfPnxYL730Urr2F198UYcOHXJKUQAAAAAAZEcOh/SCBQsqIiIiXXtERIQKFSrkjJoAAAAAAMiW7D7dffTo0XrttdfUs2dPvfzyy/r7779Vt25dSdLWrVv1wQcfaPDgwZlWKAAAAAAADzqLYRiGPR3d3d0VExOjggULavLkyZo4caJOnTolSQoMDNTrr7+u/v37y2KxZGrB9yohIUH+/v6Kj4+Xn5+fq8sBAOCW6k2t57Sxtvbb6rSxAACAYxzJoXbPpKdleYvFokGDBmnQoEG6ePGiJMnX1/ceygUAAAAAAJKDd3f/7yw54RwAAAAAAOdxKKSXLVv2jqeznz9//p4KAgAAAAAgu3IopI8aNUr+/v6ZVQsAAAAAANmaQyG9S5cuPGYNAAAAAIBMYvdz0s1+13YAAAAAAO53dod0O5/UBgAAAAAA7pLdp7unpqZmZh0AAAAAAGR7ds+kAwAAAACAzEVIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYhEtD+pYtW9S6dWsFBgbKYrFo2bJlt+0fHh4ui8WS7hUbG5s1BQMAAAAAkIlcGtIvX76sqlWr6tNPP3VovaNHjyomJsb6KlSoUCZVCAAAAABA1snhyo03b95czZs3d3i9QoUKKU+ePM4vCAAAAAAAF7ovr0mvVq2aihQpoiZNmmjr1q237ZucnKyEhASbFwAAAAAAZnRfhfQiRYpo+vTpWrx4sRYvXqygoCA1aNBAe/bsueU6YWFh8vf3t76CgoKysGIAAAAAAOxnMQzDcHURkmSxWLR06VK1bdvWofVCQkJUvHhxff311xkuT05OVnJysvV9QkKCgoKCFB8fLz8/v3spGQCATFVvaj2njbW13+3PPAMAAJknISFB/v7+duVQl16T7gyPPvqofvnll1su9/T0lKenZxZWBAAAAADA3bmvTnfPSEREhIoUKeLqMgAAAAAAuGcunUm/dOmSjh07Zn0fGRmpiIgI5cuXT8WLF9ewYcN08uRJzZ07V5I0efJkBQcHq1KlSkpKStKXX36pjRs3au3ata7aBQAAAAAAnMalIX3Xrl1q2LCh9f3gwYMlSV27dtXs2bMVExOj6Oho6/KrV69qyJAhOnnypHLlyqUqVapo/fr1NmMAAAAAAHC/Ms2N47KKIxfsAwDgStw4DgCAB4MjOfS+vyYdAAAAAIAHBSEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEm4NKRv2bJFrVu3VmBgoCwWi5YtW3bHdcLDw/XII4/I09NTpUuX1uzZszO9TgAAAAAAsoJLQ/rly5dVtWpVffrpp3b1j4yMVMuWLdWwYUNFRERo4MCB6tGjh9asWZPJlQIAAAAAkPlyuHLjzZs3V/Pmze3uP336dAUHB2vixImSpAoVKuiXX37RpEmT1LRp08wqEwAAAACALHFfXZO+fft2NW7c2KatadOm2r59+y3XSU5OVkJCgs0LAAAAAAAzuq9CemxsrAoXLmzTVrhwYSUkJOjKlSsZrhMWFiZ/f3/rKygoKCtKBQAAAADAYfdVSL8bw4YNU3x8vPV14sQJV5cEAAAAAECGXHpNuqMCAgJ0+vRpm7bTp0/Lz89P3t7eGa7j6ekpT0/PrCgPAAAAAIB7cl/NpNepU0cbNmywaVu3bp3q1KnjoooAAAAAAHAel4b0S5cuKSIiQhEREZJuPGItIiJC0dHRkm6cqh4aGmrt36tXL/3999964403dOTIEX322Wf67rvvNGjQIFeUDwAAAACAU7k0pO/atUvVq1dX9erVJUmDBw9W9erVNWLECElSTEyMNbBLUnBwsH788UetW7dOVatW1cSJE/Xll1/y+DUAAAAAwAPBYhiG4eoislJCQoL8/f0VHx8vPz8/V5cDAMAt1Ztaz2ljbe231WljAQAAxziSQ++ra9IBAAAAAHiQEdIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEjlcXQCcr97Uek4ba2u/rU4bCwAAAABwe8ykAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZhipD+6aefqmTJkvLy8tJjjz2mHTt23LLv7NmzZbFYbF5eXl5ZWC0AAAAAAJnD5SF94cKFGjx4sN59913t2bNHVatWVdOmTXXmzJlbruPn56eYmBjr6/jx41lYMQAAAAAAmcPlIf2jjz5Sz5491b17d1WsWFHTp09Xrly5NHPmzFuuY7FYFBAQYH0VLlw4CysGAAAAACBz5HDlxq9evardu3dr2LBh1jY3Nzc1btxY27dvv+V6ly5dUokSJZSamqpHHnlE48aNU6VKlTLsm5ycrOTkZOv7hIQE5+0AAAD3ic31Q5wyTsiWzU4ZBwAAZMylM+nnzp1TSkpKupnwwoULKzY2NsN1ypUrp5kzZ2r58uX65ptvlJqaqrp16+qff/7JsH9YWJj8/f2tr6CgIKfvBwAAAAAAzuDy090dVadOHYWGhqpatWoKCQnRkiVLVLBgQX3++ecZ9h82bJji4+OtrxMnTmRxxQAAAAAA2Melp7sXKFBA7u7uOn36tE376dOnFRAQYNcYOXPmVPXq1XXs2LEMl3t6esrT0/OeawUAAAAAILO5dCbdw8NDNWrU0IYNG6xtqamp2rBhg+rUqWPXGCkpKdq/f7+KFCmSWWUCAAAAAJAlXDqTLkmDBw9W165dVbNmTT366KOaPHmyLl++rO7du0uSQkNDVbRoUYWFhUmSRo8erdq1a6t06dKKi4vT+PHjdfz4cfXo0cOVuwEAAAAAwD1zeUjv3Lmzzp49qxEjRig2NlbVqlXT6tWrrTeTi46Olpvb/yb8L1y4oJ49eyo2NlZ58+ZVjRo1tG3bNlWsWNFVuwAAAAAAgFNYDMMwXF1EVkpISJC/v7/i4+Pl5+fn6nIyRb2p9Zw21tZ+W502FgDAMc78+3zcIuf8Xp5HsAEA4DhHcuh9d3d3AAAAAAAeVIR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAk8jh6gIAADCDGq/Pdco4u8eHOmUcAACQPTGTDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJPgEWwAADhR9OiHnTdYXj/njQUAAO4LzKQDAAAAAGASzKTjtjbXD3HKOCFbNjtlHAAAAAB4kDGTDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJPgEWz3qMbrc50yzu7xoU4ZBwAAAABw/2ImHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgmvSTSJ69MPOGyyvn/PGAgAAAABkGVOE9E8//VTjx49XbGysqlatqqlTp+rRRx+9Zf9FixbpnXfeUVRUlMqUKaMPPvhALVq0yMKK4ahPhvzgtLH6TmzttLEAAAAAwExcHtIXLlyowYMHa/r06Xrsscc0efJkNW3aVEePHlWhQoXS9d+2bZueffZZhYWFqVWrVpo/f77atm2rPXv2qHLlyi7YAwAAsg9+6QoAQOZy+TXpH330kXr27Knu3burYsWKmj59unLlyqWZM2dm2H/KlClq1qyZXn/9dVWoUEFjxozRI488ok8++SSLKwcAAAAAwLlcOpN+9epV7d69W8OGDbO2ubm5qXHjxtq+fXuG62zfvl2DBw+2aWvatKmWLVuWYf/k5GQlJydb38fHx0uSEhIS7rH6G1KSrzhlnIs5U5wyjiRdv3LdaWNddtJQV5ITnTOQnPfdAcDN+PvcPvx9DgCA49L+zTMM4459XRrSz507p5SUFBUuXNimvXDhwjpy5EiG68TGxmbYPzY2NsP+YWFhGjVqVLr2oKCgu6w6c5j1RP2Wzhpo+zZnjaQ3PnXaUADgdPx9bj/+PgcAZDcXL16Uv7//bfu4/Jr0zDZs2DCbmffU1FSdP39e+fPnl8VicWFl2UdCQoKCgoJ04sQJ+flx53k8mDjOkR1wnCM74DhHdsBxnvUMw9DFixcVGBh4x74uDekFChSQu7u7Tp8+bdN++vRpBQQEZLhOQECAQ/09PT3l6elp05YnT567Lxp3zc/Pj78E8MDjOEd2wHGO7IDjHNkBx3nWutMMehqX3jjOw8NDNWrU0IYNG6xtqamp2rBhg+rUqZPhOnXq1LHpL0nr1q27ZX8AAAAAAO4XLj/dffDgweratatq1qypRx99VJMnT9bly5fVvXt3SVJoaKiKFi2qsLAwSdKAAQMUEhKiiRMnqmXLllqwYIF27dqlGTNmuHI3AAAAAAC4Zy4P6Z07d9bZs2c1YsQIxcbGqlq1alq9erX15nDR0dFyc/vfhH/dunU1f/58vf322xo+fLjKlCmjZcuW8Yx0E/P09NS7776b7rID4EHCcY7sgOMc2QHHObIDjnNzsxj23AMeAAAAAABkOpdekw4AAAAAAP6HkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIh6mkpqa6ugQAAAAAcBlCOkzj/fffV9++fXXt2jVXlwIAAAAALkFIh2kUK1ZM06dP1zvvvENQBwBkiCfH4kGSdjxzXAO4GSEdpmAYhl544QUtWrRIH330kd5++20lJSW5uiwAgIkcOnRIFotFkjRz5kzt2rXLxRUB9+bChQtKTk7WxYsXJRHW8WDj+LYfIR0ud/MPbEhIiD744AONHz9eEyZM0NWrV11YGWAu3LMB2dnvv/+uli1batKkSXr99df16quvKl++fK4uC7hrX3/9tdq0aaNHHnlErVq10rJly6y/hAIeFD/++KNWrFghSbJYLAR1O+VwdQFA2j9Iixcv1pAhQ/Tkk0+qePHiGjFihC5evKj33ntPOXPmdHGVgGulpqbKze3G71WXL1+uY8eOqVChQqpRo4YqVqzo4uqAzJcvXz69+OKLeu+995SSkqJDhw6pVKlSun79unLk4L8zuL8sWbJEL7/8siZMmKDExERFRkaqXbt2GjZsmAYPHqz8+fO7ukTgnn3//ffq1KmTihYtquvXr6tdu3bWoM4vpG6Pf9VgCkePHlWPHj0UFhamF198UfHx8Vq2bJleffVVSdKYMWPk4eHh4ioB1zAMwxrQhw4dqrlz56pSpUqKiYlRiRIl9PLLL6tt27auLRLIZMWKFVPRokV18eJFBQYGavny5Ro0aJBy5MihlJQUubu7u7pEwG6rVq3Sc889pz59+ljb6tatq9DQUF27dk2jR4+Wl5eXCysE7s3evXs1YcIE9ejRQykpKXr77bdlGIbat29PULcDIR2mkJCQoHz58qlp06by8PBQwYIF1bNnT6WkpOjVV19Vnjx5NHDgQHl7e7u6VCDLpf0j9vHHH2vBggVaunSpateurcmTJ+vNN9+0XtPYuXNnSeIfPjww0s4gSTum69evr59//llr1qzR9OnTlZSUpGHDhhHQcV8xDEMxMTEKDAyU9L9LmV544QXlyJFDzz//vMqVK6eXXnqJv89x33J3d1eJEiU0YMAASdKkSZP0zjvvSBJB3Q5ckw5T8PLyUmRkpP7++29J//sHq0WLFipUqJDeeustvf/++64sEXCpS5cu6dChQ3rttddUu3ZtLVu2TCNHjtTAgQPl5eWlcePGaenSpZLEP3h4INx8iceBAwe0c+dO5cqVS4899pj69OmjDh06aM6cOfrwww+t64SFhWnfvn2uKhm4rbRrcdN+4bRo0SIdOnTI+osowzDUpUsXvfvuuxoxYoSOHz/O3+e476T9H75KlSqaMGGCKlWqpEqVKqlv376qU6eO3nnnHX3//feSbvwsXLlyxZXlmpbF4Op9ZLG035r99/TE5557TtHR0froo4/06KOPSroRTAYNGqS6deuqTp06Kl++vKvKBlzujz/+UO7cuRUfH6/WrVurX79+GjhwoL799lv17NlTRYsW1ZQpU9SsWTNXlwrck5tnV9566y0tWrRIqampunbtmtq1a6fXX39dbm5u+vTTT/Xtt9+qXr16OnfunA4cOKC///6bmXWY2vXr13Xp0iV16tRJHh4emjJlih566CHr/RW2bt2q9u3ba/Xq1apWrZqrywXuStrxfPP/9/ft26ePP/5Y27dv19ixY/X000+rUaNGeuONN9SyZUsXV2wuzKQjS6X9x2vDhg0aOnSoBg8erEOHDkmSXn31Vfn7+6t///5auXKl9u3bp/fee0/h4eF65plnCOjINlJSUjJsL1WqlIoWLaqff/5ZRYoU0UsvvSTpxillISEheumll/TUU09lZalApkgL6B999JG++uorff755zp27JgaNWqkuXPn6vjx4woICFCfPn00ZMgQnTx5Un5+fjp27Jjc3d15EgJMa9asWWrZsqXy5Mmjl156SQkJCRoyZIiOHj1qvQFisWLFlCdPHh5Fi/vW7Nmz1bx5c12/fl3u7u7Ws0iqVq2q/v37q169eho+fLjKly+vv/76i/+7ZICQjixlsVi0du1aNW3aVFFRUZo3b546d+6sOXPm6PHHH9fbb7+t8uXLq02bNurQoYO++eYbfffdd8qTJ4+rSwcy3alTpyTJ+hvnjz/+WH369NFLL72kmJgY63/gDMPQuXPntGvXLl27dk3z5s1TnTp1rLOLtwr5wP3CMAxdv35dP//8s4YNG6aGDRvqhx9+0JIlSzR27FjVqVNHycnJKly4sHr37q3169dr/vz5ypkzp65fv249TR4wE8MwdO3aNf3777+KiYlR586d1a1bN12+fFktWrTQ3Llz9d1336lXr17y9/e3nlUI3E8Mw9DVq1cVHx+vf/75x9p2c1B/9tlnFRUVpYIFCyoqKsr6dzf+h9PdkSXSZtDPnDmjUaNGqWrVqnr55Zcl3TjN/ciRI+rbt69CQ0OVI0cOHT16VIZhKG/evCpcuLCLqwcy37BhwzR9+nT99ttvKlu2rEaOHKkpU6aoefPm2rVrl65cuaJ58+apfv362r17t4YMGaK///5bOXLkUO7cubVnzx7lzJmTm7DggZCamqqrV6/qySef1KeffqqLFy+qRYsWmjBhgl555RUlJydrxowZqlmzpmrXrm095jn+YSYZHY/x8fGqWrWqWrVqpU8++USS9Ouvv2revHlauHChSpYsqYIFC2rZsmXKmTMnTy6A6d3uOG/Tpo2mTJlisywuLk4dOnRQTEyM9u3bpxw5cvAozQzwq2ZkCYvFoh07dqhdu3b67bffVKZMGeuyOXPmqEKFCpo6dapmzZqlS5cuqVy5cipfvjwBHdnGkCFDVLFiRbVp00YHDx5UdHS01q5dq/nz5+vIkSN65JFH1LFjR4WHh6tGjRqaPHmyJkyYoDfeeEN79+61/haagIL70X9PT3dzc5OXl5dKlCihdu3aqXnz5vr000/1yiuvSLrxH8DFixfr999/tznmOf5hJhkdj/7+/ho/frw2bdqk7du3S5Jq166tqVOnav/+/dq0aZNWrlxp/TudgA6zu91xvn79eu3YscNm2T///KP8+fMrIiKCgH4bhHRkmfLly8tisWjPnj2KiIiwnvaSM2dOzZ07V1WqVFFYWJj1jo9AdlKgQAGtXLlSfn5+at68ufbt2ycfHx9JNwLL8uXLVadOHXXq1EmbN29WtWrV1KlTJ/Xq1ct6Yxb+kcP96Oa7uP/+++86fPiw4uPjJUlDhw5VoUKFVKpUKYWGhsowDF24cEHdunXT9evX1aNHD1eWDtzRuHHj9Oyzz+rHH3+0tlWtWlUeHh7auXOnJFlP8y1UqJBy584ti8Wi1NRU/k7HfeN2x/mvv/4q6X+/jK1cubIWLlxo/UUUx3nGCOnINP+9ksLPz0+rVq1So0aN9PXXX+uHH36wXjvr7u6ur776Sk2aNFFISIgrygVcLm/evPrpp5/08MMPa+/evTp79qyk//3DtmzZMj3++ONq2LCh9u7da7Musy24X6UF9DfeeEPt2rVT9erV1atXL/3000/Wmwxdu3ZNxYoVU0hIiJo1a6bTp09r06ZNcnd35x4MMLVq1arp+PHjGjlypB5//HFt27ZNZcuW1cCBAzVixAhFR0dbQ8rNM5LcVwH3E3uO87RHDd6MgH5rXJOOTJF2fcqOHTu0fft2JSUlqVq1amratKkuXryop59+WleuXNHw4cPVsmVLAgaypZtnEG924cIFtWjRQufPn9eKFStUrlw5m2u+3nzzTY0dO5afG9zXbj7+V61apQEDBmjatGn6999/9eWXXyolJUUDBw7U008/rZMnT2rmzJlyd3dXkSJFFBoaKnd3d2ZhcF+4fPmy9u3bp/fff19//PGHihUrpg4dOmjevHlq3bq1hgwZwt/nuO9xnDsXIR2ZZvHixXr11VdVvXp1+fv7a9GiRRo7dqyGDRtmDerXrl3TgAED1K5dO35wka3cHFB++OEHnTx5UiVLllTp0qVVunRpxcfHq0mTJkpISNDy5cvTBXVJ3FAID4S1a9dqxYoVKlWqlAYPHizpxmnv7777ruLi4vTqq6+qY8eO6dbj+Mf94L+/jP3hhx+0efNmffrpp0pOTlb37t311VdfubBC4N5xnDsfIR1Oc3OAOHTokJo0aaK3335bvXv31okTJxQcHKzBgwcrLCxM7u7uSkhIUP369VWwYEEtXbrUev0tkJ0MHTpUn332mUqVKqXo6Gg9/PDDevHFF9WtWzfFx8eradOmunTpkhYuXKhKlSq5ulzAqaKiotSyZUtFRkaqV69e+uijj6zL0oL65cuX1aVLF7344osurBS4N/8NMXv37tWaNWv02muvcTYIHhgc587DBS+4Zz/88IMkWW90Iklnz55V+fLl1bt3b0VGRqpu3brq2bOnPvzwQ7m7u+vIkSPy8/PTL7/8oi+//JKAjmzj5utnd+7cqfXr12vNmjXat2+f1q1bp3Llymnq1KlasGCB/P399dNPPykpKUljx451YdWAc/x3XqBkyZKaPn26qlevri1btmjdunXWZVWqVNHo0aOVlJSkiIiILK4UsM9/j+lbzX3dHFwMw1D16tX15ptvWu9uDZgZx3nWI6Tjnvz1119q06aNXnjhBUn/++G8cuWKzpw5ox07dqhhw4Zq0aKF9Xmgv/zyi0aNGqXjx4/Lx8dHJUqUcFn9QFY5dOiQpP/d4O2DDz7Q9OnTVaFCBdWuXVuSVLNmTQ0cOFDBwcFatmyZrl27prx582rv3r36+uuvXVY74AypqanWs61iY2OVmJiolJQUPfHEE3rvvffk6emp6dOna+PGjdZ1Hn74Yc2aNUuTJ092UdVAxtJCStox/ffff9u8v53/9mGGEWbFce46hHTck+DgYK1YsUKrV69W165dre2lS5dWwYIF9dRTT+mJJ57Q559/bg0ny5cvV3x8vHx9fV1VNpClBg0apG7dumnLli3WtosXL2rWrFnatm2bTp48aW2vVKmS2rdvr8WLF+vEiROSJF9fX+5ijfte2i9xR40apcaNG+vJJ5/Ua6+9pitXrqhhw4YaNWqUYmNj9emnn2rTpk3W9R566CG5ubmle5Y64Eo3nz0YFhamt99+2671bp6B5IpTmB3HuesQ0v+/vfuOiupM/wD+HXBAEBAVbChYABU0YA1RIxsTFxtYo0YiCsK6xohgBMQoxa7BQmAJKGCJ/MSgsggRLBiiAkGWABYsJNZEBZMgBBUE5v394eHuYNnV3azMwPdzDucMt8x5Rx/u3Octz6X/ioaGBsaMGYNdu3YhMTERLi4uAJ4k6aNHj4a2tjZMTExQVFSEixcvwtfXFzExMdi4cSPatm3byK0nej08PDxQXV2NDRs2ICMjAwCwevVqhIaG4vr169i5cyd+/fVX6fiePXvC3Nz8malhLJJF6kg5ud6zZw/Cw8OxePFiDBgwANnZ2ZgwYQIePnyI9957D8HBwbh37x6CgoLw/fffN3gfPpKKVMGyZcukmYH1Mfnbb7+hT58+APAvO5OUa/ckJyc36IwiUiWM88bHbzz6j9X3jFVUVGDcuHHYu3cvDh06BGdnZwBPnnk7d+5cfPPNN7CxscGsWbOQlpaGEydOoG/fvo3ZdKLXpq6uDlZWVkhISMDNmzexceNGaTrvwoULsXr1agQGBmLdunX49ttvceHCBQQGBkJfXx/m5uaN3Hqi/45yEaGUlBTcvn0bn3/+Odzc3PD555/Dx8cHZWVlcHJykhJ1X19fWFlZwdbWtnEbT/SUn376CefOnUN8fDx27Nghbb9+/brUqfqiziTlxCUyMhITJkzg9F9SSYxzFSGIXpFCoZBeHz9+XIwePVrU1NSIx48fi5SUFNG6dWsxc+ZM6ZgbN26IjIwMcenSJVFaWtoYTSZqVLW1tUIIIS5fviz69u0rxowZI9LT06X9a9euFTKZTMhkMjF79mwxefJk8fjxYyGEEHV1dY3SZqL/xpgxY0RhYaH0e25urrC0tBQGBgYiMTFR2v748WNx4MABMXjwYPHnP/9ZVFZWNngfxj+pmqKiIjF79mwxdOhQER0dLYQQYsKECSI4OFgI8fyYrampkV5HRkYKQ0NDsX///tfTYKL/AOO88XEknV7a5s2bkZSU1GB9ypkzZ6Cnp4cWLVpALpdj7NixiIuLw9dffy2NqJuamsLe3h69evWCsbFxY34EotdGeSpY/TR1S0tLaa35Z599Jo2o+/v7IywsDAAwcOBAxMbGQi6Xo66ujlN8Se3cuHEDb7zxBnr37i1t69mzJz7++GO0bdsW0dHR0na5XA5HR0f4+/vj0qVLWLZsGYB/ztRi/JOqqL+m9+nTB35+fujZsyeio6MRFxeHbt26oUOHDvjxxx9x48YNlJSU4O7du8jOzgbwz4JZUVFR8PX1RXR0NKZMmdJon4XoRRjnKqSxewlIPZSVlYkZM2aIVq1aibS0NGm7p6encHZ2bnBsXV2dSElJEUZGRmLixImvu6lEjU65h/nixYsiOztbVFRUiEePHgkhhLh06ZLo27evGD16dIMR9VWrVgmZTCa2bt0qysrKXnezif5wmzZtEt98840QQoiKigoREREh+vXrJ+bMmdPguMePH4uMjAxp1gmRKlG+ppeUlAghnsyMmjVrlnjzzTeFTCYTBgYGwsLCQnTo0EG0b99etG/fXjg5OUmzDyMiIkTr1q05skgqi3GuWpik00srLi4WHh4ewtDQUCQnJwshhPD29hbu7u5CCCElIEI8mfJy8OBBYWpqKn7++edGaS9RY1BeDvLpp58KS0tL0a5dO2FjYyO2bNki7t69K4R4krz369dPjBs3Thw+fFg6Z+PGjUImk4mIiIgG70Wkbn755Rcxbtw4YWhoKDIzM4UQQty/f1+Eh4cLW1tb4erq+tzzmKiTKlFOXFauXCkmT54s8vLyhBBCXLhwQcyaNUvY2dkJT09PUV5eLkpKSkRhYaG4cuWKFMtXr14V3bp1EwkJCY3yGYj+Hca56mGSTv+W8h9uVlaW8PPzE4aGhuLUqVMiNDRU+Pj4iKqqKnH//n3puJs3bwohxDPrC4mai1WrVolOnTqJ1NRUIYQQTk5OwszMTHz66afizp07QognI+rt27cXixcvbpCYbNmyRRQVFTVKu4n+U8/rVDp37pz48MMPhZGRkTh9+rQQ4p+J+sCBA8WECRNecyuJ/jP+/v6iQ4cOYs+ePeKnn36SthcVFQkXFxdhZ2cndu3a9cx59df2+us+kSpjnKsOmRB8eB29WH14yGQyHD9+HD4+PvD29kZWVhbi4+OhpaUFAwMDKBQKVFVVQU9PD48fP4auri4yMzPRpk2bRv4ERK9fUVER5s2bB19fXzg6OuLYsWOYMmUK3nzzTVy5cgWzZ8/GRx99hI4dO+LmzZswMTGBpqYmamtrWQWV1JJyFXfxZABA+v38+fNYu3Ytjh07hr///e8YNmwYysvLERkZiUuXLiEmJoZrz0ml5eXlYdq0adi2bRveffddaXt93F+6dAkbNmxAZmYmNm/ejPHjx0vHCKVq10SqjHGuWng3SC+knKDHx8dj5syZAIBWrVph9erVaNmyJaKjo/HBBx/A09MT169fR01NDWQyGSwtLZmgU7PVuXNneHp6YuTIkTh16hRmzZqFkJAQ/OUvf4GDgwN2796NsrIyBAYGwtTUFMCTR7UxQSd1pJygR0ZG4uTJk5DJZBgyZAgWLVqEvn374tNPP4UQApMnT0ZiYiKGDh2Kjz/+GLq6ulIxUibqpKp+/fVXCCFgY2MjbavviKqpqUHv3r2xZMkS9OzZE2PGjGlwLhMXUheMc9XCO0L6l2QyGfbv34+ZM2fi4MGD2LdvHy5cuIApU6bAw8MDNTU12LVrF6ZOndqg142oOTM0NMTo0aPRqlUr7Nq1C5MnT8bcuXMBAN26dcOtW7egUCjQrl076Zz6CvBE6qY+uV66dCm+/PJLTJ06Ffr6+vDz88O9e/ewevVqWFtbY/ny5dDU1MTw4cNRWFiIfv36AUCDUXciVaStrY3bt2/j+vXrMDIykmaLyGQypKenw9DQEHZ2drC2tgbwpNOV13RSN4xz1cJvRXohmUyGxMRETJs2DTExMZg4cSIqKytx+/ZtAIC1tTUWL16M6dOnw97eHkePHm3kFhOpDn19fQDAb7/9hgcPHqC2thYAUF5ejk2bNiE8PBwymQxccURNwd69e7F//34cOHAAoaGhGDRoEOrq6rB27VrMnz8fwJPvjCVLliAgIABWVlbSuRyBIVWh/OhMZWZmZrCzs8PmzZtx9uxZyGQyaXRx48aNSE5ObnA8ExdSZYxz9cA16fQvpaamoqysTJrq7unpifv372P37t3SMSkpKcjLy8OMGTPQq1evxmoqkUry8fHBkSNHYG5ujjt37qC8vBznzp2DpqYmp/hSk1BXV4eoqChUVVVh8eLF+Prrr/Hhhx9i9erV0NHRgbu7O/z9/bFmzZoG57EGA6kS5etxamoqKisrUV1djQ8//BAAsHPnTmzfvh06OjpwdnaGpqYmvvzyS5SWliIvL4+xTGqBca4+mKTTS6mf7rJ27VocOnQImZmZ0NTUxMqVK3H48GGkpKTAyMiosZtJpDKUi6gsW7YMJSUl0NDQwBdffIEWLVpwmhiprecVCKqoqMC9e/egp6cHBwcHODs7w8fHB+fPn4e9vT3Kysqwdu1aLF26tJFaTfRiyjHt7++PvXv3ok2bNrh37x769euHL7/8EkZGRkhKSkJSUhISEhLQt29fdOrUCfv27YNcLuc1nVQe41y9MEmnl1L/h/23v/0NYWFhuHTpEoKDg7F69Wrk5ORgwIABjd1EIpXzoi8zjiCSulIehSktLUW7du0axHhOTg5mz56NI0eOwMzMDD/++CPWrl2LWbNm4e233+bNHam0kJAQbNq0CcnJyRg0aBC2b9+OefPmwd7eHvHx8ejQoQOAJ7Gvq6uLVq1aQSaT8ZpOaoVxrh44z5JeSd++fdG2bVt8/PHHWLduHb777jsm6NRsvKhP80Xb6xOSp9d/8UuO1FV9gh4UFIQJEyZg8ODB2LNnD0pKSgA8qcVw5coVxMXF4eLFi1i4cCHu3bsHe3t76TGDRKqirq5Oel1SUoLz588jLCwMgwYNQlJSEnx8fLBy5UrcuHEDzs7OuHXrFgCgffv20NPTk+qK8JpOqoxxrp44kk6vJCcnB2+99RY0NTVx5swZ9O/fv7GbRPRaKI8gFhUVQUNDA1paWujRo8cz+5UpTy+7cuUKOnXqJBWVI1JHu3btgr+/P4KDg3H48GEUFxdj3LhxWLBgAUxNTRESEgJ/f39069YNhoaGyMrKglwu53N0SWVduXIFlpaWSExMxPDhw3Hjxg28//77WLJkCRYsWIDQ0FB4e3vDxsYGR48ehbGxcWM3meiVMc7VC0fS6ZXY2tpi5cqVOH/+PBN0ajaUHxEVEBCAmTNn4k9/+hNcXV0RFhYG4MkI49Mj5spJSVhYGKZPn46ysrLX23ii/9LTcV1dXY2AgAB4eHggMTERzs7OOHbsGMLCwlBSUoIlS5bg4sWL2LNnD3JyciCXy1FbW8sEnVRGYmIiAgMDAQBeXl7w8/NDbW0tJk2aBGNjY5w6dQpWVlZS0Vx9fX3MnTsX1tbWaNu2bWM2neilMc7VG+ct0CvR1taGv78/1xVSs1KfXAQHByMyMhL/93//BxMTE2zYsAGLFi3CgwcPsHTpUilR19DQaJCgR0VFISAgAF988QVMTU0b86MQvRLlDqq4uDiUlJQgPz8fDg4O0jH+/v4AgISEBMhkMsyfPx/m5uYwNzcH8CTJ5zRJUhXV1dX44YcfsH79enz77bfIy8tDdnZ2gxi9cuUKbty4gdatW+P3339HUlIS/vSnP8Hb2xsAnw9Nqo9x3gQIIiJ6LoVCIb3+xz/+IYYMGSIyMjKEEEKkpaUJfX19MWnSJNGqVSuxceNG6diamhrpdWRkpDAwMBAHDhx4fQ0n+gPU1dVJr318fISBgYHo27ev0NTUFHZ2duLatWsNjl+/fr0wMTERYWFhr7mlRK+mqqpKDB06VMhkMrFgwQJpe21trRBCiIsXL4p27doJMzMzYWlpKfr27dvguk6kDhjn6o1d20REz6G8xvzSpUt44403MHHiRAwePBgnTpzAnDlzEBISgmnTpmHq1Knw8/OTHjNV31MdFRUFX19fxMbGYvLkyY35cYheWX38X7lyBb/88gtOnDgBW1tbREdHY/fu3Vi+fDnWrFkDMzMzAICfnx86d+4sTZ0kUiXK1/SamhqMHDkSQ4YMwa5du2BsbIzAwEBoamri8ePH6N27N7777jvs27cPurq6WLhwIR+dSWqBcd50sHAcEdFTxFPPEv3uu++QlJSEli1bQktLC3PnzoWenh4+++wzaGlpYcGCBTh79ixat26N5ORkyGQyJCQkwMXFBXFxcUzQSW3t27cPy5YtQ6dOnZCcnIw2bdoAeNIBtWfPHpiZmWHt2rXPLOPgTR6pEuXEJSEhASYmJhgwYAAUCgUiIiKwevVqeHt7S+t3gScFQq2srKTfGdOk6hjnTQsLxxERPaU+QT9z5gxOnz6N9evXw8DAAFpaWqiurkZBQQGqq6uhpaWFhw8forS0FAsWLEBKSop0rq2tLZKTk5mgk1pTKBTo2rUrioqK8OjRI2n7vHnzMGvWLPz000/461//Kj2CrR5v8khVCKW6CkuXLoWnpycuX76MR48eQVdXF66urli+fDm2bt2K5cuX48GDBxg7diw+++yzBu/DmCZVxjhvejiSTkT0HBEREcjKysLjx4+xd+9eaGpqSr3UGzZsQFhYGEaNGoXi4mI8fPgQubm50NTUhBCiwZclkbpLSUlBUFAQdHR0EBcX12DUfMuWLSguLkZ4eDhjnlTahg0bsHnzZqSkpMDW1hZyuVzaV11djW3btsHHxwddu3aFjo4O8vLyGhxDpA4Y500Hk3QioufYuHEjli1bhq5du+LYsWNSpWoA+PHHH7F//36cOHECJiYmiIqKglwu5zQxalKUl338/e9/R1hYGBQKBXbv3o2uXbs+c5zyVEsiVVJdXY3p06fjrbfegp+fH27evImioiJERUWhT58+cHZ2hrW1NYqLi3HhwgU4OjpCU1MTtbW1fDIBqQ3GedPCJJ2Imr309HS888470NDQQHBwMDp27Ih58+YhIiICK1asgLu7OxYuXIguXbq88D34JUdNkXKinpiYiPDwcMhkMkRHR6Nbt27PPY5IlQghUFlZiVGjRqFfv34YNmwYEhMTUVlZCQCoqqqClZUVwsPDoa2tLZ3HTldSJ4zzpodd3kTUrN25cwcff/wx7Ozs4OnpiXXr1sHOzg4A8NFHH2Hp0qWIi4tDTEwMbt++LZ2nUCik10IIJujUJMlkMtT35U+aNAmenp4oLS3Fpk2bnjmOqLEJIRpcm+vp6+vDy8sLGRkZWLp0Kfr374/g4GCkp6fjrbfeQnl5eYPEBeDaXFJdjPPmgXeVRNSsdejQAbt27YKDgwPOnz+P06dPw8bGBo8ePYKOjg58fHwghJDW3M6ZMwddu3ZtMK2XCQo1ZfWJukwmw4QJE9CmTRsMHz68sZtF1EB5eTlat24tXY/Dw8NRXFyMuro6BAYGYsaMGRg+fDhkMhlMTEyk8y5cuIDu3bs3VrOJXgnjvPngSDoRNUv1vdAaGhpo0aIF2rZti86dO8Pb2xtVVVXQ0dFBVVUVAMDX1xcLFy5EUFAQjh071pjNJvpDvGil24u2K4+ojxgxgmvPSaX4+/uja9euKC0tlX4PCgrC9evXcfz4cVhbWyM/Px9dunSBiYkJysvLceTIETg6OuLWrVv4/PPPAbw4/olUAeO8eeG3LBE1O8oFrs6fP4+OHTsiLy8Pu3fvxu+//46RI0eiuroaLVu2lL7MfHx8kJCQgNmzZzdm04n+awqFQhqFKSoqwqVLl3D16lUAkArA/TtXrlzB77///j9tJ9HLcnFxQb9+/fD222/j1q1bUnKSlJSEkydPYujQoXBwcMD3338PALh69SrWr18PmUyG/Px8tGjRAnV1dZwVRSqNcd68sHAcETUrygn6ihUrkJqaijVr1mDUqFFQKBTIyMjAkiVLoKenh+PHj6Nly5Zwc3ODvb29lKCz0AqpK+UCbwEBATh06BDu3r2LXr16YerUqVi4cCEAPFOpXfm8sLAwxMbGIikpqcHj2Iga0w8//ABnZ2fcvHkTpqam2LNnDywsLAAA9+/fh6urK7KyspCamooBAwaguLgYPXv2hIaGBgt/ktpgnDcfHEknomalPvFYvnw5oqOjERwcjMGDB0vT3keOHInQ0FBUVFSge/fusLe3R3p6OpydnaX3YIJO6qo+0Q4ODkZkZCRCQkLwzTffoHv37li0aBHWr18P4MnfSf2IunKCHhUVhYCAAPj5+TFBp0anPOvD3NwccXFxGDRoEPLz81FdXS0dY2hoiB07dmD48OEYNGgQLl++DAsLCynOmbiQKmOcN0/83yKiZufChQv46quvsHPnTjg4OKCiogLFxcU4deoUevfuDXt7eyQlJSE2NhYKhQLp6enSNDEm6KSOlBPtvLw8HD58GAkJCbC3t8eRI0dw8OBBTJw4EatXr4ampiZ8fHyeGXmJioqCr68vduzYgcmTJzfmxyFqMNsjOzsbJiYmMDc3x6ZNm1BWVoaJEyciKysL7du3hxAChoaG2L59OywtLWFubi69D+srkCpjnDdfnO5ORM1OYWEhpk+fjtjYWNTW1uKrr75CRkYGysrKYGxsjFWrVsHR0bHBOUzQSV0p3+RdunQJPXv2REhICBYtWoTvvvsOzs7OCA4OxrRp0zB16lScOHECS5cuxdq1a6X3qE/QY2NjMWXKlMb6KEQAGsb0smXLkJKSgsDAQIwZMwa6urooLi6Gi4sL7t27h8zMTHTo0OGZJRyc+kuqjnHevLFbhYiatOcVwerVqxc0NDTg7u6O9957DwCwbt06ZGdno7a2Fnfv3n3mHCbopI6EENINm7+/P+bPn49Hjx7hk08+ga6uLuLi4jBt2jTMmTMHhoaG6NWrF4YNG4azZ89KRRMTEhLg5eWFHTt2MEEnlVAf04GBgYiNjcWmTZvg4OAAXV1dAICFhQXi4+PRrl07jBgxArdv335mJJGJC6k6xnnzxv85ImqylHuUc3NzparWQ4YMQX5+PlJSUmBsbIzhw4dLxxkYGLxUdWsidVA/xf3MmTM4ffo0QkJCYGBgAACorq5GQUEBBg8eDC0tLTx8+BClpaVYsGABZsyYIb2Hra0tkpOTpQ4tIlVw9epVHDhwAFFRURg1ahR++eUX/PDDDzh69Ci6deuGadOmYf/+/XjnnXfg7e2Nffv2NXaTiV4Z47z5YpJORE2S8giin58f9u7dC5lMhpKSEnzwwQdYsWKFNCr44MED3L9/Hx4eHqiqqoK7u3tjNp3oDxUREYGsrCx06tQJgwYNAvCkA0tbWxvTpk1DWFgYXF1dUVxcjIcPH+L9998H8ORvSAgBCwsLqXowkapo0aIFtLS0UF5ejuPHj2Pv3r34/vvvUV1djYcPH6KsrAzz5s1DRkYGOnXq1NjNJfqPMM6bL053J6ImqX4EMTw8HLGxsYiPj8fRo0eRkpKCtLQ0+Pn54caNGwCA6OhoTJgwAZWVlcjJyYGmpibq6uoas/lEf5jKykrEx8cjNzcX165dA/DPaZT1j127ffs2LC0tG8S/TCZjsSFSCc+b3dSxY0d07NgRW7duhYODAwwMDLB+/XpkZWXBwsICv/32GwCgS5cuvKaTWmCckzKOpBNRk5abm4spU6Zg6NChEEKgV69eSE1NxYgRI9CnTx+sXLkSs2fPhoGBAVxcXKCpqclCK6S20tPT8c4770BDQwPBwcHo2LEjfH19oaenhxUrVmD79u1YuHAhunTpAgDo2bMn/Pz84OfnJ70H459UifKypQsXLkBLSwtCCFhaWuLgwYPIycmBnp4eBg4cKJ3z6NGjZ+qIsK4IqTLGOT2N1d2JqMlQfswUANTU1GDMmDHo0qULdu7cCYVCgdraWmhpaWHz5s2IjIxEdnY22rVrJ53DKu6kru7cuYORI0dCX18fdnZ22LZtG3JycmBjYwMA+OyzzxAaGgoPDw94eHigc+fOABreHD79N0TUmJTjMSgoCPv378fDhw+hpaUFf39/zJ49Wzq2srJSqqlw584d/OMf/2BnE6kFxjk9D+exEVGTUF8UDnhSaKW0tBRyuRwuLi7Yv38/0tPToaGhAblcDgDQ1taGkZER9PX1G7wPE3RSVx06dMCuXbtQXFyM6OhonD59GjY2Nnj06BEAwMfHB56enoiJiUFMTAxu3boFoOHzc5mgkypRTlwiIiKwZcsWHDlyBIMGDYKrqyuioqKkY3fv3g0XFxc8fvwYubm5aNGiBaf+klpgnNPzMEknoiZB+VmiTk5OsLKykqb5urm5YcGCBUhLS4NCoUB5eTlSUlJgYmIiJe1E6qp+HaOGhgZatGiBtm3bonPnzvD29kZVVRV0dHRQVVUFAPD19cXChQsRFBSEY8eONWaziV5KXl4evv32W8THx2PUqFG4cuUKvv76a4wbNw7z58/H9u3bAQBz587F4sWLcfToUcjlctTW1rLTldQG45yexunuRKTWlKfqJiQkwNvbG+Hh4Th79izS0tJgamoKOzs7/Pzzz9iyZQt69OgBTU1NaGtrIzc3F3K5nFN8SW0px//58+fRtm1b6OrqoqioCB999BF0dXXxzTffQFtbu0GcHzx4EBMmTODNHamcp6/HP/30E+Li4uDl5YXMzEx8+OGHCAgIwKxZszBp0iQcP34cGzZsgI+Pj3QOly2RqmOc07/DJJ2ImoSTJ0/iwIEDsLGxgZubGwDg0KFDCAsLQ5s2beDh4YH27dtLxVemT5/OInGk1pQT9BUrViA1NRVr1qzBqFGjoFAokJGRgSVLlkBPTw/Hjx9Hy5Yt4ebmBnt7e2mNI2/ySJUox+OPP/4IPT09dOjQQYr1OXPmQFdXF6GhoZDL5fjrX/+KvLw8tGzZEidPnmRnK6kFxjm9DE53JyK1d/fuXbi5uWHnzp2oqKiQtjs5OcHT0xO//vorIiIiUF1djb/85S+YOXOm9KgSJuikruoT9OXLlyM6OhrBwcEYPHiwNO195MiRCA0NRUVFBbp37w57e3ukp6fD2dlZeg8m6KQKvvjiCxQUFEjx6O/vjwkTJsDa2hq+vr7Iy8sDABQWFqJVq1aQy+V49OgR7t27h6CgIJw6dQoymQwcdyJVxjinV8GRdCJqEs6ePYv3338fZmZm2LRpE/r16yftO3z4MPz8/DB+/HisW7euEVtJ9Me6cOECJk2ahLCwMDg4OKCiogIlJSU4deoUevfujaFDh+LatWuIjY2FQqFAcHCwVGiICTqpgmvXrmHEiBEYM2YMfH19paUa9cuWDh8+jM6dO2P58uU4ffo0lixZAldXVxQUFKCmpga5ubnQ1NTksiVSaYxzelVM0omoySgsLISrqysGDRqERYsWwdraWtqXlZWFN998k4kJNSmFhYWYPn06YmNjUVtbi6+++goZGRkoKyuDsbExVq1aBUdHxwbnMEEnVVNQUAB3d3e8/fbb0NDQgJWVFebOnQsASElJwaZNm9CmTRvMmDEDv/zyCw4dOgQTExNERkZCLpczpkktMM7pVXC6OxE1GTY2NoiJiUFeXh5CQ0NRVFQk7Rs6dKg0xZ1IHdVXcVfWq1cvaGhowN3dHe+99x4AYN26dcjOzkZtbS3u3r37zDm8ySNVY2tri23btuH06dPYsWMHfv/9d2nf+PHjsXjxYlRUVOCrr76CjY0N0tLSEBMTw+rWpFYY5/QqmKQTUZPSv39/REdHo6CgAIGBgbh27VqD/fySI3WkXCQuNzcXOTk5OHPmDFq2bIn8/HysWrUKx48fx+effw5HR0eYmprCwMDguYk9kSoaMGAAYmNj0aZNGxw+fBjnzp2T9jk6OsLb2xuXL19GcnKytF0IwboipFYY5/SyON2diJqkM2fOIDIyEtHR0VJyQ6SOlNcg+vn5Ye/evZDJZCgpKcEHH3yAFStWoEePHgCABw8e4P79+/Dw8MDdu3eldYxE6oLLlqg5YJzTv8MknYiarPrkRnkUkkhdhYeHIzg4GElJSWjXrh1u3bqFWbNmYfjw4QgJCYGZmRlCQ0Px5ZdfQldXF+np6VzHSGopPz8f7u7uGDhwILy8vGBlZdVgP2OamgLGOf0rTNKJqEljJVRqKmbPng0dHR1ERkZKcV1QUIARI0bAy8sLK1euxP3795GYmAgXFxdoamqitraW0yRJLeXn52PevHkwMzPDxo0b0b1798ZuEtEfjnFOL8KhJSJq0pigkzp6uv+8pqYGP//8M6qqqqT9jx8/hq2tLYKCghAfH49ff/0VhoaGcHV1lYokMkEnddW/f3+Eh4dDX18fZmZmjd0cov8Jxjm9CJN0IiIiFaJQKKTOpatXr6K0tBRyuRwuLi7Yv38/0tPToaGhAblcDgDQ1taGkZER9PX1G7wPp0mSuhsyZAhiYmKgoaHBIojUZDHO6XmYpBMREamQ+voJy5Ytg5OTE6ysrODr6ws9PT24ublhwYIFSEtLg0KhQHl5OVJSUmBiYiIl7URNiUwmgxCCdUWoSWOc09M4D46IiEgFKBc4TEhIwO7duxEeHo6zZ88iLS0NN2/ehJ2dHRwdHTF+/Hj06NEDmpqa0NbWRm5urnSTxyUe1NQwpqk5YJyTMhaOIyIiUiEnT57EgQMHYGNjAzc3NwDAoUOHEBYWhjZt2sDDwwPt27dHTk4O9PT0MH36dBaJIyIiakKYpBMREamIu3fvYvjw4bh37x6Cg4Ph5eUl7UtOTsbWrVthYGAAf39/DBkyRNrHR/UQERE1HVz4QEREpCI6duyIgwcPomPHjjh8+DDOnTsn7XN0dMQnn3yCH374AYmJiQ3OY4JORETUdHAknYiISMUUFhbC1dUVgwYNwqJFi2BtbS3ty8rKwptvvsnEnIiIqIlikk5ERKSC8vPz4e7ujoEDB8LLywtWVlYN9nOKOxERUdPEJJ2IiEhF5efnY968eTAzM8PGjRvRvXv3xm4SERER/Y9xTToREZGK6t+/P8LDw6Gvrw8zM7PGbg4RERG9BhxJJyIiUnH1zz9XfpY6ERERNU1M0omIiNRAfaJORERETRu744mIiNQAE3QiIqLmgUk6ERERERERkYpgkk5ERERERESkIpikExEREREREakIJulEREREREREKoJJOhEREREREZGKYJJOREREkuvXr0Mmk6GgoKCxm0JERNQsMUknIiJqYmQy2b/8CQoKauwmEhER0Qu0aOwGEBER0R/rzp070ut9+/YhICAAly9flrbp6ek1RrOIiIjoJXAknYiIqInp2LGj9NO6dWvIZDLp9/bt22Pz5s3o0qULtLW1YWtri7S0tBe+V11dHdzc3NC7d2/cvHkTAJCUlIQBAwagZcuW6NGjB4KDg1FbWyudI5PJEB0djUmTJkFXVxcWFhY4dOiQtL+srAzOzs4wNjaGjo4OLCwssGPHjv/dPwgREZEaYZJORETUjISGhmLTpk0ICQnB2bNn4eDgACcnJxQXFz9zbHV1Nd5//30UFBTg1KlTMDU1xalTp+Di4oJFixahqKgIUVFR2LlzJ9asWdPg3ODgYEybNg1nz57F2LFj4ezsjN9++w0AsGLFChQVFSE1NRUXL17EF198ASMjo9fy+YmIiFSdTAghGrsRRERE9L+xc+dOeHl54f79+wAAExMTLFiwAMuWLZOOGTJkCAYPHoy//e1vuH79Orp3745Tp04hKCgI1dXVSElJQevWrQEA7733Ht599134+/tL5+/Zswe+vr64ffs2gCcj6cuXL8eqVasAAA8ePICenh5SU1MxevRoODk5wcjICLGxsa/pX4GIiEh9cE06ERFRM1FRUYHbt29j2LBhDbYPGzYMhYWFDbZ98MEH6NKlC06cOAEdHR1pe2FhITIzMxuMnNfV1aGqqgoPHz6Erq4uAOCNN96Q9rdq1QoGBgYoLS0FAMyfPx9TpkzB999/jz//+c+YOHEihg4d+od/XiIiInXE6e5ERET0jLFjx+Ls2bPIzs5usL2yshLBwcEoKCiQfs6dO4fi4mK0bNlSOk4ulzc4TyaTQaFQAADGjBmDGzduwNvbG7dv38a7776LJUuW/O8/FBERkRpgkk5ERNRMGBgYoHPnzsjMzGywPTMzE1ZWVg22zZ8/H+vXr4eTkxO+/fZbafuAAQNw+fJlmJubP/OjofHytxXGxsaYPXs29uzZg61bt2Lbtm3/3YcjIiJqIjjdnYiIqBnx8fFBYGAgevbsCVtbW+zYsQMFBQWIi4t75tiFCxeirq4O48ePR2pqKoYPH46AgACMHz8epqammDp1KjQ0NFBYWIjz589j9erVL9WGgIAADBw4ENbW1tKa9z59+vzRH5WIiEgtMUknIiJqRjw9PVFeXo5PPvkEpaWlsLKywqFDh2BhYfHc4728vKBQKDB27FikpaXBwcEBKSkpWLlyJTZs2AC5XI7evXvD3d39pdugpaUFf39/XL9+HTo6Onj77bcRHx//R31EIiIitcbq7kREREREREQqgmvSiYiIiIiIiFQEk3QiIiIiIiIiFcEknYiIiIiIiEhFMEknIiIiIiIiUhFM0omIiIiIiIhUBJN0IiIiIiIiIhXBJJ2IiIiIiIhIRTBJJyIiIiIiIlIRTNKJiIiIiIiIVASTdCIiIiIiIiIVwSSdiIiIiIiISEX8PxUOihccz7sgAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1028,7 +1763,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAMGCAYAAAAA9YxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNeElEQVR4nOzdd3gU1f/28XsTSAJptITQCV16lU4A4UvvCCgIKEXpTYSg0qQI0kEBQZoiIiJVpBNAuvReE5pUgYSWPs8fPNkfMYhJ2GETeL+ua6+LPTtz5jO7k4R7z8wZi2EYhgAAAAAAgE052LsAAAAAAABeRQRuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AgGkCAgJksVgUEBBgtxrmzZsni8WiP//80241JHVVq1ZV4cKF7V3GS2exWDR06FB7l5FkVa1aVVWrVrV3GQCQrBG4AeAVY7FY4vWITwgeNWqUli9fbnrNMaE45uHi4qLMmTOrVq1amjJliu7fv296DZL0zTffaN68eS9lWy+qatWq8fqcCZQvJigoKNb76ejoqOzZs6tJkyY6dOiQTbf1448/atKkSTbtEwBgXynsXQAAwLa+//77WM8XLFigDRs2xGl/4403/rOvUaNGqXnz5mrcuLEtS/xXw4cPl6+vryIiInT9+nUFBASod+/emjBhglauXKmiRYuauv1vvvlGGTJkUPv27U3dji18+umn6tixo/X5vn37NGXKFA0aNCjWZ2v2e/a6eOedd1S3bl1FRUXp5MmTmj59un7//Xft3r1bxYsXt8k2fvzxRx07dky9e/e2SX8AAPsjcAPAK6ZNmzaxnu/evVsbNmyI054U1alTR6VLl7Y+9/f31+bNm1W/fn01bNhQJ0+eVKpUqexY4cv38OFDubq6xmmvWbNmrOcuLi6aMmWKatasyWnAJihZsmSsn6GKFSuqYcOGmj59umbOnPnMdf7tswMAvD44pRwAXkMPHz5Uv379lC1bNjk7Oyt//vwaN26cDMOwLmOxWPTw4UPNnz/fejptzMjvxYsX1bVrV+XPn1+pUqVS+vTp9fbbbysoKMjmtVavXl2ff/65Ll68qB9++CHWa6dOnVLz5s2VLl06ubi4qHTp0lq5cuUz+3n06JE+/PBDpU+fXh4eHmrbtq3u3r1rfT1nzpw6fvy4tm7dat3f5wXXmFONx40bp4kTJypHjhxKlSqV/Pz8dOzYsTjLx6fWmFPrt27dqq5du8rb21tZs2ZNwLsV1zfffKNChQrJ2dlZmTNnVrdu3XTv3r3/XG/9+vVKnTq13nnnHUVGRiZ4H3bs2KG+ffvKy8tLrq6uatKkiW7duvWf2z1y5Ijat2+vXLlyycXFRT4+Pvrggw/0999/x1pu6NChslgsOnfunNq3b680adLI09NT77//vh49ehRr2bCwMPXp00deXl5yd3dXw4YNdeXKlf+s5XmqV68uSQoMDIy13//22f3X51C1alX99ttvunjxovX4y5kzp/X1mzdvqkOHDsqYMaNcXFxUrFgxzZ8/P05d0dHRmjx5sooUKSIXFxd5eXmpdu3aseYwiIyM1BdffKHcuXPL2dlZOXPm1KBBgxQWFvZC7wkAIC5GuAHgNWMYhho2bKgtW7aoQ4cOKl68uNatW6f+/fvr6tWrmjhxoqQnp6Z37NhRb775pjp37ixJyp07t6Qnpy/v3LlTrVq1UtasWRUUFKTp06eratWqOnHihFKnTm3Tmt977z0NGjRI69evV6dOnSRJx48fV8WKFZUlSxYNHDhQrq6u+vnnn9W4cWMtXbpUTZo0idVH9+7dlSZNGg0dOlSnT5/W9OnTdfHiRevEbpMmTVKPHj3k5uamTz/9VJKUMWPG/6xtwYIFun//vrp166bQ0FBNnjxZ1atX19GjR63rJ7TWrl27ysvLS4MHD9bDhw8T/b4NHTpUw4YNU40aNdSlSxfrfu/bt087duxQypQpn7ne6tWr1bx5c7Vs2VJz5syRo6NjgvehR48eSps2rYYMGaKgoCBNmjRJ3bt31+LFi59b84YNG3ThwgW9//778vHx0fHjx/Xtt9/q+PHj2r17tywWS6zlW7RoIV9fX40ePVoHDhzQ7Nmz5e3trTFjxliX6dixo3744Qe9++67qlChgjZv3qx69eol8l194vz585Kk9OnTx2p/1mcXn8/h008/VXBwsK5cuWL9GXRzc5MkPX78WFWrVtW5c+fUvXt3+fr6asmSJWrfvr3u3bunXr16WbffoUMHzZs3T3Xq1FHHjh0VGRmp7du3a/fu3dazRzp27Kj58+erefPm6tevn/bs2aPRo0fr5MmTWrZs2Qu9LwCAfzAAAK+0bt26GU//ul++fLkhyRgxYkSs5Zo3b25YLBbj3Llz1jZXV1ejXbt2cfp89OhRnLZdu3YZkowFCxZY27Zs2WJIMrZs2fLcGufOnWtIMvbt2/evy3h6eholSpSwPn/rrbeMIkWKGKGhoda26Ohoo0KFCkbevHnj9F2qVCkjPDzc2j527FhDkrFixQprW6FChQw/P7/n1hojMDDQkGSkSpXKuHLlirV9z549hiSjT58+ia61UqVKRmRkZLzqiLFkyZJY7/XNmzcNJycn43//+58RFRVlXW7atGmGJGPOnDnWNj8/P6NQoUKGYRjG0qVLjZQpUxqdOnWKtV5C96FGjRpGdHS0tb1Pnz6Go6Ojce/evefux7OOrUWLFhmSjG3btlnbhgwZYkgyPvjgg1jLNmnSxEifPr31+aFDhwxJRteuXWMt9+677xqSjCFDhjy3npjPediwYcatW7eM69evGwEBAUaJEiUMScbSpUtj7fc/P7uEfA716tUzcuTIEaeGSZMmGZKMH374wdoWHh5ulC9f3nBzczNCQkIMwzCMzZs3G5KMnj17xukj5rOIeT86duwY6/WPP/7YkGRs3rzZ2ubn5xfvnwcAwLNxSjkAvGbWrFkjR0dH9ezZM1Z7v379ZBiGfv/99//s4+nrqCMiIvT3338rT548SpMmjQ4cOGDzmqUno30xs5XfuXNHmzdvVosWLXT//n3dvn1bt2/f1t9//61atWrp7Nmzunr1aqz1O3fuHGtEt0uXLkqRIoXWrFnzQnU1btxYWbJksT5/8803VbZsWWu/iam1U6dOcnR0fKG6Nm7cqPDwcPXu3VsODv/3575Tp07y8PDQb7/9FmedRYsWqWXLlvrwww81c+ZM63qJfb+fHo2uXLmyoqKidPHixefW/fSxFRoaqtu3b6tcuXKS9Mxj66OPPor1vHLlyvr7778VEhIiSdbP4Z/He0InJhsyZIi8vLzk4+OjqlWr6vz58xozZoyaNm0aa7l/fnaJ+Rz+ac2aNfLx8dE777xjbUuZMqV69uypBw8eaOvWrZKkpUuXymKxaMiQIXH6iPksYt6Pvn37xnq9X79+khSvegAA8ffKBO5t27apQYMGypw5sywWS6JuY2MYhsaNG6d8+fLJ2dlZWbJk0ciRI21fLADY0cWLF5U5c2a5u7vHao+Z2fq/ApH05BTXwYMHW68Bz5Ahg7y8vHTv3j0FBwebUveDBw+sNZ87d06GYejzzz+Xl5dXrEdM2Lh582as9fPmzRvruZubmzJlyvTC153/s19Jypcvn7XfxNTq6+v7QjVJ//c55s+fP1a7k5OTcuXKFedzDgwMVJs2bdSsWTNNnTo1VlhOzD5kz5491vO0adNKUqzr5p/lzp076tWrlzJmzKhUqVLJy8vL+n4869j6r+1cvHhRDg4O1sshYvzzffkvnTt31oYNG7Rp0ybt379fN2/e1CeffBJnuX9+dgn9HJ7l4sWLyps3b6zALsX9mT1//rwyZ86sdOnSPbcvBwcH5cmTJ1a7j4+P0qRJE696AADx98pcw/3w4UMVK1ZMH3zwQZxvm+OrV69eWr9+vcaNG6ciRYrozp07unPnjo0rBYDkr0ePHpo7d6569+6t8uXLy9PTUxaLRa1atVJ0dLTNt3flyhUFBwdbQ0LMNj7++GPVqlXrmev8M1DYS2JqtcdM7JkyZVKmTJm0Zs0a/fnnn7Fmi0/MPvzbCL3x1MR8z9KiRQvt3LlT/fv3V/HixeXm5qbo6GjVrl37mcdWYreTUHnz5lWNGjX+c7nkMov+P6+FBwCY45UJ3HXq1FGdOnX+9fWwsDB9+umnWrRoke7du6fChQtrzJgx1hloY+6peezYMeu30LYYYQCApCZHjhzauHGj7t+/H2uU+9SpU9bXY/zbf8p/+eUXtWvXTuPHj7e2hYaGxmv268SIuYd4TNjLlSuXpCen1cYnBEnS2bNnVa1aNevzBw8e6Nq1a6pbt661LTEh5OzZs3Hazpw5Y51hOjG12kLM53j69GlrDZIUHh6uwMDAOLW4uLho9erVql69umrXrq2tW7eqUKFCkl7ePty9e1ebNm3SsGHDNHjwYGv7s97j+MqRI4eio6N1/vz5WKPMp0+ffqFaE7L9mO391+fwb8dfjhw5dOTIEUVHR8ca5f7nz2zu3Lm1bt063blz519HuWPej7Nnz8a6X/uNGzd07969WD//AIAX98qcUv5funfvrl27dumnn37SkSNH9Pbbb6t27drWP+KrVq1Srly5tHr1avn6+ipnzpzq2LEjI9wAXjl169ZVVFSUpk2bFqt94sSJslgssb68dHV1fWaIdnR0jDOCOHXqVEVFRdm83s2bN+uLL76Qr6+vWrduLUny9vZW1apVNXPmTF27di3OOs+6/dS3336riIgI6/Pp06crMjIyXvv7PMuXL491/fLevXu1Z88ea7+JqdUWatSoIScnJ02ZMiXWZ/Xdd98pODj4mbN0e3p6at26dfL29lbNmjWtM3G/rH2IGa3+57E1adKkRPcZ8zlMmTLFZn0mREI+B1dX12eeNl+3bl1dv3491gzvkZGRmjp1qtzc3OTn5ydJatasmQzD0LBhw+L0EbPtmC+Y/rn/EyZMkKQXnr0dABDbKzPC/TyXLl3S3LlzdenSJWXOnFnSk9Pi1q5dq7lz52rUqFG6cOGCLl68qCVLlmjBggWKiopSnz591Lx5c23evNnOewAAttOgQQNVq1ZNn376qYKCglSsWDGtX79eK1asUO/evWNd61qqVClt3LhREyZMUObMmeXr66uyZcuqfv36+v777+Xp6amCBQtq165d2rhxY5xbJCXU77//rlOnTikyMlI3btzQ5s2btWHDBuXIkUMrV66Ui4uLddmvv/5alSpVUpEiRdSpUyflypVLN27c0K5du3TlyhUdPnw4Vt/h4eF666231KJFC50+fVrffPONKlWqpIYNG8ba3+nTp2vEiBHKkyePvL29rfdb/jd58uRRpUqV1KVLF4WFhWnSpElKnz59rOt7E1qrLXh5ecnf31/Dhg1T7dq11bBhQ+t+lylTRm3atHnmehkyZNCGDRtUqVIl1ahRQ3/88YeyZMnyUvbBw8NDVapU0dixYxUREaEsWbJo/fr11ntdJ0bx4sX1zjvv6JtvvlFwcLAqVKigTZs26dy5cy9cb3wk5HMoVaqUFi9erL59+6pMmTJyc3NTgwYN1LlzZ82cOVPt27fX/v37lTNnTv3yyy/asWOHJk2aZD1TpVq1anrvvfc0ZcoUnT171noa/vbt21WtWjV1795dxYoVU7t27fTtt9/q3r178vPz0969ezV//nw1btw41lkgAAAbsMvc6CaTZCxbtsz6fPXq1YYkw9XVNdYjRYoURosWLQzDMIxOnToZkozTp09b19u/f78hyTh16tTL3gUAsJl/3hbMMAzj/v37Rp8+fYzMmTMbKVOmNPLmzWt89dVXsW7jZBiGcerUKaNKlSpGqlSpDEnWW4TdvXvXeP/9940MGTIYbm5uRq1atYxTp04ZOXLkiHUbsYTeFizm4eTkZPj4+Bg1a9Y0Jk+ebL3t0T+dP3/eaNu2reHj42OkTJnSyJIli1G/fn3jl19+idP31q1bjc6dOxtp06Y13NzcjNatWxt///13rP6uX79u1KtXz3B3dzckPfeWSDG3i/rqq6+M8ePHG9myZTOcnZ2NypUrG4cPH36hWp93e7R/88/bgsWYNm2aUaBAASNlypRGxowZjS5duhh3796NtczTtwWLce7cOSNTpkzGG2+8Ydy6deuF9yG+x8KVK1eMJk2aGGnSpDE8PT2Nt99+2/jrr7/i3MIr5rZgMbX9c/uBgYHWtsePHxs9e/Y00qdPb7i6uhoNGjQwLl++nKDbgn311VfPXe6/Prv4fA4PHjww3n33XSNNmjSGpFi3CLtx44b1Z87JyckoUqSIMXfu3DjbiYyMNL766iujQIEChpOTk+Hl5WXUqVPH2L9/v3WZiIgIY9iwYYavr6+RMmVKI1u2bIa/v3+sW74ZBrcFAwBbsBiGjWcVSQIsFouWLVumxo0bS5IWL16s1q1b6/jx43EmV3Fzc5OPj4+GDBmiUaNGxTrd8PHjx0qdOrXWr1+vmjVrvsxdAAAkcUFBQfL19dVXX32ljz/+2N7lAACAJOi1OKW8RIkSioqK0s2bN1W5cuVnLlOxYkVFRkbq/Pnz1tMpz5w5I0lMIAIAAAAASLBXJnA/ePAg1vVYgYGBOnTokNKlS6d8+fKpdevWatu2rcaPH68SJUro1q1b2rRpk4oWLap69eqpRo0aKlmypD744ANNmjRJ0dHR6tatm2rWrKl8+fLZcc8AAAAAAMnRKzNL+Z9//qkSJUqoRIkSkqS+ffuqRIkS1tuKzJ07V23btlW/fv2UP39+NW7cWPv27VP27NklSQ4ODlq1apUyZMigKlWqqF69enrjjTf0008/2W2fAAAAAADJ1yt5DTcAAAAAAPb2yoxwAwAAAACQlBC4AQAAAAAwQbKeNC06Olp//fWX3N3dZbFY7F0OAAAAAOAVZxiG7t+/r8yZM8vB4flj2Mk6cP/111/Kli2bvcsAAAAAALxmLl++rKxZsz53mWQduN3d3SU92VEPDw87VwMAAAAAeNWFhIQoW7Zs1jz6PMk6cMecRu7h4UHgBgAAAAC8NPG5rJlJ0wAAAAAAMAGBGwAAAAAAExC4AQAAAAAwQbK+hhsAAAAAXhXR0dEKDw+3dxmvvZQpU8rR0dEmfRG4AQAAAMDOwsPDFRgYqOjoaHuXAklp0qSRj49PvCZGex4CNwAAAADYkWEYunbtmhwdHZUtWzY5OHDlr70YhqFHjx7p5s2bkqRMmTK9UH8EbgAAAACwo8jISD169EiZM2dW6tSp7V3Oay9VqlSSpJs3b8rb2/uFTi/nqxMAAAAAsKOoqChJkpOTk50rQYyYLz4iIiJeqB8CNwAAAAAkAS96vTBsx1afBYEbAAAAAAATELgBAAAAAMnG0KFDVbx4cXuXES8EbgAAAAB4xbVv314Wi0UWi0VOTk7KkyePhg8frsjIyBfqs3HjxrYr8hXELOUAAAAA8BqoXbu25s6dq7CwMK1Zs0bdunVTypQp5e/vH2u58PBwJnCzEUa4AQAAAOA14OzsLB8fH+XIkUNdunRRjRo1tHLlSutI9ciRI5U5c2blz59fknT06FFVr15dqVKlUvr06dW5c2c9ePBA0pPTuufPn68VK1ZYR84DAgL+c70Yc+bMUaFCheTs7KxMmTKpe/fu1tcuXbqkRo0ayc3NTR4eHmrRooVu3Ljxct4kGyNwAwAAAMBrKFWqVAoPD5ckbdq0SadPn9aGDRu0evVqPXz4ULVq1VLatGm1b98+LVmyRBs3brQG448//lgtWrRQ7dq1de3aNV27dk0VKlT4z/Ukafr06erWrZs6d+6so0ePauXKlcqTJ48kKTo6Wo0aNdKdO3e0detWbdiwQRcuXFDLli1f/htkA5xSDgAAAACvEcMwtGnTJq1bt049evTQrVu35OrqqtmzZ1tPJZ81a5ZCQ0O1YMECubq6SpKmTZumBg0aaMyYMcqYMaNSpUqlsLAw+fj4WPueP3/+f643YsQI9evXT7169bKuV6ZMGUlPgv/Ro0cVGBiobNmySZIWLFigQoUKad++fdblkgtGuAEAAADgNbB69Wq5ubnJxcVFderUUcuWLTV06FBJUpEiRWJdt33y5EkVK1bMGpolqWLFioqOjtbp06f/dRv/td7Nmzf1119/6a233vrX9bNly2YN25JUsGBBpUmTRidPnkzsrtsNI9wAAAAA8BqoVq2apk+fLicnJ2XOnFkpUvxfHHw6IJspVapUL2U7SQUj3AAAAADwGnB1dVWePHmUPXv2WGH7Wd544w0dPnxYDx8+tLbt2LFDDg4O1knVnJycFBUVlaD13N3dlTNnTm3atOlft3v58mVdvnzZ2nbixAndu3dPBQsWTPA+2xuBGwAAAAAQS+vWreXi4qJ27drp2LFj2rJli3r06KH33ntPGTNmlCTlzJlTR44c0enTp3X79m1FRETEa72hQ4dq/PjxmjJlis6ePasDBw5o6tSpkqQaNWqoSJEiat26tQ4cOKC9e/eqbdu28vPzU+nSpe32fiQWgRsAAAAAEEvq1Km1bt063blzR2XKlFHz5s311ltvadq0adZlOnXqpPz586t06dLy8vLSjh074rVeu3btNGnSJH3zzTcqVKiQ6tevr7Nnz0qSLBaLVqxYobRp06pKlSqqUaOGcuXKpcWLF7/098AWLIZhGPYuIrFCQkLk6emp4OBgeXh42LscAAAAAEiw0NBQBQYGytfXVy4uLvYuB3r+Z5KQHMoINwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGCC5998DQCA19il4UVs1lf2wUdt1hcAAEgeGOEGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABMxSDgAAAABJUKn+C17q9vZ/1TZBy7dv317z58+P0+7s7KywsLDnrrtlyxYFBQWpd+/eunfvXpzXLRaLli1bpsaNGyeopqSGwA0AAAAASJTatWtr7ty5sdosFosMw7A+79Wrl0JCQmItly5dOgUFBb2sMu2GwA0AAAAASBRnZ2f5+Pg8d5lUqVIpLCzsP5d7FXENNwAAAAAAJiBwAwAAAAASZfXq1XJzc4v1GDVqVLzXDw4OjrO+m5ubiRW/XJxSDgAAAABIlGrVqmn69Omx2tKlSxfv9d3d3XXgwIE47Xnz5n3h2pICAjcAAAAAIFFcXV2VJ0+eRK/v4ODwQusndZxSDgAAAACACRjhBgAAAAAkSlhYmK5fvx6rLUWKFMqQIYOdKkpaCNwAAAAAkATt/6qtvUv4T2vXrlWmTJliteXPn1+nTp2yU0VJi8V4+o7kyUxISIg8PT0VHBwsDw8Pe5cDAHjFXBpexGZ9ZR981GZ9AQBeLaGhoQoMDJSvr69cXFzsXQ70/M8kITmUa7gBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMEEKexcAAAAAAIjr0vAiL3V72Qcffanbex0wwg0AAAAASLCqVauqd+/ecdrnzZunNGnSSJIePXokf39/5c6dWy4uLvLy8pKfn59WrFgRqx+LxSKLxSJnZ2dlyZJFDRo00K+//vrM7W7ZskV169ZV+vTplTp1ahUsWFD9+vXT1atXzdjNF0LgBgAAAACY4qOPPtKvv/6qqVOn6tSpU1q7dq2aN2+uv//+O9ZynTp10rVr13T+/HktXbpUBQsWVKtWrdS5c+dYy82cOVM1atSQj4+Pli5dqhMnTmjGjBkKDg7W+PHjX+auxQunlAMAAAAATLFy5UpNnjxZdevWlSTlzJlTpUqVirNc6tSp5ePjI0nKmjWrypUrpwIFCuiDDz5QixYtVKNGDV25ckU9e/ZUz549NXHiROu6OXPmVJUqVXTv3r2Xsk8JwQg3AAAAAMAUPj4+WrNmje7fv5/gddu1a6e0adNaTy1fsmSJwsPD9cknnzxz+ZjT2JMSAjcAAAAAwBTffvutdu7cqfTp06tMmTLq06ePduzYEa91HRwclC9fPgUFBUmSzp49Kw8PD2XKlMnEim2LwA0AAAAAMEWVKlV04cIFbdq0Sc2bN9fx48dVuXJlffHFF/Fa3zAMWSyWOP9OLgjcAAAAAIAE8/DwUHBwcJz2e/fuydPT0/o8ZcqUqly5sgYMGKD169dr+PDh+uKLLxQeHv7c/qOionT27Fn5+vpKkvLly6fg4GBdu3bNtjtiIgI3AAAAACDB8ufPrwMHDsRpP3DggPLly/ev6xUsWFCRkZEKDQ19bv/z58/X3bt31axZM0lS8+bN5eTkpLFjxz5z+aQ4aRqzlAMAAAAAEqxLly6aNm2aevbsqY4dO8rZ2Vm//fabFi1apFWrVkl6co/td955R6VLl1b69Ol14sQJDRo0SNWqVZOHh4e1r0ePHun69euKjIzUlStXtGzZMk2cOFFdunRRtWrVJEnZsmXTxIkT1b17d4WEhKht27bKmTOnrly5ogULFsjNzS3J3RqMwA0AAAAASVD2wUftXcJz5cqVS9u2bdOnn36qGjVqKDw8XAUKFNCSJUtUu3ZtSVKtWrU0f/58DRo0SI8ePVLmzJlVv359DR48OFZfs2bN0qxZs+Tk5KT06dOrVKlSWrx4sZo0aRJrua5duypfvnwaN26cmjRposePHytnzpyqX7+++vbt+9L2Pb4shmEY9i4isUJCQuTp6ang4OBY344AAGALl4YXsVlfSf0/TQAA+wkNDVVgYKB8fX3l4uJi73Kg538mCcmhXMMNAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAkI3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJCNwAAAAAAJiAwA0AAAAAgAlS2LsAAAAAAEBcFadWfKnb29Fjx0vd3uuAEW4AAAAAQIJVrVpVvXv3jtM+b948pUmTRpL06NEj+fv7K3fu3HJxcZGXl5f8/Py0YsWKWP1YLBZZLBY5OzsrS5YsatCggX799ddYfcYs82+PoKAgk/c44QjcAAAAAABTfPTRR/r11181depUnTp1SmvXrlXz5s31999/x1quU6dOunbtms6fP6+lS5eqYMGCatWqlTp37ixJatmypa5du2Z9lC9f3rpOzCNbtmz22MXn4pRyAAAAAIApVq5cqcmTJ6tu3bqSpJw5c6pUqVJxlkudOrV8fHwkSVmzZlW5cuVUoEABffDBB2rRooVq1KihVKlSWZd3cnKKtU5SxQg3AAAAAMAUPj4+WrNmje7fv5/gddu1a6e0adPGOrU8uSFwAwAAAABM8e2332rnzp1Knz69ypQpoz59+mjHjvhNzubg4KB8+fIlyWuz44vADQAAAAAwRZUqVXThwgVt2rRJzZs31/Hjx1W5cmV98cUX8VrfMAxZLBaTqzQPgRsAAAAAkGAeHh4KDg6O037v3j15enpan6dMmVKVK1fWgAEDtH79eg0fPlxffPGFwsPDn9t/VFSUzp49K19fX5vX/rIQuAEAAAAACZY/f34dOHAgTvuBAweUL1++f12vYMGCioyMVGho6HP7nz9/vu7evatmzZq9cK32wizlAAAAAIAE69Kli6ZNm6aePXuqY8eOcnZ21m+//aZFixZp1apVkp7cY/udd95R6dKllT59ep04cUKDBg1StWrV5OHhYe3r0aNHun79uiIjI3XlyhUtW7ZMEydOVJcuXVStWjV77eILI3ADAAAAQBK0o0f8Jhezl1y5cmnbtm369NNPVaNGDYWHh6tAgQJasmSJateuLUmqVauW5s+fr0GDBunRo0fKnDmz6tevr8GDB8fqa9asWZo1a5acnJyUPn16lSpVSosXL1aTJk3ssWs2YzEMw7B3EYkVEhIiT09PBQcHx/p2BAAAW7g0vIjN+so++KjN+gIAvFpCQ0MVGBgoX19fubi42Lsc6PmfSUJyKNdwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGCCFPYuAAAAAAAQ19Yqfi91e37btr7U7b0OGOEGAAAAANhNQECALBaL7t27F6u9ffv2slgscR61a9e2rvO8R0BAgObNm6c0adI8c7sWi0XLly83dd8Y4QYAAAAAJEm1a9fW3LlzY7U5OzvL1dVV165ds7b16tVLISEhsZZNly6dgoKCXlapz8QINwAAAAAgwVavXq00adIoKipKknTo0CFZLBYNHDjQukzHjh3Vpk0bXbx4UQ0aNFDatGnl6uqqQoUKac2aNQoKClK1atUkSWnTppXFYlH79u2t6zs7O8vHxyfWI23atHJycorVlipVqjjLOjk5vdT341kY4QYAAAAAJFjlypV1//59HTx4UKVLl9bWrVuVIUMGBQQEWJfZunWrBgwYoG7duik8PFzbtm2Tq6urTpw4ITc3N2XLlk1Lly5Vs2bNdPr0aXl4eChVqlT22ykbY4QbAAAAAJBgnp6eKl68uDVgBwQEqE+fPjp48KAePHigq1ev6ty5c/Lz89OlS5dUsWJFFSlSRLly5VL9+vVVpUoVOTo6Kl26dJIkb29v+fj4yNPT07qN1atXy83NLdZj1KhRCaozODg4Th9ubm42ex+ehxFuAAAAAECi+Pn5KSAgQP369dP27ds1evRo/fzzz/rjjz90584dZc6cWXnz5lXPnj3VpUsXrV+/XjVq1FCzZs1UtGjR/+y/WrVqmj59eqy2mIAeX+7u7jpw4ECc9rx58yaon8QgcAMAAAAAEqVq1aqaM2eODh8+rJQpU6pAgQKqWrWqAgICdPfuXfn5Pbm1WceOHVWrVi399ttvWr9+vUaPHq3x48erR48ez+3f1dVVefLkeaEaHRwcXriPRG/bLlsFAAAAACR7MddxT5w40RquYwJ3QECAqlatal02W7Zs+uijj/Trr7+qX79+mjVrliRZJzeLmXztVULgBgAAAAAkStq0aVW0aFEtXLjQGq6rVKmiAwcO6MyZM9YQ3rt3b61bt06BgYE6cOCAtmzZojfeeEOSlCNHDlksFq1evVq3bt3SgwcPrP2HhYXp+vXrsR63b99+6fuZWJxSDgAAAABJkN+2rfYuIV78/Px06NAha+BOly6dChYsqBs3bih//vySnoxed+vWTVeuXJGHh4dq166tiRMnSpKyZMmiYcOGaeDAgXr//ffVtm1bzZs3T5K0du1aZcqUKdb28ufPr1OnTr20/XsRFsMwDHsXkVghISHy9PRUcHCwPDw87F0OAOAVc2l4EZv1lX3wUZv1BQB4tYSGhiowMFC+vr5ycXGxdznQ8z+ThORQTikHAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQp7LnxqKgoDR06VD/88IOuX7+uzJkzq3379vrss89ksVjsWRoAAAAA2NW0fqte6va6j2/wUrf3OrDrCPeYMWM0ffp0TZs2TSdPntSYMWM0duxYTZ061Z5lAQAAAABsKCAgQBaLxfpIlSqVChUqpG+//da6zNOvP+sxdOhQSdLBgwf19ttvK2PGjHJxcVHevHnVqVMnnTlzxk579+/sOsK9c+dONWrUSPXq1ZMk5cyZU4sWLdLevXvtWRYAAAAAwASnT5+Wh4eHHj9+rFWrVqlLly7KnTu33nrrLV27ds263OLFizV48GCdPn3a2ubm5qbVq1erWbNmqlWrlhYuXKjcuXPr5s2bWrJkiT7//HMtXrzYHrv1r+w6wl2hQgVt2rTJ+k3E4cOH9ccff6hOnTrPXD4sLEwhISGxHgAAAACAl2/16tVKkyaNoqKiJEmHDh2SxWLRwIEDrct07NhRbdq0sT739vaWj4+PfH191bNnT/n6+urAgQOSJB8fH+vD09NTFoslVpuDg4Pef/991a1bVytXrlSNGjXk6+ursmXLaty4cZo5c+bLfQPiwa6Be+DAgWrVqpUKFCiglClTqkSJEurdu7dat279zOVHjx4tT09P6yNbtmwvuWIAAAAAgCRVrlxZ9+/f18GDByVJW7duVYYMGRQQEGBdZuvWrapatWqcdQ3D0Nq1a3Xp0iWVLVs2Xttbt26dbt++rU8++eSZr6dJkyahu2A6uwbun3/+WQsXLtSPP/6oAwcOaP78+Ro3bpzmz5//zOX9/f0VHBxsfVy+fPklVwwAAAAAkCRPT08VL17cGrADAgLUp08fHTx4UA8ePNDVq1d17tw5+fn5WdfJmjWr3Nzc5OTkpHr16mnIkCGqUqVKvLZ39uxZSVKBAgVsvi9mses13P3797eOcktSkSJFdPHiRY0ePVrt2rWLs7yzs7OcnZ1fdpkAAAAAgGfw8/NTQECA+vXrp+3bt2v06NH6+eef9ccff+jOnTvKnDmz8ubNq6tXr0qStm/fLnd3d4WFhWnv3r3q3r270qVLpy5duvzntgzDMHt3bM6ugfvRo0dycIg9yO7o6Kjo6Gg7VQQAAAAAiK+qVatqzpw5Onz4sFKmTKkCBQqoatWqCggI0N27d2ONbkuSr6+v9dTvQoUKac+ePRo5cmS8Ane+fPkkSadOnVL58uVtvi9msOsp5Q0aNNDIkSP122+/KSgoSMuWLdOECRPUpEkTe5YFAAAAAIiHmOu4J06caA3XMYE7ICDgmddvP83R0VGPHz+O17b+97//KUOGDBo7duwzX793715CSn8p7DrCPXXqVH3++efq2rWrbt68qcyZM+vDDz/U4MGD7VkWAAAAACAe0qZNq6JFi2rhwoWaNm2aJKlKlSpq0aKFIiIi4oxw37x5U6GhodZTyr///ns1b948XttydXXV7Nmz9fbbb6thw4bq2bOn8uTJo9u3b+vnn3/WpUuX9NNPP9l8H1+EXQO3u7u7Jk2apEmTJtmzDAAAAABIcrqPb2DvEuLFz89Phw4dso5mp0uXTgULFtSNGzeUP3/+WMvGPE+RIoWyZcumDz/8UEOHDo33tho1aqSdO3dq9OjRevfddxUSEqJs2bKpevXqGjFihK12yWYsRnK88vz/CwkJkaenp4KDg+Xh4WHvcgAAr5hLw4vYrK/sg4/arC8AwKslNDRUgYGB8vX1lYuLi73LgZ7/mSQkh9r1Gm4AAAAAAF5VBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQp7F0AAAAAACCukW2av9TtffrDLwlavn379po/f74kKUWKFEqXLp2KFi2qd955R+3bt5eDQ+zx3Vq1amnjxo3avXu3ypQpE6eve/fuafny5S+0D0kNI9wAAAAAgESpXbu2rl27pqCgIP3++++qVq2aevXqpfr16ysyMtK63KVLl7Rz5051795dc+bMsWPFLxeBGwAAAACQKM7OzvLx8VGWLFlUsmRJDRo0SCtWrNDvv/+uefPmWZebO3eu6tevry5dumjRokV6/Pix/Yp+iQjcAAAAAACbqV69uooVK6Zff/1VkmQYhubOnas2bdqoQIECypMnj375JWGnrydXBG4AAAAAgE0VKFBAQUFBkqSNGzfq0aNHqlWrliSpTZs2+u677+xY3ctD4AYAAAAA2JRhGLJYLJKkOXPmqGXLlkqR4smc3e+884527Nih8+fP27PEl4LADQAAAACwqZMnT8rX11d37tzRsmXL9M033yhFihRKkSKFsmTJosjIyNdi8jQCNwAAAADAZjZv3qyjR4+qWbNmWrhwobJmzarDhw/r0KFD1sf48eM1b948RUVF2btcU3EfbgAAAABAooSFhen69euKiorSjRs3tHbtWo0ePVr169dX27ZtVapUKTVv3lyFCxeOtV62bNnk7++vtWvXql69enaq3nyMcAMAAAAAEmXt2rXKlCmTcubMqdq1a2vLli2aMmWKVqxYoUOHDunw4cNq1qxZnPU8PT311ltvvfKTp1kMwzDsXURihYSEyNPTU8HBwfLw8LB3OQCAV8yl4UVs1lf2wUdt1hcA4NUSGhqqwMBA+fr6ysXFxd7lQM//TBKSQxnhBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAEyQwt4FAAAAAADiOjly80vd3hufVk/wOrdu3dLgwYP122+/6caNG0qbNq2KFSumKlWq6LPPPnvuulu2bFFQUJDef/99SZLFYlHGjBlVpUoVffXVV8qePbt12apVq6p48eKaNGmStW3y5Mn65JNPNH/+fLVq1SrBtb8MBG4AAAAAQKI0a9ZM4eHhmj9/vnLlyqUbN25o06ZNKlSokK5du2ZdrlevXgoJCdHcuXOtbenSpVNQUJA8PDx0+vRpGYahwMBAde3aVW+//bb27Nnzr9sdMmSIxo0bpxUrVqh27dqm7uOLIHADAAAAABLs3r172r59uwICAuTn5ydJypEjh9588804y6ZKlUphYWHy8fGJ85rFYrG2Z8qUSR06dFDPnj0VEhIiDw+PWMsahqGePXvqhx9+0IYNG1ShQgUT9sx2uIYbAAAAAJBgbm5ucnNz0/LlyxUWFmaTPm/evKlly5bJ0dFRjo6OsV6LjIxUmzZt9Msvv2jr1q1JPmxLjHADAAAAABIhRYoUmjdvnjp16qQZM2aoZMmS8vPzU6tWrVS0aNF49xMcHCw3NzcZhqFHjx5Jknr27ClXV9dYy82aNUuSdPjwYRUoUMB2O2IiRrgBAAAAAInSrFkz/fXXX1q5cqVq166tgIAAlSxZUvPmzYt3H+7u7jp06JD+/PNPjR8/XiVLltTIkSPjLFepUiW5ubnp888/V2RkpA33wjwEbgAAAABAorm4uKhmzZr6/PPPtXPnTrVv315DhgyJ9/oODg7KkyeP3njjDfXt21flypVTly5d4ixXpEgRbdq0SVu2bFHLli2TRegmcAMAAAAAbKZgwYJ6+PBhotcfOHCgFi9erAMHDsR5rXjx4tq0aZO2bdumFi1aKCIi4kVKNR2BGwAAAACQYH///beqV6+uH374QUeOHFFgYKCWLFmisWPHqlGjRonuN1u2bGrSpIkGDx78zNeLFSumzZs3648//kjyoZtJ0wAAAAAACebm5qayZctq4sSJOn/+vCIiIpQtWzZ16tRJgwYNeqG++/Tpo/Lly2vv3r3PvM1YkSJFtHnzZr311lt6++239fPPP8vJyemFtmkGi2EYhr2LSKyQkBB5enoqODg4zv3ZAAB4UZeGF7FZX9kHH7VZXwCAV0toaKgCAwPl6+srFxcXe5cDPf8zSUgO5ZRyAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQp7F0AAAAAACCuoUOHJunttW/fXvfu3dPy5cvjvPb48WN9+eWXWrRokS5evCh3d3dVq1ZNQ4cOVaFChWJtc9iwYZIkBwcHZc6cWXXq1NGXX36pdOnSWZfLmTOnLl68KElycXFRxowZ9eabb+qjjz5S9erVY2172bJlGjNmjE6ePKno6Ghlz55dNWvW1KRJkxK0f7bACDcAAAAAwGbCwsJUo0YNzZkzRyNGjNCZM2e0Zs0aRUZGqmzZstq9e3es5QsVKqRr167p0qVLmjt3rtauXasuXbrE6Xf48OG6du2aTp8+rQULFihNmjSqUaOGRo4caV1m06ZNatmypZo1a6a9e/dq//79GjlypCIiIkzf72dhhBsAAAAAYDOTJk3Srl27dPDgQRUrVkySlCNHDi1dulRly5ZVhw4ddOzYMVksFklSihQp5OPjI0nKkiWL3n77bc2dOzdOv+7u7tblsmfPripVqihTpkwaPHiwmjdvrvz582vVqlWqWLGi+vfvb10vX758aty4scl7/WyMcAMAAAAAbObHH39UzZo1rWE7hoODg/r06aMTJ07o8OHDz1w3KChI69atk5OTU7y21atXLxmGoRUrVkiSfHx8dPz4cR07duzFdsJGCNwAAAAAAJs5c+aM3njjjWe+FtN+5swZa9vRo0fl5uamVKlSydfXV8ePH9eAAQPita106dLJ29tbQUFBkqQePXqoTJkyKlKkiHLmzKlWrVppzpw5CgsLe7GdSiQCNwAAAADApgzDiPey+fPn16FDh7Rv3z4NGDBAtWrVUo8ePRK0rZjT011dXfXbb7/p3Llz+uyzz+Tm5qZ+/frpzTff1KNHjxK8Hy+KwA0AAAAAsJl8+fLp5MmTz3wtpj1fvnzWNicnJ+XJk0eFCxfWl19+KUdHR+vM5f/l77//1q1bt+Tr6xurPXfu3OrYsaNmz56tAwcO6MSJE1q8eHEi9yjxCNwAAAAAAJtp1aqVNm7cGOc67ejoaE2cOFEFCxaMc3330z777DONGzdOf/31139ua/LkyXJwcHjupGg5c+ZU6tSp9fDhw3jvg60wSzkAAAAAIFGCg4N16NChWG1t2rTRihUr1KBBA40fP15ly5bVjRs3NGrUKJ08eVIbN260ngL+LOXLl1fRokU1atQoTZs2zdp+//59Xb9+XREREQoMDNQPP/yg2bNna/To0cqTJ4+kJ/f1fvTokerWrascOXLo3r17mjJliiIiIlSzZk1T3oPnIXADAAAAABIlICBAJUqUiNXWoUMHbd68WaNGjdKgQYN08eJFubu7q1q1atq9e7cKFy78n/326dNH7du314ABA5QtWzZJ0uDBgzV48GA5OTnJx8dH5cqV06ZNm1StWjXren5+fvr666/Vtm1b3bhxQ2nTplWJEiW0fv165c+f37Y7Hw8WIyFXsycxISEh8vT0VHBwsDw8POxdDgDgFXNpeBGb9ZV98FGb9QUAeLWEhoYqMDBQvr6+cnFxsXc50PM/k4TkUK7hBgAAAADABJxSDgDAS1BxakWb9bWjxw6b9QUAAMzDCDcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAEASkIxvIPXKiY6Otkk/TJoGAAAAAHaUMmVKWSwW3bp1S15eXrJYLPYu6bVlGIbCw8N169YtOTg4yMnJ6YX6I3ADAAAAgB05Ojoqa9asunLlioKCguxdDiSlTp1a2bNnl4PDi50UTuAGAAAAADtzc3NT3rx5FRERYe9SXnuOjo5KkSKFTc40IHADAAAAQBLg6OgoR0dHe5cBG2LSNAAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQp7F0AAABAjJMjN9usrzc+rW6zvgAASAxGuAEAAAAAMAGBGwAAAAAAExC4AQAAAAAwAYEbAAAAAAATELgBAAAAADABgRsAAAAAABMQuAEAAAAAMAGBGwAAAAAAE9g9cF+9elVt2rRR+vTplSpVKhUpUkR//vmnvcsCAAAAAOCFpLDnxu/evauKFSuqWrVq+v333+Xl5aWzZ88qbdq09iwLAAAAAIAXZtfAPWbMGGXLlk1z5861tvn6+tqxIgAAAAAAbMOup5SvXLlSpUuX1ttvvy1vb2+VKFFCs2bN+tflw8LCFBISEusBAAAAAEBSZNfAfeHCBU2fPl158+bVunXr1KVLF/Xs2VPz589/5vKjR4+Wp6en9ZEtW7aXXDEAAAAAAPFj18AdHR2tkiVLatSoUSpRooQ6d+6sTp06acaMGc9c3t/fX8HBwdbH5cuXX3LFAAAAAADEj10Dd6ZMmVSwYMFYbW+88YYuXbr0zOWdnZ3l4eER6wEAAAAAQFJk18BdsWJFnT59OlbbmTNnlCNHDjtVBAAAAACAbdg1cPfp00e7d+/WqFGjdO7cOf3444/69ttv1a1bN3uWBQAAAADAC7Nr4C5TpoyWLVumRYsWqXDhwvriiy80adIktW7d2p5lAQAAAADwwux6H25Jql+/vurXr2/vMgAAAAAAsKlEB+5Lly7p4sWLevTokby8vFSoUCE5OzvbsjYAAAAAAJKtBAXuoKAgTZ8+XT/99JOuXLkiwzCsrzk5Oaly5crq3LmzmjVrJgcHu56tDgAAAACAXcU7Fffs2VPFihVTYGCgRowYoRMnTig4OFjh4eG6fv261qxZo0qVKmnw4MEqWrSo9u3bZ2bdAAAAAAAkafEe4XZ1ddWFCxeUPn36OK95e3urevXqql69uoYMGaK1a9fq8uXLKlOmjE2LBQAAAAAguYh34B49enS8O61du3aiigEAAAAA4FWR6EnTbt++raCgIFksFuXMmfOZI98AAAAAALyuEjyz2fHjx1WlShVlzJhRZcuW1Ztvvmk9pfz06dNm1AgAAAAAQLKToBHu69evy8/PT15eXpowYYIKFCggwzB04sQJzZo1S5UrV9axY8fk7e1tVr0AAAAAACQLCQrcEydOVI4cObRjxw65uLhY22vXrq0uXbqoUqVKmjhxYoKu9wYAAAAA4FWUoFPKN2zYoAEDBsQK2zFSpUql/v37a926dTYrDgAAAACA5CpBgfvChQsqWbLkv75eunRpXbhw4YWLAgAAAAAguUtQ4L5//748PDz+9XV3d3c9ePDghYsCAAAAACC5S/Btwe7fv//MU8olKSQkRIZhvHBRAAAAAAAkdwkK3IZhKF++fM993WKxvHBRAAAAAAAkdwkK3Fu2bDGrDgAAAAAAXikJCtx+fn5m1QEAAAAAwCslQYE7MjJSUVFRcnZ2trbduHFDM2bM0MOHD9WwYUNVqlTJ5kUCAAAAAJDcJChwd+rUSU5OTpo5c6akJxOolSlTRqGhocqUKZMmTpyoFStWqG7duqYUCwAAAABAcpGg24Lt2LFDzZo1sz5fsGCBoqKidPbsWR0+fFh9+/bVV199ZfMiAQAAAABIbhIUuK9evaq8efNan2/atEnNmjWTp6enJKldu3Y6fvy4bSsEAAAAACAZSlDgdnFx0ePHj63Pd+/erbJly8Z6/cGDB7arDgAAAACAZCpBgbt48eL6/vvvJUnbt2/XjRs3VL16devr58+fV+bMmW1bIQAAAAAAyVCCJk0bPHiw6tSpo59//lnXrl1T+/btlSlTJuvry5YtU8WKFW1eJAAAAAAAyU2C78P9559/asOGDfLx8dHbb78d6/XixYvrzTfftGmBAAAAAAAkRwkK3JJUsGBBFSxY8Jmvde7c+YULAgAAAADgVZCgwD1lypRntnt6eipfvnwqX768TYoCAAAAACC5S1Dgnjhx4jPb7927p+DgYFWoUEErV65UunTpbFIcAAAAAADJVYJmKQ8MDHzm4+7duzp37pyio6P12WefmVUrAAAAAADJRoIC9/PkypVLX375pdavX2+rLgEAAAAASLZsFrglKXv27Lp+/botuwQAAAAAIFmyaeA+evSocuTIYcsuAQAAAABIlhI0aVpISMgz24ODg7V//37169dP7dq1s0lhAAAAAAAkZwkK3GnSpJHFYnnmaxaLRR07dtTAgQNtUhgAAAAAAMlZggL3li1bntnu4eGhvHnzys3NzSZFAQAAAACQ3CUocPv5+ZlVBwAAAAAAr5R4T5p26dKlBHV89erVBBcDAAAAAMCrIt6Bu0yZMvrwww+1b9++f10mODhYs2bNUuHChbV06VKbFAgAAAAAQHIU71PKT5w4oZEjR6pmzZpycXFRqVKllDlzZrm4uOju3bs6ceKEjh8/rpIlS2rs2LGqW7eumXUDAAAAAJCkxXuEO3369JowYYKuXbumadOmKW/evLp9+7bOnj0rSWrdurX279+vXbt2EbYBAAAAAK+9BE2aJkmpUqVS8+bN1bx5czPqAQAAAADglRDvEW4AAAAAABB/BG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATJCowL1t2zZFRkbGaY+MjNS2bdteuCgAAAAAAJK7RAXuatWq6c6dO3Hag4ODVa1atRcuCgAAAACA5C5RgdswDFksljjtf//9t1xdXV+4KAAAAAAAkrsE3Ye7adOmkiSLxaL27dvL2dnZ+lpUVJSOHDmiChUq2LZCAAAAAACSoQQFbk9PT0lPRrjd3d2VKlUq62tOTk4qV66cOnXqZNsKAQAAAABIhhIUuOfOnStJypkzpz7++GNOHwcAAAAA4F8kKHDHGDJkiCTp5s2bOn36tCQpf/788vb2tl1lAAAAAAAkY4maNO3+/ft67733lCVLFvn5+cnPz09ZsmRRmzZtFBwcbOsaAQAAAABIdhIVuDt27Kg9e/Zo9erVunfvnu7du6fVq1frzz//1IcffmjrGgEAAAAASHYSdUr56tWrtW7dOlWqVMnaVqtWLc2aNUu1a9e2WXEAAAAAACRXiRrhTp8+vXXG8qd5enoqbdq0L1wUAAAAAADJXaIC92effaa+ffvq+vXr1rbr16+rf//++vzzz21WHAAAAAAAyVW8TykvUaKELBaL9fnZs2eVPXt2Zc+eXZJ06dIlOTs769atW1zHDQAAAAB47cU7cDdu3NjEMgAAAAAAeLXEO3DH3HsbAAAAAAD8t0Rdwy1J9+7d0+zZs+Xv7687d+5Ikg4cOKCrV6/arDgAAAAAAJKrRN0W7MiRI6pRo4Y8PT0VFBSkTp06KV26dPr111916dIlLViwwNZ1AgAAAACQrCRqhLtv375q3769zp49KxcXF2t73bp1tW3bNpsVBwAAAABAcpWowL1v375nzkSeJUuWWLcKAwAAAADgdZWowO3s7KyQkJA47WfOnJGXl9cLFwUAAAAAQHKXqMDdsGFDDR8+XBEREZIki8WiS5cuacCAAWrWrJlNCwQAAAAAIDlKVOAeP368Hjx4IG9vbz1+/Fh+fn7KkyeP3N3dNXLkSFvXCAAAAABAspOoWco9PT21YcMG/fHHHzpy5IgePHigkiVLqkaNGrauDwAAAACAZClRgTtGpUqVVKlSJVvVAgAAAADAKyPBgTs6Olrz5s3Tr7/+qqCgIFksFvn6+qp58+Z67733ZLFYzKgzWbk0vIjN+so++KjN+gIAAAAAvDwJuobbMAw1bNhQHTt21NWrV1WkSBEVKlRIFy9eVPv27dWkSROz6gQAAAAAIFlJ0Aj3vHnztG3bNm3atEnVqlWL9drmzZvVuHFjLViwQG3btrVpkQAAAAAAJDcJGuFetGiRBg0aFCdsS1L16tU1cOBALVy40GbFAQAAAACQXCUocB85ckS1a9f+19fr1Kmjw4cPv3BRAAAAAAAkdwkK3Hfu3FHGjBn/9fWMGTPq7t27L1wUAAAAAADJXYICd1RUlFKk+PfLvh0dHRUZGfnCRQEAAAAAkNwlaNI0wzDUvn17OTs7P/P1sLAwmxQFAAAAAEByl6DA3a5du/9chhnKAQAAAABIYOCeO3euWXUAAAAAAPBKSdA13AAAAAAAIH4I3AAAAAAAmIDADQAAAACACQjcAAAAAACYgMANAAAAAIAJ4j1L+cqVK+PdacOGDRNVDAAAAAAAr4p4B+7GjRvHazmLxaKoqKjE1gMAAAAAwCsh3oE7OjrazDoAAAAAAHilcA03AAAAAAAmiPcI9z89fPhQW7du1aVLlxQeHh7rtZ49e75wYQAAAAAAJGeJCtwHDx5U3bp19ejRIz18+FDp0qXT7du3lTp1anl7exO4AQAAAACvvUSdUt6nTx81aNBAd+/eVapUqbR7925dvHhRpUqV0rhx42xdIwAAAAAAyU6iAvehQ4fUr18/OTg4yNHRUWFhYcqWLZvGjh2rQYMG2bpGAAAAAACSnUQF7pQpU8rB4cmq3t7eunTpkiTJ09NTly9ftl11AAAAAAAkU4m6hrtEiRLat2+f8ubNKz8/Pw0ePFi3b9/W999/r8KFC9u6RgAAAAAAkp1EjXCPGjVKmTJlkiSNHDlSadOmVZcuXXTr1i3NnDnTpgUCAAAAAJAcJWqEu3Tp0tZ/e3t7a+3atTYrCAAAAACAV0GiRrirV6+ue/fuxWkPCQlR9erVX7QmAAAAAACSvUQF7oCAAIWHh8dpDw0N1fbt21+4KAAAAAAAkrsEnVJ+5MgR679PnDih69evW59HRUVp7dq1ypIli+2qAwAAAAAgmUpQ4C5evLgsFossFsszTx1PlSqVpk6darPiAAAAAABIrhIUuAMDA2UYhnLlyqW9e/fKy8vL+pqTk5O8vb3l6Oho8yIBAAAAAEhuEhS4c+TIIUmKjo42pRgAAAAAAF4VibotmCSdP39ekyZN0smTJyVJBQsWVK9evZQ7d26bFQcAAAAAQHKVqFnK161bp4IFC2rv3r0qWrSoihYtqj179qhQoULasGGDrWsEAAAAACDZSdQI98CBA9WnTx99+eWXcdoHDBigmjVr2qQ4AAAAAACSq0SNcJ88eVIdOnSI0/7BBx/oxIkTL1wUAAAAAADJXaICt5eXlw4dOhSn/dChQ/L29n7RmgAAAAAASPYSdEr58OHD9fHHH6tTp07q3LmzLly4oAoVKkiSduzYoTFjxqhv376mFAoAAAAAQHKSoMA9bNgwffTRR/r888/l7u6u8ePHy9/fX5KUOXNmDR06VD179jSlUAAAAAAAkpMEBW7DMCRJFotFffr0UZ8+fXT//n1Jkru7u+2rAwAAAAAgmUrwLOUWiyXWc4I2AAAAAABxJThw58uXL07o/qc7d+4kuiAAAAAAAF4FCQ7cw4YNk6enpxm1AAAAAADwykhw4G7VqhW3/gIAAAAA4D8k6D7c/3Uq+Yv48ssvZbFY1Lt3b9O2AQAAAADAy5KgwB0zS7mt7du3TzNnzlTRokVN6R8AAAAAgJctQYE7Ojra5qeTP3jwQK1bt9asWbOUNm1am/YNAAAAAIC9JChwm6Fbt26qV6+eatSo8Z/LhoWFKSQkJNYDAAAAAICkKMGTptnSTz/9pAMHDmjfvn3xWn706NEaNmyYyVUBAAAAAPDi7DbCffnyZfXq1UsLFy6Ui4tLvNbx9/dXcHCw9XH58mWTqwQAAAAAIHHsNsK9f/9+3bx5UyVLlrS2RUVFadu2bZo2bZrCwsLk6OgYax1nZ2c5Ozu/7FIBAAAAAEgwuwXut956S0ePHo3V9v7776tAgQIaMGBAnLANAAAAAEByYrfA7e7ursKFC8dqc3V1Vfr06eO0AwAAAACQ3Nh9lnIAAAAAAF5Fdp2l/J8CAgLsXQIAAAAAADbBCDcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACYgcAMAAAAAYAICNwAAAAAAJiBwAwAAAABgAgI3AAAAAAAmIHADAAAAAGACAjcAAAAAACZIYe8C8HwVp1a0WV87euywWV8AAAAAgOdjhBsAAAAAABMQuAEAAAAAMIFdA/fo0aNVpkwZubu7y9vbW40bN9bp06ftWRIAAAAAADZh18C9detWdevWTbt379aGDRsUERGh//3vf3r48KE9ywIAAAAA4IXZddK0tWvXxno+b948eXt7a//+/apSpYqdqgIAAAAA4MUlqVnKg4ODJUnp0qV75uthYWEKCwuzPg8JCXkpdQEAAAAAkFBJZtK06Oho9e7dWxUrVlThwoWfuczo0aPl6elpfWTLlu0lVwkAAAAAQPwkmcDdrVs3HTt2TD/99NO/LuPv76/g4GDr4/Llyy+xQgAAAAAA4i9JnFLevXt3rV69Wtu2bVPWrFn/dTlnZ2c5Ozu/xMoAAAAAAEgcuwZuwzDUo0cPLVu2TAEBAfL19bVnOQAAAAAA2IxdA3e3bt30448/asWKFXJ3d9f169clSZ6enkqVKpU9S0Myc3LkZpv19can1W3WFwAAAIDXl12v4Z4+fbqCg4NVtWpVZcqUyfpYvHixPcsCAAAAAOCF2f2UcgAAAAAAXkVJZpZyAAAAAABeJQRuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARuAAAAAABMQOAGAAAAAMAEBG4AAAAAAExA4AYAAAAAwAQp7F2AJH399df66quvdP36dRUrVkxTp07Vm2++ae+y8BKMbNPcJv00faOrTfoBAAAAAFuxe+BevHix+vbtqxkzZqhs2bKaNGmSatWqpdOnT8vb29ve5QEAgHhIil+gDh06NEn2BeDluzS8iM36yj74qM36wqvP7oF7woQJ6tSpk95//31J0owZM/Tbb79pzpw5GjhwoJ2rAwAAAID/U3FqRZv1taPHDpv1haTJroE7PDxc+/fvl7+/v7XNwcFBNWrU0K5du+IsHxYWprCwMOvz4OBgSVJISIj5xSbA/dAom/UV+TjSZn0ltfdJkkIjImzSz4PQhzbpR0qa71NSdPnLcjbrK9vA3TbrC5CkKp8tskk/C934fR5fSfH3eVhk2H8vFE9J8T0HEH/8/xy2FPO5GYbxn8tajPgsZZK//vpLWbJk0c6dO1W+fHlr+yeffKKtW7dqz549sZYfOnSohg0b9rLLBAAAAAAglsuXLytr1qzPXcbup5QnhL+/v/r27Wt9Hh0drTt37ih9+vSyWCx2rOz1ERISomzZsuny5cvy8PCwdzmAKTjO8TrgOMfrgOMcrwOO85fPMAzdv39fmTNn/s9l7Rq4M2TIIEdHR924cSNW+40bN+Tj4xNneWdnZzk7O8dqS5MmjZkl4l94eHjwA41XHsc5Xgcc53gdcJzjdcBx/nJ5enrGazm73ofbyclJpUqV0qZNm6xt0dHR2rRpU6xTzAEAAAAASG7sfkp537591a5dO5UuXVpvvvmmJk2apIcPH1pnLQcAAAAAIDmye+Bu2bKlbt26pcGDB+v69esqXry41q5dq4wZM9q7NDyDs7OzhgwZEufUfuBVwnGO1wHHOV4HHOd4HXCcJ212naUcAAAAAIBXlV2v4QYAAAAA4FVF4AYAAAAAwAQEbgAAAAAATEDgBgAAAADABARumCY6OtreJQAAAACA3RC4YYovv/xS3bt3V0REhL1LAQAAAAC7IHDDFFmzZtWMGTP0+eefE7oBAM/EnUnxKok5njmuATyNwA2bMwxDbdq00ZIlSzRhwgR99tlnCg0NtXdZAIAk5MSJE7JYLJKkOXPm6M8//7RzRcCLuXv3rsLCwnT//n1JBG+82ji+44/ADZt6+ofPz89PY8aM0VdffaVx48YpPDzcjpUBSQtzHOB1duTIEdWrV08TJ05U//791bVrV6VLl87eZQGJ9v3336tRo0YqWbKk6tevr+XLl1u/UAJeFb/99ptWrlwpSbJYLITueEph7wLwaon547J06VL169dPb731lrJnz67Bgwfr/v37GjFihFKmTGnnKgH7io6OloPDk+87V6xYoXPnzsnb21ulSpVSwYIF7VwdYL506dLpgw8+0IgRIxQVFaUTJ04oV65cioyMVIoU/NcEycuvv/6qzp07a9y4cXr06JECAwPVtGlT+fv7q2/fvkqfPr29SwRe2C+//KIWLVooS5YsioyMVNOmTa2hmy+Xno+/arC506dPq2PHjho9erQ++OADBQcHa/ny5eratask6YsvvpCTk5OdqwTswzAMa9geMGCAFixYoEKFCunatWvKkSOHOnfurMaNG9u3SMBkWbNmVZYsWXT//n1lzpxZK1asUJ8+fZQiRQpFRUXJ0dHR3iUC8bZmzRq9++676tatm7WtQoUKatu2rSIiIjR8+HC5uLjYsULgxRw8eFDjxo1Tx44dFRUVpc8++0yGYahZs2aE7nggcMPmQkJClC5dOtWqVUtOTk7y8vJSp06dFBUVpa5duypNmjTq3bu3UqVKZe9SgZcu5g/SlClT9NNPP2nZsmUqV66cJk2apIEDB1qvAWzZsqUk8UcMr4yYMztijukqVapo+/btWrdunWbMmKHQ0FD5+/sTtpGsGIaha9euKXPmzJL+73KhNm3aKEWKFGrdurXy58+vDh068PscyZajo6Ny5MihXr16SZImTpyozz//XJII3fHANdywORcXFwUGBurChQuS/u+PT926deXt7a1PP/1UX375pT1LBOzqwYMHOnHihD7++GOVK1dOy5cv19ChQ9W7d2+5uLho1KhRWrZsmSTxxwuvhKcvozh27Jj27dun1KlTq2zZsurWrZuaN2+u+fPna+zYsdZ1Ro8ercOHD9urZOC5Yq5djfnyaMmSJTpx4oT1SyXDMNSqVSsNGTJEgwcP1sWLF/l9jmQn5v/wRYsW1bhx41SoUCEVKlRI3bt3V/ny5fX555/rl19+kfTkZ+Hx48f2LDfJshhc7Y4XEPNt1j9PAXz33Xd16dIlTZgwQW+++aakJyGjT58+qlChgsqXL68CBQrYq2zA7s6cOSNXV1cFBwerQYMG6tGjh3r37q1FixapU6dOypIliyZPnqzatWvbu1TghTw96vHpp59qyZIlio6OVkREhJo2bar+/fvLwcFBX3/9tRYtWqSKFSvq9u3bOnbsmC5cuMCIN5K0yMhIPXjwQC1atJCTk5MmT56s3LlzW+cj2LFjh5o1a6a1a9eqePHi9i4XSJSY4/np/+8fPnxYU6ZM0a5duzRy5Eg1bNhQ1atX1yeffKJ69erZueKkhRFuJFrMf6I2bdqkAQMGqG/fvjpx4oQkqWvXrvL09FTPnj21evVqHT58WCNGjFBAQICaNGlC2MZrIyoq6pntuXLlUpYsWbR9+3ZlypRJHTp0kPTktC0/Pz916NBB//vf/15mqYApYsL2hAkT9N1332nmzJk6d+6cqlevrgULFujixYvy8fFRt27d1K9fP129elUeHh46d+6cHB0dmdEfSdbcuXNVr149pUmTRh06dFBISIj69eun06dPWyf/y5o1q9KkScPtUZFszZs3T3Xq1FFkZKQcHR2tZ3cUK1ZMPXv2VMWKFTVo0CAVKFBA58+f5/8uz0DgRqJZLBatX79etWrVUlBQkBYuXKiWLVtq/vz5qlSpkj777DMVKFBAjRo1UvPmzfXDDz/o559/Vpo0aexdOmC6v/76S5Ks3wRPmTJF3bp1U4cOHXTt2jXrf8YMw9Dt27f1559/KiIiQgsXLlT58uWto37/FtiB5MIwDEVGRmr79u3y9/dXtWrVtGrVKv36668aOXKkypcvr7CwMGXMmFFdunTRxo0b9eOPPyplypSKjIy0nooOJCWGYSgiIkJ///23rl27ppYtW6p9+/Z6+PCh6tatqwULFujnn3/WRx99JE9PT+vZfkByYhiGwsPDFRwcrCtXrljbng7d77zzjoKCguTl5aWgoCDr7278H04pR4LFjGzfvHlTw4YNU7FixdS5c2dJT04lP3XqlLp37662bdsqRYoUOn36tAzDUNq0aZUxY0Y7Vw+Yz9/fXzNmzNCePXuUL18+DR06VJMnT1adOnX0559/6vHjx1q4cKGqVKmi/fv3q1+/frpw4YJSpEghV1dXHThwQClTpmQCErwSoqOjFR4errfeektff/217t+/r7p162rcuHH68MMPFRYWpm+//ValS5dWuXLlrMc8xz+Skmcdj8HBwSpWrJjq16+vadOmSZJ2796thQsXavHixcqZM6e8vLy0fPlypUyZkhn4keQ97zhv1KiRJk+eHOu1e/fuqXnz5rp27ZoOHz6sFClScHvHZ+BrYySYxWLR3r171bRpU+3Zs0d58+a1vjZ//ny98cYbmjp1qubOnasHDx4of/78KlCgAGEbr41+/fqpYMGCatSokY4fP65Lly5p/fr1+vHHH3Xq1CmVLFlSb7/9tgICAlSqVClNmjRJ48aN0yeffKKDBw9avx0mbCA5+ucp4A4ODnJxcVGOHDnUtGlT1alTR19//bU+/PBDSU/+M7d06VIdOXIk1jHP8Y+k5FnHo6enp7766itt2bJFu3btkiSVK1dOU6dO1dGjR7VlyxatXr3a+judsI2k7nnH+caNG7V3795Yr125ckXp06fXoUOHCNvPQeBGohQoUEAWi0UHDhzQoUOHrKeWpEyZUgsWLFDRokU1evRo68yFwOskQ4YMWr16tTw8PFSnTh0dPnxYbm5ukp6EjxUrVqh8+fJq0aKFtm7dquLFi6tFixb66KOPrJOS8AcLydHTs5EfOXJEJ0+eVHBwsKQn95339vZWrly51LZtWxmGobt376p9+/aKjIxUx44d7Vk68J9GjRqld955R7/99pu1rVixYnJyctK+ffskyXoqrbe3t1xdXWWxWBQdHc3vdCQbzzvOd+/eLen/vlgtXLiwFi9ebP1SieP82QjciJd/Xnng4eGhNWvWqHr16vr++++1atUq67Wmjo6O+u6771SzZk35+fnZo1zA7tKmTavff/9dRYoU0cGDB3Xr1i1J//dHavny5apUqZKqVaumgwcPxlqXURAkVzFh+5NPPlHTpk1VokQJffTRR/r999+tE+xEREQoa9as8vPzU+3atXXjxg1t2bJFjo6OzFmAJK148eK6ePGihg4dqkqVKmnnzp3Kly+fevfurcGDB+vSpUvWwPH0SCHzECA5ic9xHnP7u6cRtv8d13DjP8Vcz7F3717t2rVLoaGhKl68uGrVqqX79++rYcOGevz4sQYNGqR69eoRFvBaenpk72l3795V3bp1defOHa1cuVL58+ePdY3UwIEDNXLkSH5ukKw9ffyvWbNGvXr10vTp0/X3339r9uzZioqKUu/evdWwYUNdvXpVc+bMkaOjozJlyqS2bdvK0dGR0REkCw8fPtThw4f15Zdf6syZM8qaNauaN2+uhQsXqkGDBurXrx+/z5HscZzbFoEb8bJ06VJ17dpVJUqUkKenp5YsWaKRI0fK39/fGrojIiLUq1cvNW3alB9CvFaeDhurVq3S1atXlTNnTuXJk0d58uRRcHCwatasqZCQEK1YsSJO6JbEZDp4Jaxfv14rV65Urly51LdvX0lPTi0fMmSI7t27p65du+rtt9+Osx7HP5KDf36xumrVKm3dulVff/21wsLC9P777+u7776zY4XAi+M4tz0CN57p6TBw4sQJ1axZU5999pm6dOmiy5cvy9fXV3379tXo0aPl6OiokJAQValSRV5eXlq2bJn1elXgdTJgwAB98803ypUrly5duqQiRYrogw8+UPv27RUcHKxatWrpwYMHWrx4sQoVKmTvcgGbCgoKUr169RQYGKiPPvpIEyZMsL4WE7ofPnyoVq1a6YMPPrBjpcCL+WcgOXjwoNatW6ePP/6YszTwyuA4tx0uKkEsq1atkiTrJB+SdOvWLRUoUEBdunRRYGCgKlSooE6dOmns2LFydHTUqVOn5OHhoT/++EOzZ88mbOO18fT1pvv27dPGjRu1bt06HT58WBs2bFD+/Pk1depU/fTTT/L09NTvv/+u0NBQjRw50o5VA7bxz+/rc+bMqRkzZqhEiRLatm2bNmzYYH2taNGiGj58uEJDQ3Xo0KGXXCkQP/88pv9tTOrpEGIYhkqUKKGBAwdaZ2kGkjKO85ePwA2r8+fPq1GjRmrTpo2k//tBe/z4sW7evKm9e/eqWrVqqlu3rvV+k3/88YeGDRumixcvys3NTTly5LBb/cDLcuLECUn/N7nZmDFjNGPGDL3xxhsqV66cJKl06dLq3bu3fH19tXz5ckVERCht2rQ6ePCgvv/+e7vVDthCdHS09Syo69ev69GjR4qKilLlypU1YsQIOTs7a8aMGdq8ebN1nSJFimju3LmaNGmSnaoGni0mcMQc0xcuXIj1/Hn+uQwjf0iqOM7th8ANK19fX61cuVJr165Vu3btrO158uSRl5eX/ve//6ly5cqaOXOmNWisWLFCwcHBcnd3t1fZwEvVp08ftW/fXtu2bbO23b9/X3PnztXOnTt19epVa3uhQoXUrFkzLV26VJcvX5Ykubu7Mxszkr2YL2SHDRumGjVq6K233tLHH3+sx48fq1q1aho2bJiuX7+ur7/+Wlu2bLGulzt3bjk4OMS5VzdgT0+f1Td69Gh99tln8Vrv6ZFBrtBEUsdxbj8Eblg5ODioTp06mj9/vpYtW6a2bdtKehK4a9euLWdnZ2XJkkUnTpzQyZMn9cknn+i7777T2LFjlS5dOjtXD7wcnTp1UlhYmMaMGaOAgABJ0ogRIzR58mQFBQVp3rx5+vvvv63L586dW3ny5Ilz+hUTRCE5ejoo//DDD5o2bZr69u2rkiVLateuXWrUqJEePXqkGjVqaNiwYbp165aGDh2qAwcOxOqH2yQhKRg0aJD1jL2YY/LOnTt64403JOm5Xww9PdfNqlWrYn2xBCQlHOf2x188SPq/b6xCQkJUr149LVq0SCtXrlTr1q0lPbmnaocOHbRlyxYVK1ZM7733ntauXavNmzercOHC9iwdeGmioqJUsGBBLVmyRJcuXdLYsWOtp8z26NFDI0aM0JAhQzR69Ght3bpVx48f15AhQ+Tu7q48efLYuXrgxTw9gc7q1av1119/acqUKfrggw80ZcoU9e/fX3fv3lXDhg2tofuTTz5RwYIFVbx4cfsWD/zDlStXdPToUf3000+aO3eutT0oKMj6Bem/fTH0dAiZMWOGGjVqxCm2SJI4zpMIA6+16Oho6783btxo1K5d24iIiDDCw8ON1atXG56ensa7775rXebixYtGQECAcerUKePmzZv2KBmwq8jISMMwDOP06dNG4cKFjTp16hibNm2yvj5q1CjDYrEYFovFaNeundG0aVMjPDzcMAzDiIqKskvNwIuoU6eOcfjwYevzffv2Gfny5TM8PDyMZcuWWdvDw8ONpUuXGmXKlDH+97//GQ8ePIjVD8c/kpoTJ04Y7dq1MypUqGDMnj3bMAzDaNSokTFs2DDDMJ59zEZERFj/PWPGDCNNmjTGL7/88nIKBhKB49z+GOF+TU2YMEErVqyIdT3H3r175ebmphQpUihlypSqW7euFi5cqN9++8060p09e3b5+fkpf/788vLysucuAC/N06dbxZwKni9fPuu12V999ZV1pNvf319Tp06VJJUqVUpz5sxRypQpFRUVxWm0SHYuXryookWLqkCBAta23Llzq3v37kqXLp1mz55tbU+ZMqUaNGggf39/nTp1SoMGDZL0f2dQcfwjqYj5nf7GG29owIAByp07t2bPnq2FCxcqZ86cypgxo86fP6+LFy/qxo0bun79unbt2iXp/yaLmjlzpj755BPNnj1bzZo1s9u+AP+G4zwJsXfix8t39+5do1WrVoarq6uxdu1aa3vPnj2N1q1bx1o2KirKWL16tZEhQwajcePGL7tUwO6e/ub35MmTxq5du4yQkBDj8ePHhmEYxqlTp4zChQsbtWvXjjXS/cUXXxgWi8WYNGmScffu3ZddNmBz48ePN7Zs2WIYhmGEhIQY33zzjVGkSBGjffv2sZYLDw83AgICrGeDAEnJ07/Tb9y4YRjGkzOW3nvvPaNs2bKGxWIxPDw8jLx58xoZM2Y0vL29DW9vb6Nhw4bWswK/+eYbw9PTkxE/JFkc50kLgfs1dfbsWaNTp05GmjRpjFWrVhmGYRh9+vQxOnbsaBiGYQ0ThvHktJJff/3VyJ49u3H16lW71AvYw9OXXHz66adGvnz5jPTp0xvFihUzJk6caFy/ft0wjCdBvEiRIka9evWMNWvWWNcZO3asYbFYjG+++SZWX0Byc/v2baNevXpGmjRpjB07dhiGYRj37t0zpk2bZhQvXtx4//33n7keoRtJydMhZPjw4UbTpk2N/fv3G4ZhGMePHzfee+89o1y5ckbPnj2N4OBg48aNG8bhw4eNM2fOWI/lCxcuGDlz5jSWLFlil30A/gvHedJD4H7NPP1DuHPnTmPAgAFGmjRpjO3btxuTJ082+vfvb4SGhhr37t2zLnfp0iXDMIw41+MBr4svvvjCyJQpk/H7778bhmEYDRs2NHLkyGF8+umnxrVr1wzDeDLS7e3tbfTt2zdWyJg4caJx4sQJu9QNJNazviA6evSo0aZNGyNDhgzGH3/8YRjG/4XuUqVKGY0aNXrJVQKJ4+/vb2TMmNH44YcfjCtXrljbT5w4YbRt29YoV66cMX/+/Djrxfxuj/m9DyRlHOdJh8UwuKHa68J46ob3GzduVP/+/dWnTx/t3LlTP/30k5ycnOTh4aHo6GiFhobKzc1N4eHhSp06tXbs2KG0adPaeQ+Al+/EiRP68MMP9cknn6hBgwbasGGDmjVrprJly+rMmTNq166dunbtKh8fH126dElZsmSRo6OjIiMjmc0TydLTs5EbT76Ytz4/duyYRo0apQ0bNmj58uWqWLGigoODNWPGDJ06dUrfffcd12ojSdu/f79atGihb7/9Vm+99Za1Pea4P3XqlMaMGaMdO3ZowoQJql+/vnUZ46lZm4GkjOM8aeF/g6+Jp8P2Tz/9pHfffVeS5OrqqhEjRsjFxUWzZ8/WO++8o549eyooKEgRERGyWCzKly8fYRuvrcyZM6tnz56qXr26tm/frvfee0/jxo1T586dVatWLS1YsEB3797VkCFDlD17dklPbh9G2EZy9HTYnjFjhrZt2yaLxaI333xTvXr1UuHChfXpp5/KMAw1bdpUy5YtU4UKFdS9e3elTp3aOhEnoRtJ1d9//y3DMFSsWDFrW8yXShERESpQoIA+/vhj5c6dW3Xq1Im1LiEEyQXHedLC/whfIxaLRb/88oveffdd/frrr1q8eLGOHz+uZs2aqVOnToqIiND8+fPVvHnzWN+GAa+zNGnSqHbt2nJ1ddX8+fPVtGlTdejQQZKUM2dOXb58WdHR0UqfPr11nZiZzIHkJiYoDxw4UN9//72aN28ud3d3DRgwQLdu3dKIESNUqFAhffbZZ3J0dFSlSpV0+PBhFSlSRJJijYYDSZGzs7P++usvBQUFKUOGDNazOCwWizZt2qQ0adKoXLlyKlSokKQnX6DyOx3JDcd50sJfxdeExWLRsmXL1KJFC3333Xdq3LixHjx4oL/++kuSVKhQIfXt21ctW7aUn5+f1q9fb+eKgaTD3d1dknTnzh09fPhQkZGRkqTg4GCNHz9e06ZNk8ViEVfo4FWwaNEi/fLLL1q6dKkmT56s0qVLKyoqSqNGjVKXLl0kPfmb8fHHH2vw4MEqWLCgdV1GRpBUPH07x6flyJFD5cqV04QJE3TkyBFZLBbrqN/YsWO1atWqWMsTQpCUcZwnD1zD/Rr5/fffdffuXevp5D179tS9e/e0YMEC6zKrV6/W/v371apVK+XPn99epQJJUv/+/bVu3TrlyZNH165dU3BwsI4ePSpHR0dOo8UrISoqSjNnzlRoaKj69u2r3377TW3atNGIESOUKlUqdezYUf7+/ho5cmSs9ZizAEnJ07+Pf//9dz148EBhYWFq06aNJGnevHmaNWuWUqVKpdatW8vR0VHff/+9bt68qf3793MsI1ngOE8+CNyvoZhTSkaNGqWVK1dqx44dcnR01PDhw7VmzRqtXr1aGTJksHeZQJLx9AQigwYN0o0bN+Tg4KDp06crRYoUnIqFZOtZk+OEhITo1q1bcnNzU61atdS6dWv1799fx44dk5+fn+7evatRo0Zp4MCBdqoa+HdPH9P+/v5atGiR0qZNq1u3bqlIkSL6/vvvlSFDBq1YsUIrVqzQkiVLVLhwYWXKlEmLFy9WypQp+Z2OJI/jPHkhcL+GYn5Iv/76a02dOlWnTp3SsGHDNGLECO3Zs0clS5a0d4lAkvNvf5gY2UNy9fToyM2bN5U+ffpYx/iePXvUrl07rVu3Tjly5ND58+c1atQovffee6pcuTL/UUOSNm7cOI0fP16rVq1S6dKlNWvWLH344Yfy8/PTTz/9pIwZM0p6cuynTp1arq6uslgs/E5HssJxnjxw/uNrrHDhwkqXLp26d++u0aNHa/fu3YRtvDb+7bvGf2uPCRf/vF6KP1hIrmLC9tChQ9WoUSOVKVNGP/zwg27cuCHpydwFZ86c0cKFC3Xy5En16NFDt27dkp+fn/XWd0BSERUVZf33jRs3dOzYMU2dOlWlS5fWihUr1L9/fw0fPlwXL15U69atdfnyZUmSt7e33NzcrPNw8DsdSRnHefLECPdrbM+ePSpfvrwcHR21d+9elShRwt4lAS/F0yN7J06ckIODg5ycnJQrV644rz/t6VO4zpw5o0yZMlknVAOSo/nz58vf31/Dhg3TmjVrdPbsWdWrV0/dunVT9uzZNW7cOPn7+ytnzpxKkyaNdu7cqZQpU3KfViRZZ86cUb58+bRs2TJVqlRJFy9e1Ntvv62PP/5Y3bp10+TJk9WnTx8VK1ZM69evl5eXl71LBhKM4zx5YYT7NVa8eHENHz5cx44dI2zjtfH0bYsGDx6sd999V1WrVtX777+vqVOnSnoy8vfPkeynA8bUqVPVsmVL3b179+UWD7ygfx7XYWFhGjx4sDp16qRly5apdevW2rBhg6ZOnaobN27o448/1smTJ/XDDz9oz549SpkypSIjIwnbSDKWLVumIUOGSJJ69+6tAQMGKDIyUk2aNJGXl5e2b9+uggULWieMdXd3V4cOHVSoUCGlS5fOnqUD8cZxnrxxPsFrzNnZWf7+/lyHh9dKTFAYNmyYZsyYoR9//FFZsmTRmDFj1KtXLz18+FADBw60hm4HB4dYYXvmzJkaPHiwpk+fruzZs9tzV4AEefrLpoULF+rGjRs6ePCgatWqZV3G399fkrRkyRJZLBZ16dJFefLkUZ48eSQ9CeycioikIiwsTOfOndOXX36prVu3av/+/dq1a1esY/TMmTO6ePGiPD09df/+fa1YsUJVq1ZVnz59JHH/YSR9HOevAAMAXgPR0dHWf//555/Gm2++aQQEBBiGYRhr16413N3djSZNmhiurq7G2LFjrctGRERY/z1jxgzDw8PDWLp06csrHLCBqKgo67/79+9veHh4GIULFzYcHR2NcuXKGYGBgbGW//LLL40sWbIYU6dOfcmVAgkTGhpqVKhQwbBYLEa3bt2s7ZGRkYZhGMbJkyeN9OnTGzly5DDy5ctnFC5cONbvdSA54DhP3viaGsAr7+lrsk+dOqWiRYuqcePGKlOmjDZv3qz27dtr3LhxatGihZo3b64BAwZYb30U8w3yzJkz9cknn2jOnDlq2rSpPXcHSLCY4//MmTO6ffu2Nm/erOLFi2v27NlasGCBPvvsM40cOVI5cuSQJA0YMECZM2e2np4IJCVP/06PiIhQ9erV9eabb2r+/Pny8vLSkCFD5OjoqPDwcBUoUEC7d+/W4sWLlTp1avXo0YPbOSJZ4Dh/dTBpGoBXmvGPe1Xu3r1bK1askIuLi5ycnNShQwe5ubnpq6++kpOTk7p166YjR47I09NTq1atksVi0ZIlS9S2bVstXLiQsI1ka/HixRo0aJAyZcqkVatWKW3atJKefJn0ww8/KEeOHBo1alScSyX4DxuSkqdDyJIlS5QlSxaVLFlS0f+vvXsPi7LO/z/+nMHhFJKWBxLUUEnFqwWPmZJeWS6rK5pbaS0bBuGauSqUgHiJMqmrlpYEa2KI5ualeVyVFSop84CrLHFI2YxS01Kjg0LKoXDm90cX9xcyv1u/b8QMvh7XxXXJfbo+g2+Yed2fw22zsXLlShYuXEhsbKwx3xW+XxwzMDDQ+F41LY5Odd6yaNE0EWnR6sP20aNHOXjwIEuWLMHb2xtXV1dqa2spKiqitrYWV1dXqqqqKC8vZ9q0aWRlZRnnBgcHs3v3boVtcWo2m43OnTtTWlpKdXW1sX3KlCk89thjfPrppzz55JPGY8Hq6QObOAp7g3UIZs+ezYwZMzhx4gTV1dV4enoSGRnJ3LlzWbFiBXPnzuXKlSuMHj2a559/vtF1VNPiyFTnLY96uEWkxVu5ciV5eXl8++23bNy4ERcXF+Pu8dKlS0lNTWXkyJGUlZVRVVVFfn4+Li4u2O32Rm98Is4uKyuL5ORkPDw82LBhQ6Pe7BdffJGysjLS0tJU8+LQli5dygsvvEBWVhbBwcFYLBZjX21tLatXryYuLo7OnTvj4eFBQUFBo2NEnIHqvOVQ4BaRFu+5555jzpw5dO7cmbfeestYcRng448/ZuvWrbz99tv4+vqSnp6OxWLRUCxpURpOrfjHP/5BamoqNpuN9evX07lz52uOu96z6EWaW21tLRMnTuTuu+8mISGBM2fOUFpaSnp6Or179yY8PJw+ffpQVlbG8ePHCQsLw8XFhbq6Oq2wL05Ddd6yKHCLSIuSm5vLvffei9lsxmq14uPjw5QpU1i5ciVJSUlER0czffp0/Pz8rnsNvWFJS9QwdO/YsYO0tDRMJhMZGRncfvvtP3qciCOx2+1cvnyZkSNHcueddzJ06FB27NjB5cuXAaipqSEwMJC0tDTc3NyM83QDVZyJ6rzl0e1rEWkxzp8/z1/+8hcGDx7MjBkzWLx4MYMHDwbgqaeeYvbs2WzYsIE1a9Zw7tw54zybzWb82263K2xLi2Qymai/xz5+/HhmzJhBeXk5y5cvv+Y4keZmt9sb/W2u17p1a2JiYti3bx+zZ8+mb9++WK1WcnNzufvuu6moqGgUQkBzWcVxqc5vDPpUKSItRseOHXn11VcJDQ3l2LFjHDx4kKCgIKqrq/Hw8CAuLg673W7MUX388cfp3Llzo6GzChvSktWHbpPJxLhx42jbti0hISHN3SyRRioqKrj55puNv8dpaWmUlZVx9epV5s+fzyOPPEJISAgmkwlfX1/jvOPHj+Pv799czRb5WVTnNw71cIuI06u/O2w2m2nVqhW33HILnTp1IjY2lpqaGjw8PKipqQEgPj6e6dOnk5yczFtvvdWczRb5RVxvZtj1tjfs6R42bJjmaotDSUxMpHPnzpSXlxvfJycnc/r0afbu3UufPn0oLCzEz88PX19fKioqeOONNwgLC+Ps2bO89NJLwPXrX8QRqM5vLHqXFRGn1nBxp2PHjuHj40NBQQHr16/nm2++YcSIEdTW1uLu7m68McXFxbFlyxYmTZrUnE0X+T+z2WxG70hpaSkffPABJ0+eBDAWP/tvPvzwQ7755psmbafITxUREcGdd97JPffcw9mzZ42gsXPnTvbv38+QIUMIDQ3lvffeA+DkyZMsWbIEk8lEYWEhrVq14urVqxqtJA5NdX5j0aJpIuK0GobtpKQksrOzWbRoESNHjsRms7Fv3z5mzZqFl5cXe/fuxd3dnaioKIYPH26EbS0yIs6q4eJm8+bNY9euXVy4cIGePXvy0EMPMX36dIBrVhxveF5qaiqZmZns3Lmz0SPCRJrTRx99RHh4OGfOnKFLly689tprBAQEAHDp0iUiIyPJy8sjOzubfv36UVZWRvfu3TGbzVr0UpyG6vzGoR5uEXFa9SFi7ty5ZGRkYLVaGThwoDG0fMSIEaSkpFBZWYm/vz/Dhw8nNzeX8PBw4xoK2+Ks6kOz1Wpl1apVLFu2jHfeeQd/f39mzpzJkiVLgO9/T+p7uhuG7fT0dObNm0dCQoLCtjS7hqMxevTowYYNGxgwYACFhYXU1tYax7Rp04a1a9cSEhLCgAEDOHHiBAEBAUadK4SII1Od35j0vyUiTu348eNs3ryZdevWERoaSmVlJWVlZRw4cIBevXoxfPhwdu7cSWZmJjabjdzcXGMolsK2OKOGobmgoIA9e/awZcsWhg8fzhtvvMH27dt54IEHWLhwIS4uLsTFxV3TI5Kenk58fDxr167lD3/4Q3O+HJFGozAOHz6Mr68vPXr0YPny5Vy8eJEHHniAvLw8OnTogN1up02bNrzyyivccccd9OjRw7iO1iMQR6Y6v3FpSLmIOLXi4mImTpxIZmYmdXV1bN68mX379nHx4kXat2/PggULCAsLa3SOwrY4q4Yf2D744AO6d+/OsmXLmDlzJv/6178IDw/HarUyYcIEHnroId5++21mz57NX//6V+Ma9WE7MzOTBx98sLleigjQuKbnzJlDVlYW8+fPZ9SoUXh6elJWVkZERARffPEFhw4domPHjtdMk9DwWnF0qvMbm26RiIjT+LEFoHr27InZbCY6Opr7778fgMWLF3P48GHq6uq4cOHCNecobIszstvtxoevxMREpk6dSnV1Nc888wyenp5s2LCBCRMm8Pjjj9OmTRt69uzJ0KFDKSkpMRYM3LJlCzExMaxdu1ZhWxxCfU3Pnz+fzMxMli9fTmhoKJ6engAEBASwadMmbr31VoYNG8a5c+eu6eFTCBFHpzq/sel/TkScQsM7vfn5+cbqzIMGDaKwsJCsrCzat29PSEiIcZy3t/dPWqVZxBnUDyM/evQoBw8eZNmyZXh7ewNQW1tLUVERAwcOxNXVlaqqKsrLy5k2bRqPPPKIcY3g4GB2795t3JwScQQnT55k27ZtpKenM3LkSL788ks++ugj3nzzTW6//XYmTJjA1q1buffee4mNjeX1119v7iaL/Gyq8xuXAreIOLyGPXsJCQls3LgRk8nE559/zqOPPkpSUpLRW3flyhUuXbrE5MmTqampITo6ujmbLvKLWrlyJXl5edx2220MGDAA+P5mlJubGxMmTCA1NZXIyEjKysqoqqri4YcfBr7/HbLb7QQEBBir4Io4ilatWuHq6kpFRQV79+5l48aNvPfee9TW1lJVVcXFixeZMmUK+/bt47bbbmvu5or8f1Gd37g0pFxEHF59z15aWhqZmZls2rSJN998k6ysLHJyckhISOCTTz4BICMjg3HjxnH58mWOHDmCi4sLV69ebc7mi/xiLl++zKZNm8jPz+fUqVPA/wxVrH8U2Llz57jjjjsa1b/JZNJCO+IQfmzUkY+PDz4+PqxYsYLQ0FC8vb1ZsmQJeXl5BAQE8PXXXwPg5+env+niFFTn0pB6uEXEaeTn5/Pggw8yZMgQ7HY7PXv2JDs7m2HDhtG7d2+effZZJk2ahLe3NxEREbi4uGiREXFaubm53HvvvZjNZqxWKz4+PsTHx+Pl5UVSUhKvvPIK06dPx8/PD4Du3buTkJBAQkKCcQ3VvziShlODjh8/jqurK3a7nTvuuIPt27dz5MgRvLy86N+/v3FOdXX1NetuaB0OcWSqc/khrVIuIg6p4aOPAL777jtGjRqFn58f69atw2azUVdXh6urKy+88AKrVq3i8OHD3HrrrcY5Wo1cnNX58+cZMWIErVu3ZvDgwaxevZojR44QFBQEwPPPP09KSgqTJ09m8uTJdOrUCWj8Qe+Hv0MizalhPSYnJ7N161aqqqpwdXUlMTGRSZMmGcdevnzZWIPg/Pnz/Pvf/9aNI3EKqnP5MRpfJiIOp35BNPh+kZHy8nIsFgsRERFs3bqV3NxczGYzFosFADc3N9q1a0fr1q0bXUdhW5xVx44defXVVykrKyMjI4ODBw8SFBREdXU1AHFxccyYMYM1a9awZs0azp49CzR+PqvCtjiShiFk5cqVvPjii7zxxhsMGDCAyMhI0tPTjWPXr19PREQE3377Lfn5+bRq1UrDa8UpqM7lxyhwi4jDafisyrFjxxIYGGgMpY2KimLatGnk5ORgs9moqKggKysLX19fI4CLOKv6eX9ms5lWrVpxyy230KlTJ2JjY6mpqcHDw4OamhoA4uPjmT59OsnJybz11lvN2WyRn6SgoIB3332XTZs2MXLkSD788EP++c9/8vvf/56pU6fyyiuvAPDEE0/w9NNP8+abb2KxWKirq9MNVHEaqnP5IQ0pFxGH0XA47JYtW4iNjSUtLY2SkhJycnLo0qULgwcP5rPPPuPFF1+kW7duuLi44ObmRn5+PhaLRcNoxWk1rP9jx45xyy234OnpSWlpKU899RSenp688847uLm5Narz7du3M27cOH1QE4fzw7/Hn376KRs2bCAmJoZDhw7xpz/9iXnz5vHYY48xfvx49u7dy9KlS4mLizPO0dQgcXSqc/lvFLhFxOHs37+fbdu2ERQURFRUFAC7du0iNTWVtm3bMnnyZDp06GAsPDJx4kQtkCZOrWHYTkpKIjs7m0WLFjFy5EhsNhv79u1j1qxZeHl5sXfvXtzd3YmKimL48OHGnEB9YBNH0rAeP/74Y7y8vOjYsaNR648//jienp6kpKRgsVh48sknKSgowN3dnf379+vGqTgF1bn8FBpSLiIO5cKFC0RFRbFu3ToqKyuN7WPHjmXGjBl89dVXrFy5ktraWv785z/zxz/+0Xh8hsK2OKv6sD137lwyMjKwWq0MHDjQGFo+YsQIUlJSqKysxN/fn+HDh5Obm0t4eLhxDYVtcQQvv/wyRUVFRj0mJiYybtw4+vTpQ3x8PAUFBQAUFxdz0003YbFYqK6u5osvviA5OZkDBw5gMplQf5A4MtW5/Bzq4RYRh1NSUsLDDz9M165dWb58OXfeeaexb8+ePSQkJDBmzBgWL17cjK0U+WUdP36c8ePHk5qaSmhoKJWVlXz++eccOHCAXr16MWTIEE6dOkVmZiY2mw2r1WossqOwLY7g1KlTDBs2jFGjRhEfH29Mh6ifGrRnzx46derE3LlzOXjwILNmzSIyMpKioiK+++478vPzcXFx0dQgcWiqc/m5FLhFxCEVFxcTGRnJgAEDmDlzJn369DH25eXlcddddylkSItSXFzMxIkTyczMpK6ujs2bN7Nv3z4uXrxI+/btWbBgAWFhYY3OUdgWR1NUVER0dDT33HMPZrOZwMBAnnjiCQCysrJYvnw5bdu25ZFHHuHLL79k165d+Pr6smrVKiwWi2panILqXH4ODSkXEYcUFBTEmjVrKCgoICUlhdLSUmPfkCFDjGHkIs6ofjXyhnr27InZbCY6Opr7778fgMWLF3P48GHq6uq4cOHCNefoA5s4muDgYFavXs3BgwdZu3Yt33zzjbFvzJgxPP3001RWVrJ582aCgoLIyclhzZo1WqVZnIrqXH4OBW4RcVh9+/YlIyODoqIi5s+fz6lTpxrt1xuWOKOGC6Tl5+dz5MgRjh49iru7O4WFhSxYsIC9e/fy0ksvERYWRpcuXfD29v7RkC7iiPr160dmZiZt27Zlz549vP/++8a+sLAwYmNjOXHiBLt37za22+12rcMhTkV1Lj+VhpSLiMM7evQoq1atIiMjwwgqIs6o4Zy9hIQENm7ciMlk4vPPP+fRRx8lKSmJbt26AXDlyhUuXbrE5MmTuXDhgjHvT8RZaGqQ3AhU5/LfKHCLiFOoDyoNewdFnFVaWhpWq5WdO3dy6623cvbsWR577DFCQkJYtmwZXbt2JSUlhb///e94enqSm5ureX/ilAoLC4mOjqZ///7ExMQQGBjYaL9qWloC1bn8bxS4RcRpaEVPaSkmTZqEh4cHq1atMuq6qKiIYcOGERMTw7PPPsulS5fYsWMHERERes68OLXCwkKmTJlC165dee655/D392/uJon84lTncj3qJhIRp6GwLc7oh/e1v/vuOz777DNqamqM/d9++y3BwcEkJyezadMmvvrqK9q0aUNkZKSeMy9Or2/fvqSlpdG6dWu6du3a3M0RaRKqc7keBW4REZEmYrPZjBtFJ0+epLy8HIvFQkREBFu3biU3Nxez2YzFYgHAzc2Ndu3a0bp160bX0VBEcXaDBg1izZo1mM1mLQAoLZbqXH6MAreIiEgTqV9vYM6cOYwdO5bAwEDi4+Px8vIiKiqKadOmkZOTg81mo6KigqysLHx9fY0ALtKSmEwm7Ha71uGQFk11Lj+k8WkiIiK/sIaL+23ZsoX169eTlpZGSUkJOTk5nDlzhsGDBxMWFsaYMWPo1q0bLi4uuLm5kZ+fb3xg0zQKaWlU03IjUJ1LQ1o0TUREpIns37+fbdu2ERQURFRUFAC7du0iNTWVtm3bMnnyZDp06MCRI0fw8vJi4sSJWiBNRESkBVHgFhERaQIXLlwgJCSEL774AqvVSkxMjLFv9+7drFixAm9vbxITExk0aJCxT4+PERERaTk0uUBERKQJ+Pj4sH37dnx8fNizZw/vv/++sS8sLIxnnnmGjz76iB07djQ6T2FbRESk5VAPt4iISBMqLi4mMjKSAQMGMHPmTPr06WPsy8vL46677lLIFhERaaEUuEVERJpYYWEh0dHR9O/fn5iYGAIDAxvt1zByERGRlkmBW0RE5FdQWFjIlClT6Nq1K8899xz+/v7N3SQRERFpYprDLSIi8ivo27cvaWlptG7dmq5duzZ3c0RERORXoB5uERGRX1H987UbPqtbREREWiYFbhERkV9ZfegWERGRlk231kVERH5lCtsiIiI3BgVuERERERERkSagwC0iIiIiIiLSBBS4RURERERERJqAAreIiIiIiIhIE1DgFhEREREREWkCCtwiIiIt1OnTpzGZTBQVFTV3U0RERG5ICtwiIiIOzGQy/a9fycnJzd1EERERuY5Wzd0AERERub7z588b/3799deZN28eJ06cMLZ5eXk1R7NERETkJ1APt4iIiAPz8fExvm6++WZMJpPxfYcOHXjhhRfw8/PDzc2N4OBgcnJyrnutq1evEhUVRa9evThz5gwAO3fupF+/fri7u9OtWzesVit1dXXGOSaTiYyMDMaPH4+npycBAQHs2rXL2H/x4kXCw8Np3749Hh4eBAQEsHbt2qb7gYiIiDgRBW4REREnlZKSwvLly1m2bBklJSWEhoYyduxYysrKrjm2traWhx9+mKKiIg4cOECXLl04cOAAERERzJw5k9LSUtLT01m3bh2LFi1qdK7VamXChAmUlJQwevRowsPD+frrrwFISkqitLSU7Oxs/vOf//Dyyy/Trl27X+X1i4iIODqT3W63N3cjRERE5L9bt24dMTExXLp0CQBfX1+mTZvGnDlzjGMGDRrEwIED+dvf/sbp06fx9/fnwIEDJCcnU1tbS1ZWFjfffDMA999/P/fddx+JiYnG+a+99hrx8fGcO3cO+L6He+7cuSxYsACAK1eu4OXlRXZ2Nr/73e8YO3Ys7dq1IzMz81f6KYiIiDgPzeEWERFxQpWVlZw7d46hQ4c22j506FCKi4sbbXv00Ufx8/Pj7bffxsPDw9heXFzMoUOHGvVoX716lZqaGqqqqvD09ATgN7/5jbH/pptuwtvbm/LycgCmTp3Kgw8+yHvvvcdvf/tbHnjgAYYMGfKLv14RERFnpCHlIiIiLdzo0aMpKSnh8OHDjbZfvnwZq9VKUVGR8fX+++9TVlaGu7u7cZzFYml0nslkwmazATBq1Cg++eQTYmNjOXfuHPfddx+zZs1q+hclIiLiBBS4RUREnJC3tzedOnXi0KFDjbYfOnSIwMDARtumTp3KkiVLGDt2LO+++66xvV+/fpw4cYIePXpc82U2//SPCO3bt2fSpEm89tprrFixgtWrV//fXpyIiEgLoSHlIiIiTiouLo758+fTvXt3goODWbt2LUVFRWzYsOGaY6dPn87Vq1cZM2YM2dnZhISEMG/ePMaMGUOXLl146KGHMJvNFBcXc+zYMRYuXPiT2jBv3jz69+9Pnz59jDnivXv3/qVfqoiIiFNS4BYREXFSM2bMoKKigmeeeYby8nICAwPZtWsXAQEBP3p8TEwMNpuN0aNHk5OTQ2hoKFlZWTz77LMsXboUi8VCr169iI6O/sltcHV1JTExkdOnT+Ph4cE999zDpk2bfqmXKCIi4tS0SrmIiIiIiIhIE9AcbhEREREREZEmoMAtIiIiIiIi0gQUuEVERERERESagAK3iIiIiIiISBNQ4BYRERERERFpAgrcIiIiIiIiIk1AgVtERERERESkCShwi4iIiIiIiDQBBW4RERERERGRJqDALSIiIiIiItIEFLhFREREREREmsD/A41PMCcMOJ5GAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAMGCAYAAACOL8UoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYsElEQVR4nOzdd3iN9//H8dcRkqhIjGYYQdTeihpF0Kg9Wqs60BqtUrOlobVK01bVqBatn9VSrZpVtYXWKEpUraKJoElQkpiJJPfvj145X6cJMk5ybvJ8XNe5Ludzf+7P/b5zbuF1PvewGIZhCAAAAAAAOFwuRxcAAAAAAAD+RUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAJhKcHCwLBaLgoODHVbDggULZLFYtH//fofVYHZNmjRRlSpVHF1GtrNYLBo3bpyjyzCtJk2aqEmTJo4uAwAeaIR0AIAsFkuaXmkJzu+//75WrVqV5TUnB+nkl6urq4oWLaoWLVpoxowZunr1apbXIEmff/65FixYkC3byqwmTZqk6XMmhGZOWFiYzc/TyclJJUqU0DPPPKOQkBC7bmvJkiWaNm2aXccEADhWbkcXAABwvK+++srm/aJFi7Rp06YU7RUrVrzvWO+//746d+6sjh072rPEu5owYYL8/Px0+/ZtRUZGKjg4WEOGDNEnn3yiNWvWqFq1alm6/c8//1yPPvqoevXqlaXbsYfRo0erT58+1vf79u3TjBkzNGrUKJvPNqt/ZjlF9+7d1bp1ayUmJurYsWOaNWuWfvrpJ+3Zs0c1atSwyzaWLFmiP/74Q0OGDLHLeAAAxyOkAwD04osv2rzfs2ePNm3alKLdjFq1aqXatWtb3wcGBmrr1q1q27at2rdvr2PHjilv3rwOrDD7Xb9+Xfny5UvR3rx5c5v3rq6umjFjhpo3b84pylng8ccft/k79OSTT6p9+/aaNWuW5syZk+o6d/vsAAA5B6e7AwDS5Pr16xo+fLh8fX3l4uKi8uXL6+OPP5ZhGNY+FotF169f18KFC62n+ibPMJ85c0avv/66ypcvr7x586pw4cLq0qWLwsLC7F5rs2bN9O677+rMmTP6+uuvbZYdP35cnTt3VqFCheTq6qratWtrzZo1qY5z48YNvfrqqypcuLDc3d3Vo0cPXblyxbq8VKlSOnLkiLZv327d33uF3eTToD/++GNNnTpVJUuWVN68eeXv768//vgjRf+01Jp82v/27dv1+uuvy8vLS8WLF0/HTyulzz//XJUrV5aLi4uKFi2qAQMGKDo6+r7rbdy4UY888oi6d++uhISEdO/Dzp07NWzYMHl6eipfvnx65plndPHixftu9/fff1evXr1UunRpubq6ysfHR6+88or++ecfm37jxo2TxWLRqVOn1KtXLxUoUEAeHh56+eWXdePGDZu+cXFxGjp0qDw9PZU/f361b99e586du28t99KsWTNJUmhoqM1+3+2zu9/n0KRJE/344486c+aM9fgrVaqUdfmFCxfUu3dveXt7y9XVVdWrV9fChQtT1JWUlKTp06eratWqcnV1laenp1q2bGlzT4aEhAS99957euyxx+Ti4qJSpUpp1KhRiouLy9TPBACQEjPpAID7MgxD7du317Zt29S7d2/VqFFDGzZs0FtvvaXz589r6tSpkv49bb5Pnz564okn1K9fP0nSY489JunfU6t37dql5557TsWLF1dYWJhmzZqlJk2a6OjRo3rkkUfsWvNLL72kUaNGaePGjerbt68k6ciRI3ryySdVrFgxvf3228qXL5++++47dezYUcuXL9czzzxjM8bAgQNVoEABjRs3TidOnNCsWbN05swZ683tpk2bpjfeeENubm4aPXq0JMnb2/u+tS1atEhXr17VgAEDdOvWLU2fPl3NmjXT4cOHreunt9bXX39dnp6eGjNmjK5fv57hn9u4ceM0fvx4BQQEqH///tb93rdvn3bu3Kk8efKkut7atWvVuXNndevWTfPmzZOTk1O69+GNN95QwYIFNXbsWIWFhWnatGkaOHCgvv3223vWvGnTJv311196+eWX5ePjoyNHjuiLL77QkSNHtGfPHlksFpv+Xbt2lZ+fn4KCgnTgwAHNnTtXXl5e+vDDD619+vTpo6+//lrPP/+8GjRooK1bt6pNmzYZ/Kn+6/Tp05KkwoUL27Sn9tml5XMYPXq0YmJidO7cOevfQTc3N0nSzZs31aRJE506dUoDBw6Un5+fli1bpl69eik6OlqDBw+2br93795asGCBWrVqpT59+ighIUE///yz9uzZYz1LpU+fPlq4cKE6d+6s4cOH69dff1VQUJCOHTumlStXZurnAgD4DwMAgP8YMGCAcec/EatWrTIkGRMnTrTp17lzZ8NisRinTp2ytuXLl8/o2bNnijFv3LiRom337t2GJGPRokXWtm3bthmSjG3btt2zxvnz5xuSjH379t21j4eHh1GzZk3r+6eeesqoWrWqcevWLWtbUlKS0aBBA6Ns2bIpxq5Vq5YRHx9vbf/oo48MScbq1autbZUrVzb8/f3vWWuy0NBQQ5KRN29e49y5c9b2X3/91ZBkDB06NMO1NmzY0EhISEhTHcmWLVtm87O+cOGC4ezsbDz99NNGYmKitd/MmTMNSca8efOsbf7+/kblypUNwzCM5cuXG3ny5DH69u1rs1569yEgIMBISkqytg8dOtRwcnIyoqOj77kfqR1b33zzjSHJ2LFjh7Vt7NixhiTjlVdesen7zDPPGIULF7a+DwkJMSQZr7/+uk2/559/3pBkjB079p71JH/O48ePNy5evGhERkYawcHBRs2aNQ1JxvLly232+7+fXXo+hzZt2hglS5ZMUcO0adMMScbXX39tbYuPjzfq169vuLm5GbGxsYZhGMbWrVsNScagQYNSjJH8WST/PPr06WOz/M033zQkGVu3brW2+fv7p/nvAwAgdZzuDgC4r3Xr1snJyUmDBg2yaR8+fLgMw9BPP/103zHuvC789u3b+ueff1SmTBkVKFBABw4csHvN0r+zisl3eb98+bK2bt2qrl276urVq7p06ZIuXbqkf/75Ry1atNDJkyd1/vx5m/X79etnM3Pcv39/5c6dW+vWrctUXR07dlSxYsWs75944gnVrVvXOm5Gau3bt6+cnJwyVdfmzZsVHx+vIUOGKFeu//0XoW/fvnJ3d9ePP/6YYp1vvvlG3bp106uvvqo5c+ZY18voz/vOWe9GjRopMTFRZ86cuWfddx5bt27d0qVLl1SvXj1JSvXYeu2112zeN2rUSP/8849iY2Mlyfo5/Pd4T+/N2caOHStPT0/5+PioSZMmOn36tD788EM9++yzNv3++9ll5HP4r3Xr1snHx0fdu3e3tuXJk0eDBg3StWvXtH37dknS8uXLZbFYNHbs2BRjJH8WyT+PYcOG2SwfPny4JKWpHgBA2uXokL5jxw61a9dORYsWlcViSfcjg5Kvbfvvixu+AHjYnDlzRkWLFlX+/Plt2pPvCH6/ECX9e/rtmDFjrNe0P/roo/L09FR0dLRiYmKypO5r165Zaz516pQMw9C7774rT09Pm1dyQLlw4YLN+mXLlrV57+bmpiJFimT6Ovr/jitJ5cqVs46bkVr9/PwyVZP0v8+xfPnyNu3Ozs4qXbp0is85NDRUL774ojp16qRPP/3UJmBnZB9KlChh875gwYKSZHMfgNRcvnxZgwcPlre3t/LmzStPT0/rzyO1Y+t+2zlz5oxy5cplvVQj2X9/LvfTr18/bdq0SVu2bNFvv/2mCxcuaMSIESn6/fezS+/nkJozZ86obNmyNiFfSvl39vTp0ypatKgKFSp0z7Fy5cqlMmXK2LT7+PioQIECaaoHAJB2Ofqa9OvXr6t69ep65ZVXUnyrnRZvvvlmim/jn3rqKdWpU8deJQLAQ+ONN97Q/PnzNWTIENWvX18eHh6yWCx67rnnlJSUZPftnTt3TjExMdZgkbyNN998Uy1atEh1nf+GEEfJSK2OuIN9kSJFVKRIEa1bt0779++3uct+RvbhbmcCGHfcnDA1Xbt21a5du/TWW2+pRo0acnNzU1JSklq2bJnqsZXR7aRX2bJlFRAQcN9+D8rTB/57bT8AIGvk6JDeqlUrtWrV6q7L4+LiNHr0aH3zzTeKjo5WlSpV9OGHH1rv3Ovm5ma9QYskHTp0SEePHtXs2bOzunQAyFYlS5bU5s2bdfXqVZvZ9OPHj1uXJ7vbf+S///579ezZU1OmTLG23bp1K013Dc+I5Ge8JwfE0qVLS/r3lN+0BCdJOnnypJo2bWp9f+3aNUVERKh169bWtowEl5MnT6Zo+/PPP6135s5IrfaQ/DmeOHHCWoMkxcfHKzQ0NEUtrq6uWrt2rZo1a6aWLVtq+/btqly5sqTs24crV65oy5YtGj9+vMaMGWNtT+1nnFYlS5ZUUlKSTp8+bTObfeLEiUzVmp7tJ2/vfp/D3Y6/kiVL6vfff1dSUpLNbPp//84+9thj2rBhgy5fvnzX2fTkn8fJkyetM/GSFBUVpejoaJu//wCAzMvRp7vfz8CBA7V7924tXbpUv//+u7p06aKWLVve9R/+uXPnqly5cmrUqFE2VwoAWat169ZKTEzUzJkzbdqnTp0qi8Vi84Vnvnz5Ug3eTk5OKWYqP/30UyUmJtq93q1bt+q9996Tn5+fXnjhBUmSl5eXmjRpojlz5igiIiLFOqk96uuLL77Q7du3re9nzZqlhISENO3vvaxatcrmeuy9e/fq119/tY6bkVrtISAgQM7OzpoxY4bNZ/V///d/iomJSfXu5h4eHtqwYYO8vLzUvHlz6x3Ms2sfkmfF/3tsTZs2LcNjJn8OM2bMsNuY6ZGezyFfvnypntLfunVrRUZG2twZPyEhQZ9++qnc3Nzk7+8vSerUqZMMw9D48eNTjJG87eQvpf67/5988okkZfqu9wAAWzl6Jv1ewsPDNX/+fIWHh6to0aKS/j1lb/369Zo/f77ef/99m/63bt3S4sWL9fbbbzuiXADIUu3atVPTpk01evRohYWFqXr16tq4caNWr16tIUOG2Fy7W6tWLW3evFmffPKJihYtKj8/P9WtW1dt27bVV199JQ8PD1WqVEm7d+/W5s2bUzyOKr1++uknHT9+XAkJCYqKitLWrVu1adMmlSxZUmvWrJGrq6u172effaaGDRuqatWq6tu3r0qXLq2oqCjt3r1b586d06FDh2zGjo+P11NPPaWuXbvqxIkT+vzzz9WwYUO1b9/eZn9nzZqliRMnqkyZMvLy8rI+D/tuypQpo4YNG6p///6Ki4vTtGnTVLhwYZvrldNbqz14enoqMDBQ48ePV8uWLdW+fXvrftepU0cvvvhiqus9+uij2rRpkxo2bKiAgAD98ssvKlasWLbsg7u7uxo3bqyPPvpIt2/fVrFixbRx40brs8gzokaNGurevbs+//xzxcTEqEGDBtqyZYtOnTqV6XrTIj2fQ61atfTtt99q2LBhqlOnjtzc3NSuXTv169dPc+bMUa9evfTbb7+pVKlS+v7777Vz505NmzbNekZM06ZN9dJLL2nGjBk6efKk9RKBn3/+WU2bNtXAgQNVvXp19ezZU1988YWio6Pl7++vvXv3auHCherYsaPN2SYAADtwzE3lzUeSsXLlSuv7tWvXGpKMfPny2bxy585tdO3aNcX6S5YsMXLnzm1ERkZmY9UAkDX++wg2wzCMq1evGkOHDjWKFi1q5MmTxyhbtqwxefJkm0dmGYZhHD9+3GjcuLGRN29eQ5L1cWxXrlwxXn75ZePRRx813NzcjBYtWhjHjx83SpYsafPItvQ+gi355ezsbPj4+BjNmzc3pk+fbn3E1H+dPn3a6NGjh+Hj42PkyZPHKFasmNG2bVvj+++/TzH29u3bjX79+hkFCxY03NzcjBdeeMH4559/bMaLjIw02rRpY+TPn9+QdM/HTyU/mmvy5MnGlClTDF9fX8PFxcVo1KiRcejQoUzVeq9H0d3Nfx/BlmzmzJlGhQoVjDx58hje3t5G//79jStXrtj0ufMRbMlOnTplFClSxKhYsaJx8eLFTO9DWo+Fc+fOGc8884xRoEABw8PDw+jSpYvx999/p3hcWvIj2JJr++/2Q0NDrW03b940Bg0aZBQuXNjIly+f0a5dO+Ps2bPpegTb5MmT79nvfp9dWj6Ha9euGc8//7xRoEABQ5LN49iioqKsf+ecnZ2NqlWrGvPnz0+xnYSEBGPy5MlGhQoVDGdnZ8PT09No1aqV8dtvv1n73L592xg/frzh5+dn5MmTx/D19TUCAwNtHq9nGDyCDQDswWIYdr5LygPKYrFo5cqV6tixoyTp22+/1QsvvKAjR46kuMGMm5ubfHx8bNqeeuopubu7a+XKldlVMgDgARMWFiY/Pz9NnjxZb775pqPLAQAAJsTp7ndRs2ZNJSYm6sKFC/e9xjw0NFTbtm3TmjVrsqk6AAAAAMDDKEeH9GvXrtlcXxYaGqqQkBAVKlRI5cqV0wsvvKAePXpoypQpqlmzpi5evKgtW7aoWrVqNjdJmTdvnooUKXLPO8UDAAAAAHA/OTqk79+/3+ZmJ8OGDZMk9ezZUwsWLND8+fM1ceJEDR8+XOfPn9ejjz6qevXqqW3bttZ1kpKStGDBAvXq1euuz10FAAAAACAtuCYdAAAAAACT4DnpAAAAAACYBCEdAAAAAACTyHHXpCclJenvv/9W/vz5ZbFYHF0OAAAAAOAhZxiGrl69qqJFiypXrnvPlee4kP7333/L19fX0WUAAAAAAHKYs2fPqnjx4vfsk+NCev78+SX9+8Nxd3d3cDUAAAAAgIddbGysfH19rXn0XnJcSE8+xd3d3Z2QDgAAAADINmm55JobxwEAAAAAYBKEdAAAAAAATIKQDgAAAACASeS4a9IBAAAA4GGRlJSk+Ph4R5cBSc7Ozvd9vFpaENIBAAAA4AEUHx+v0NBQJSUlOboUSMqVK5f8/Pzk7OycqXEI6QAAAADwgDEMQxEREXJycpKvr69dZnCRcUlJSfr7778VERGhEiVKpOku7ndDSAcAAACAB0xCQoJu3LihokWL6pFHHnF0OZDk6empv//+WwkJCcqTJ0+Gx+HrFgAAAAB4wCQmJkpSpk+thv0kfxbJn01GEdIBAAAA4AGVmdOqYV/2+iwI6QAAAAAAmAQhHQAAAADwUBs3bpxq1Kjh6DLShJAOAAAAAEihV69eslgsslgscnZ2VpkyZTRhwgQlJCRkasyOHTvar8iHEHd3BwAAAACkqmXLlpo/f77i4uK0bt06DRgwQHny5FFgYKBNv/j4eG5iZyfMpAMAAAAAUuXi4iIfHx+VLFlS/fv3V0BAgNasWWOdEZ80aZKKFi2q8uXLS5IOHz6sZs2aKW/evCpcuLD69euna9euSfr3lPOFCxdq9erV1hn64ODg+66XbN68eapcubJcXFxUpEgRDRw40LosPDxcHTp0kJubm9zd3dW1a1dFRUVlzw/JzgjpAAAAAIA0yZs3r+Lj4yVJW7Zs0YkTJ7Rp0yatXbtW169fV4sWLVSwYEHt27dPy5Yt0+bNm61h+s0331TXrl3VsmVLRUREKCIiQg0aNLjvepI0a9YsDRgwQP369dPhw4e1Zs0alSlTRpKUlJSkDh066PLly9q+fbs2bdqkv/76S926dcv+H5AdcLo7AAAAAOCeDMPQli1btGHDBr3xxhu6ePGi8uXLp7lz51pPc//yyy9169YtLVq0SPny5ZMkzZw5U+3atdOHH34ob29v5c2bV3FxcfLx8bGOvXDhwvuuN3HiRA0fPlyDBw+2rlenTh1J/35ZcPjwYYWGhsrX11eStGjRIlWuXFn79u2z9ntQMJMOAAAAAEjV2rVr5ebmJldXV7Vq1UrdunXTuHHjJElVq1a1uQ792LFjql69ujVoS9KTTz6ppKQknThx4q7buN96Fy5c0N9//62nnnrqruv7+vpaA7okVapUSQUKFNCxY8cyuusOw0w6AAAAACBVTZs21axZs+Ts7KyiRYsqd+7/Rcg7Q3VWyps3b7ZsxyyYSQcAAAAApCpfvnwqU6aMSpQoYRPQU1OxYkUdOnRI169ft7bt3LlTuXLlst5YztnZWYmJielaL3/+/CpVqpS2bNly1+2ePXtWZ8+etbYdPXpU0dHRqlSpUrr32dEI6QAAAACATHvhhRfk6uqqnj176o8//tC2bdv0xhtv6KWXXpK3t7ckqVSpUvr999914sQJXbp0Sbdv307TeuPGjdOUKVM0Y8YMnTx5UgcOHNCnn34qSQoICFDVqlX1wgsv6MCBA9q7d6969Oghf39/1a5d22E/j4wipAMAAAAAMu2RRx7Rhg0bdPnyZdWpU0edO3fWU089pZkzZ1r79O3bV+XLl1ft2rXl6empnTt3pmm9nj17atq0afr8889VuXJltW3bVidPnpQkWSwWrV69WgULFlTjxo0VEBCg0qVL69tvv832n4E9WAzDMBxdRHaKjY2Vh4eHYmJi5O7u7uhyAAAAACDdbt26pdDQUPn5+cnV1dXR5UD3/kzSk0OZSQcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEvd+0B0AAIDJHZu01W5jVRzdzG5jAQCQEcykAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACbB3d0BAAAA4CFR661F2bq93yb3SPc6vXr10sKFC1O0u7i4KC4u7p7rbtu2TWFhYRoyZIiio6NTLLdYLFq5cqU6duyY7rrMgpAOAAAAAMhWLVu21Pz5823aLBaLDMOwvh88eLBiY2Nt+hUqVEhhYWHZVaZDENIBAAAAANnKxcVFPj4+9+yTN29excXF3bffw4Zr0gEAAAAAMAlCOgAAAAAgW61du1Zubm42r/fffz/N68fExKRY383NLQsrzj6c7g4AAAAAyFZNmzbVrFmzbNoKFSqU5vXz58+vAwcOpGgvW7ZspmtzNEI6AAAAACBb5cuXT2XKlMnw+rly5crU+mbG6e4AAAAAAJgEM+kAAAAAgGwVFxenyMhIm7bcuXPr0UcfdVBF5kFIBwAAAICHxG+Tezi6hDRZv369ihQpYtNWvnx5HT9+3EEVmYfFuPNp8TlAbGysPDw8FBMTI3d3d0eXAwAAMunYpK12G6vi6GZ2GwsAstKtW7cUGhoqPz8/ubq6Oroc6N6fSXpyKNekAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgErkdXQAAAAAAwD7CJ1TN1u2VGHM4W7eXEzCTDgAAAADIFk2aNNGQIUNStC9YsEAFChSQJN24cUOBgYF67LHH5OrqKk9PT/n7+2v16tU241gsFlksFrm4uKhYsWJq166dVqxYkep2t23bptatW6tw4cJ65JFHVKlSJQ0fPlznz5/Pit3MFEI6AAAAAMA0XnvtNa1YsUKffvqpjh8/rvXr16tz5876559/bPr17dtXEREROn36tJYvX65KlSrpueeeU79+/Wz6zZkzRwEBAfLx8dHy5ct19OhRzZ49WzExMZoyZUp27lqacLo7AAAAAMA01qxZo+nTp6t169aSpFKlSqlWrVop+j3yyCPy8fGRJBUvXlz16tVThQoV9Morr6hr164KCAjQuXPnNGjQIA0aNEhTp061rluqVCk1btxY0dHR2bJP6cFMOgAAAADANHx8fLRu3TpdvXo13ev27NlTBQsWtJ72vmzZMsXHx2vEiBGp9k8+xd5MCOkAAAAAANP44osvtGvXLhUuXFh16tTR0KFDtXPnzjStmytXLpUrV05hYWGSpJMnT8rd3V1FihTJworti5AOAAAAADCNxo0b66+//tKWLVvUuXNnHTlyRI0aNdJ7772XpvUNw5DFYknx5weFaUL6Bx98IIvFkuqd/u60bNkyVahQQa6urqpatarWrVuXPQUCAAAAADLF3d1dMTExKdqjo6Pl4eFhfZ8nTx41atRII0eO1MaNGzVhwgS99957io+Pv+f4iYmJOnnypPz8/CRJ5cqVU0xMjCIiIuy7I1nIFCF93759mjNnjqpVq3bPfrt27VL37t3Vu3dvHTx4UB07dlTHjh31xx9/ZFOlAAAAAICMKl++vA4cOJCi/cCBAypXrtxd16tUqZISEhJ069ate46/cOFCXblyRZ06dZIkde7cWc7Ozvroo49S7W/GG8c5/O7u165d0wsvvKAvv/xSEydOvGff6dOnq2XLlnrrrbckSe+99542bdqkmTNnavbs2dlRLgAAAAAgg/r376+ZM2dq0KBB6tOnj1xcXPTjjz/qm2++0Q8//CDp32egd+/eXbVr11bhwoV19OhRjRo1Sk2bNpW7u7t1rBs3bigyMlIJCQk6d+6cVq5cqalTp6p///5q2rSpJMnX11dTp07VwIEDFRsbqx49eqhUqVI6d+6cFi1aJDc3N9M9hs3hIX3AgAFq06aNAgIC7hvSd+/erWHDhtm0tWjRQqtWrbrrOnFxcYqLi7O+j42NzVS9AAAAAGBWJcYcdnQJ91S6dGnt2LFDo0ePVkBAgOLj41WhQgUtW7ZMLVu2lPRvxlu4cKFGjRqlGzduqGjRomrbtq3GjBljM9aXX36pL7/8Us7OzipcuLBq1aqlb7/9Vs8884xNv9dff13lypXTxx9/rGeeeUY3b95UqVKl1LZt2xT50gwcGtKXLl2qAwcOaN++fWnqHxkZKW9vb5s2b29vRUZG3nWdoKAgjR8/PlN1AgAAAADso06dOtq4ceNdlwcGBiowMPCeYwQHB6drmwEBAQoICEjXOo7isGvSz549q8GDB2vx4sVydXXNsu0EBgYqJibG+jp79myWbQsAAAAAgMxw2Ez6b7/9pgsXLujxxx+3tiUmJmrHjh2aOXOm4uLi5OTkZLOOj4+PoqKibNqioqLk4+Nz1+24uLjIxcXFvsUDAAAAAJAFHDaT/tRTT+nw4cMKCQmxvmrXrq0XXnhBISEhKQK6JNWvX19btmyxadu0aZPq16+fXWUDAAAAAJBlHDaTnj9/flWpUsWmLV++fCpcuLC1vUePHipWrJiCgoIkSYMHD5a/v7+mTJmiNm3aaOnSpdq/f7+++OKLbK8fAAAAAAB7M8Vz0u8mPDzc5qHzDRo00JIlS/TFF1+oevXq+v7777Vq1aoUYR8AAAAAgAeRwx/Bdqf/3qEvtTv2denSRV26dMmeggAAAAAAyEamnkkHAAAAACAnIaQDAAAAAGAShHQAAAAAAEzCVNekAwAAAAAy7slPn8zW7e18Y2e2bi8nYCYdAAAAAJAtmjRpoiFDhqRoX7BggQoUKCBJunHjhgIDA/XYY4/J1dVVnp6e8vf31+rVq23GsVgsslgscnFxUbFixdSuXTutWLHCZszkPnd7hYWFZfEepx8hHQAAAABgGq+99ppWrFihTz/9VMePH9f69evVuXNn/fPPPzb9+vbtq4iICJ0+fVrLly9XpUqV9Nxzz6lfv36SpG7duikiIsL6ql+/vnWd5Jevr68jdvGeON0dAAAAAGAaa9as0fTp09W6dWtJUqlSpVSrVq0U/R555BH5+PhIkooXL6569eqpQoUKeuWVV9S1a1cFBAQob9681v7Ozs4265gVM+kAAAAAANPw8fHRunXrdPXq1XSv27NnTxUsWNDmtPcHDSEdAAAAAGAaX3zxhXbt2qXChQurTp06Gjp0qHbuTNsN6nLlyqVy5cqZ8lrztCKkAwAAAABMo3Hjxvrrr7+0ZcsWde7cWUeOHFGjRo303nvvpWl9wzBksViyuMqsQ0gHAAAAAGQLd3d3xcTEpGiPjo6Wh4eH9X2ePHnUqFEjjRw5Uhs3btSECRP03nvvKT4+/p7jJyYm6uTJk/Lz87N77dmFkA4AAAAAyBbly5fXgQMHUrQfOHBA5cqVu+t6lSpVUkJCgm7dunXP8RcuXKgrV66oU6dOma7VUbi7OwAAAAAgW/Tv318zZ87UoEGD1KdPH7m4uOjHH3/UN998ox9++EHSv89A7969u2rXrq3ChQvr6NGjGjVqlJo2bSp3d3frWDdu3FBkZKQSEhJ07tw5rVy5UlOnTlX//v3VtGlTR+1iphHSAQAAAOAhsfONtN1gzVFKly6tHTt2aPTo0QoICFB8fLwqVKigZcuWqWXLlpKkFi1aaOHChRo1apRu3LihokWLqm3bthozZozNWF9++aW+/PJLOTs7q3DhwqpVq5a+/fZbPfPMM47YNbuxGIZhOLqI7BQbGysPDw/FxMTYfAsDAAAeTMcmbbXbWBVHN7PbWACQlW7duqXQ0FD5+fnJ1dXV0eVA9/5M0pNDuSYdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTyO3oAgAAAAAA9rG9sX+2bs9/x/Zs3V5OwEw6AAAAAOCBEhwcLIvFoujoaJv2Xr16yWKxpHi1bNnSus69XsHBwVqwYIEKFCiQ6nYtFotWrVqVpfvGTDoAAAAA4KHRsmVLzZ8/36bNxcVF+fLlU0REhLVt8ODBio2NtelbqFAhhYWFZVepqWImHQAAAACQLdauXasCBQooMTFRkhQSEiKLxaK3337b2qdPnz568cUXdebMGbVr104FCxZUvnz5VLlyZa1bt05hYWFq2rSpJKlgwYKyWCzq1auXdX0XFxf5+PjYvAoWLChnZ2ebtrx586bo6+zsnK0/j9Qwkw4AAAAAyBaNGjXS1atXdfDgQdWuXVvbt2/Xo48+quDgYGuf7du3a+TIkRowYIDi4+O1Y8cO5cuXT0ePHpWbm5t8fX21fPlyderUSSdOnJC7u7vy5s3ruJ2yM2bSAQAAAADZwsPDQzVq1LCG8uDgYA0dOlQHDx7UtWvXdP78eZ06dUr+/v4KDw/Xk08+qapVq6p06dJq27atGjduLCcnJxUqVEiS5OXlJR8fH3l4eFi3sXbtWrm5udm83n///XTVGRMTk2IMNzc3u/0c7oWZdAAAAABAtvH391dwcLCGDx+un3/+WUFBQfruu+/0yy+/6PLlyypatKjKli2rQYMGqX///tq4caMCAgLUqVMnVatW7b7jN23aVLNmzbJpSw71aZU/f34dOHAgRXvZsmXTNU5GENIBAAAAANmmSZMmmjdvng4dOqQ8efKoQoUKatKkiYKDg3XlyhX5+//7GLk+ffqoRYsW+vHHH7Vx40YFBQVpypQpeuONN+45fr58+VSmTJlM1ZgrV65Mj5HhbTtkqwAAAACAHCn5uvSpU6daA3lySA8ODlaTJk2sfX19ffXaa69pxYoVGj58uL788ktJst7gLfkGdA8TQjoAAAAAINsULFhQ1apV0+LFi62BvHHjxjpw4ID+/PNPa3AfMmSINmzYoNDQUB04cEDbtm1TxYoVJUklS5aUxWLR2rVrdfHiRV27ds06flxcnCIjI21ely5dyvb9zChOdwcAAACAh4T/ju2OLiFN/P39FRISYg3phQoVUqVKlRQVFaXy5ctL+neWfMCAATp37pzc3d3VsmVLTZ06VZJUrFgxjR8/Xm+//bZefvll9ejRQwsWLJAkrV+/XkWKFLHZXvny5XX8+PFs27/MsBiGYTi6iOwUGxsrDw8PxcTEyN3d3dHlAACATDo2aavdxqo4upndxgKArHTr1i2FhobKz89Prq6uji4Huvdnkp4cyunuAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYRG5HFwAAAAAAsI+Zw3/I1u0NnNIuW7eXEzCTDgAAAAAwneDgYFksFusrb968qly5sr744gtrnzuXp/YaN26cJOngwYPq0qWLvL295erqqrJly6pv3776888/HbR3d0dIBwAAAACY1okTJxQREaGjR4/q1VdfVf/+/bVlyxZJUkREhPU1bdo0ubu727S9+eabWrt2rerVq6e4uDgtXrxYx44d09dffy0PDw+9++67Dt67lAjpAAAAAIBssXbtWhUoUECJiYmSpJCQEFksFr399tvWPn369NGLL75ofe/l5SUfHx/5+flp0KBB8vPz04EDByRJPj4+1peHh4csFotNW65cufTyyy+rdevWWrNmjQICAuTn56e6devq448/1pw5c7L3B5AGhHQAAAAAQLZo1KiRrl69qoMHD0qStm/frkcffVTBwcHWPtu3b1eTJk1SrGsYhtavX6/w8HDVrVs3TdvbsGGDLl26pBEjRqS6vECBAundhSxHSAcAAAAAZAsPDw/VqFHDGsqDg4M1dOhQHTx4UNeuXdP58+d16tQp+fv7W9cpXry43Nzc5OzsrDZt2mjs2LFq3LhxmrZ38uRJSVKFChXsvi9ZhZAOAAAAAMg2/v7+Cg4OlmEY+vnnn/Xss8+qYsWK+uWXX7R9+3YVLVpUZcuWtfb/+eefFRISopCQEM2dO1fvv/++Zs2alaZtGYaRVbuRZXgEGwAAAAAg2zRp0kTz5s3ToUOHlCdPHlWoUEFNmjRRcHCwrly5YjOLLkl+fn7W09IrV66sX3/9VZMmTVL//v3vu61y5cpJko4fP6769evbfV+yAjPpAAAAAIBsk3xd+tSpU62BPDmkBwcHp3o9+p2cnJx08+bNNG3r6aef1qOPPqqPPvoo1eXR0dHpKT1bMJMOAAAAAMg2BQsWVLVq1bR48WLNnDlTktS4cWN17dpVt2/fTjGTfuHCBd26dUtxcXHau3evvvrqK3Xu3DlN28qXL5/mzp2rLl26qH379ho0aJDKlCmjS5cu6bvvvlN4eLiWLl1q933MDEI6AAAAADwkBk5p5+gS0sTf318hISHWWfNChQqpUqVKioqKUvny5W36Jr/PnTu3fH199eqrr2rcuHFp3laHDh20a9cuBQUF6fnnn1dsbKx8fX3VrFkzTZw40V67ZDcW40G8kj4TYmNj5eHhoZiYGLm7uzu6HAAAkEnHJm2121gVRzez21gAkJVu3bql0NBQ+fn5ydXV1dHlQPf+TNKTQx16TfqsWbNUrVo1ubu7y93dXfXr19dPP/101/4LFiyQxWKxeXFAAgAAAAAeFg493b148eL64IMPVLZsWRmGoYULF6pDhw46ePCgKleunOo67u7uOnHihPW9xWLJrnIBAAAAAMhSDg3p7drZXi8xadIkzZo1S3v27LlrSLdYLPLx8cmO8gAAAAAAyFameQRbYmKili5dquvXr9/z+XXXrl1TyZIl5evrqw4dOujIkSP3HDcuLk6xsbE2LwAAAAAAzMjhIf3w4cNyc3OTi4uLXnvtNa1cuVKVKlVKtW/58uU1b948rV69Wl9//bWSkpLUoEEDnTt37q7jBwUFycPDw/ry9fXNql0BAAAAACBTHB7Sy5cvr5CQEP3666/q37+/evbsqaNHj6bat379+urRo4dq1Kghf39/rVixQp6enpozZ85dxw8MDFRMTIz1dfbs2azaFQAAAAAAMsXhz0l3dnZWmTJlJEm1atXSvn37NH369HsG72R58uRRzZo1derUqbv2cXFxkYuLi93qBQAAAAAgqzh8Jv2/kpKSFBcXl6a+iYmJOnz4sIoUKZLFVQEAAAAAkPUcOpMeGBioVq1aqUSJErp69aqWLFmi4OBgbdiwQZLUo0cPFStWTEFBQZKkCRMmqF69eipTpoyio6M1efJknTlzRn369HHkbgAAAAAAYBcODekXLlxQjx49FBERIQ8PD1WrVk0bNmxQ8+bNJUnh4eHKlet/k/1XrlxR3759FRkZqYIFC6pWrVratWvXXW80BwAAAAA5yaQXO2fr9kZ//X261+nVq5cWLlwoScqdO7cKFSqkatWqqXv37urVq5dNBpSkFi1aaPPmzdqzZ4/q1KmTYqzo6GitWrUqw/tgNg4N6f/3f/93z+XBwcE276dOnaqpU6dmYUUAAAAAgKzWsmVLzZ8/X4mJiYqKitL69es1ePBgff/991qzZo1y5/43qoaHh2vXrl0aOHCg5s2blyKkP4xMd006AAAAAODh5uLiIh8fHxUrVkyPP/64Ro0apdWrV+unn37SggULrP3mz5+vtm3bqn///vrmm2908+ZNxxWdTQjpAAAAAACHa9asmapXr64VK1ZIkgzD0Pz58/Xiiy+qQoUKKlOmjL7/Pv2n1z9oCOkAAAAAAFOoUKGCwsLCJEmbN2/WjRs31KJFC0nSiy++eN9Lph8GhHQAAAAAgCkYhiGLxSJJmjdvnrp162a9Pr179+7auXOnTp8+7cgSsxwhHQAAAABgCseOHZOfn58uX76slStX6vPPP1fu3LmVO3duFStWTAkJCZo3b56jy8xShHQAAAAAgMNt3bpVhw8fVqdOnbR48WIVL15chw4dUkhIiPU1ZcoULViwQImJiY4uN8s49BFsAAAAAICcJy4uTpGRkTaPYAsKClLbtm3Vo0cP1apVS507d1aVKlVs1vP19VVgYKDWr1+vNm3aOKj6rMVMOgAAAAAgW61fv15FihRRqVKl1LJlS23btk0zZszQ6tWrFRISokOHDqlTp04p1vPw8NBTTz31UN9AzmIYhuHoIrJTbGysPDw8FBMTI3d3d0eXAwAAMunYpK12G6vi6GZ2GwsAstKtW7cUGhoqPz8/ubq6Oroc6N6fSXpyKDPpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTyO3oAgAAAAAA9nFs0tZs3V7F0c3Svc7Fixc1ZswY/fjjj4qKilLBggVVvXp1NW7cWO+888491922bZvCwsL08ssvS5IsFou8vb3VuHFjTZ48WSVKlLD2bdKkiWrUqKFp06ZZ26ZPn64RI0Zo4cKFeu6559Jde3YgpAMAAAAAsk2nTp0UHx+vhQsXqnTp0oqKitKWLVtUuXJlRUREWPsNHjxYsbGxmj9/vrWtUKFCCgsLk7u7u06cOCHDMBQaGqrXX39dXbp00a+//nrX7Y4dO1Yff/yxVq9erZYtW2bpPmYGIR0AAAAAkC2io6P1888/Kzg4WP7+/pKkkiVL6oknnkjRN2/evIqLi5OPj0+KZRaLxdpepEgR9e7dW4MGDVJsbKzc3d1t+hqGoUGDBunrr7/Wpk2b1KBBgyzYM/vhmnQAAAAAQLZwc3OTm5ubVq1apbi4OLuMeeHCBa1cuVJOTk5ycnKyWZaQkKAXX3xR33//vbZv3276gC4xkw4AAAAAyCa5c+fWggUL1LdvX82ePVuPP/64/P399dxzz6latWppHicmJkZubm4yDEM3btyQJA0aNEj58uWz6ffll19Kkg4dOqQKFSrYb0eyEDPpAAAAAIBs06lTJ/39999as2aNWrZsqeDgYD3++ONasGBBmsfInz+/QkJCtH//fk2ZMkWPP/64Jk2alKJfw4YN5ebmpnfffVcJCQl23IusQ0gHAAAAAGQrV1dXNW/eXO+++6527dqlXr16aezYsWleP1euXCpTpowqVqyoYcOGqV69eurfv3+KflWrVtWWLVu0bds2devW7YEI6oR0AAAAAIBDVapUSdevX8/w+m+//ba+/fZbHThwIMWyGjVqaMuWLdqxY4e6du2q27dvZ6bULEdIBwAAAABki3/++UfNmjXT119/rd9//12hoaFatmyZPvroI3Xo0CHD4/r6+uqZZ57RmDFjUl1evXp1bd26Vb/88ovpgzo3jgMAAAAAZAs3NzfVrVtXU6dO1enTp3X79m35+vqqb9++GjVqVKbGHjp0qOrXr6+9e/em+ki3qlWrauvWrXrqqafUpUsXfffdd3J2ds7UNrOCxTAMw9FFZKfY2Fh5eHgoJiYmxfPzAADAg+fYpK12G6vi6GZ2GwsAstKtW7cUGhoqPz8/ubq6Oroc6N6fSXpyKKe7AwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMIrejCwAAAAAA2Me4ceNMv71evXopOjpaq1atSrHs5s2b+uCDD/TNN9/ozJkzyp8/v5o2bapx48apcuXKNtsdP368JClXrlwqWrSoWrVqpQ8++ECFChWy9itVqpTOnDkjSXJ1dZW3t7eeeOIJvfbaa2rWrJnNtleuXKkPP/xQx44dU1JSkkqUKKHmzZtr2rRp6d7HzGAmHQAAAADgcHFxcQoICNC8efM0ceJE/fnnn1q3bp0SEhJUt25d7dmzx6Z/5cqVFRERofDwcM2fP1/r169X//79U4w7YcIERURE6MSJE1q0aJEKFCiggIAATZo0ydpny5Yt6tatmzp16qS9e/fqt99+06RJk3T79u0s3+//YiYdAAAAAOBw06ZN0+7du3Xw4EFVr15dklSyZEktX75cdevWVe/evfXHH3/IYrFIknLnzi0fHx9JUrFixdSlSxfNnz8/xbj58+e39itRooQaN26sIkWKaMyYMercubPKly+vH374QU8++aTeeust63rlypVTx44ds3ivU2ImHQAAAADgcEuWLFHz5s2tAT1Zrly5NHToUB09elSHDh1Kdd2wsDBt2LBBzs7OadrW4MGDZRiGVq9eLUny8fHRkSNH9Mcff2RuJ+yAkA4AAAAAcLg///xTFStWTHVZcvuff/5pbTt8+LDc3NyUN29e+fn56ciRIxo5cmSatlWoUCF5eXkpLCxMkvTGG2+oTp06qlq1qkqVKqXnnntO8+bNU1xcXOZ2KgMI6QAAAAAAUzAMI819y5cvr5CQEO3bt08jR45UixYt9MYbb6RrW8mnzufLl08//vijTp06pXfeeUdubm4aPny4nnjiCd24cSPd+5EZhHQAAAAAgMOVK1dOx44dS3VZcnu5cuWsbc7OzipTpoyqVKmiDz74QE5OTtY7vt/PP//8o4sXL8rPz8+m/bHHHlOfPn00d+5cHThwQEePHtW3336bwT3KGEI6AAAAAMDhnnvuOW3evDnFdedJSUmaOnWqKlWqlOJ69Tu98847+vjjj/X333/fd1vTp09Xrly57nljuFKlSumRRx7R9evX07wP9sDd3QEAAAAA2SomJkYhISE2bS+++KJWr16tdu3aacqUKapbt66ioqL0/vvv69ixY9q8ebP19PTU1K9fX9WqVdP777+vmTNnWtuvXr2qyMhI3b59W6Ghofr66681d+5cBQUFqUyZMpL+fe76jRs31Lp1a5UsWVLR0dGaMWOGbt++rebNm2fJz+BuCOkAAAAAgGwVHBysmjVr2rT17t1bW7du1fvvv69Ro0bpzJkzyp8/v5o2bao9e/aoSpUq9x136NCh6tWrl0aOHClfX19J0pgxYzRmzBg5OzvLx8dH9erV05YtW9S0aVPrev7+/vrss8/Uo0cPRUVFqWDBgqpZs6Y2btyo8uXL23fn78NipOfK/IdAbGysPDw8FBMTI3d3d0eXAwAAMunYpK12G6vi6GZ2GwsAstKtW7cUGhoqPz8/ubq6Oroc6N6fSXpyKNekAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAACAB1QOe1iXqdnrs+A56QAAAADwgMmTJ48sFosuXrwoT09PWSwWR5eUoxmGoYsXL8pisShPnjyZGsuhIX3WrFmaNWuWwsLCJEmVK1fWmDFj1KpVq7uus2zZMr377rsKCwtT2bJl9eGHH6p169bZVDEAAAAAOJ6Tk5OKFy+uc+fOWfMUHMtisah48eJycnLK1DgODenFixfXBx98oLJly8owDC1cuFAdOnTQwYMHVbly5RT9d+3ape7duysoKEht27bVkiVL1LFjRx04cEBVqlRxwB4AAAAAgGO4ubmpbNmyun37tqNLgf49uyGzAV2SLIbJLmIoVKiQJk+erN69e6dY1q1bN12/fl1r1661ttWrV081atTQ7Nmz0zR+bGysPDw8FBMTI3d3d7vVDQAAHOPYpK12G6vi6GZ2GwsAgGTpyaGmuXFcYmKili5dquvXr6t+/fqp9tm9e7cCAgJs2lq0aKHdu3ffddy4uDjFxsbavAAAAAAAMCOHh/TDhw/Lzc1NLi4ueu2117Ry5UpVqlQp1b6RkZHy9va2afP29lZkZORdxw8KCpKHh4f15evra9f6AQAAAACwF4eH9PLlyyskJES//vqr+vfvr549e+ro0aN2Gz8wMFAxMTHW19mzZ+02NgAAAAAA9uTwR7A5OzurTJkykqRatWpp3759mj59uubMmZOir4+Pj6KiomzaoqKi5OPjc9fxXVxc5OLiYt+iAQAAAADIAg6fSf+vpKQkxcXFpbqsfv362rJli03bpk2b7noNOwAAAAAADxKHzqQHBgaqVatWKlGihK5evaolS5YoODhYGzZskCT16NFDxYoVU1BQkCRp8ODB8vf315QpU9SmTRstXbpU+/fv1xdffOHI3QAAAAAAwC4cGtIvXLigHj16KCIiQh4eHqpWrZo2bNig5s2bS5LCw8OVK9f/JvsbNGigJUuW6J133tGoUaNUtmxZrVq1imekAwAAAAAeCqZ7TnpW4znpAAA8XHhOOgDA7B7I56QDAAAAAJDTEdIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADCJ3BldMTw8XGfOnNGNGzfk6empypUry8XFxZ61AQAAAACQo6QrpIeFhWnWrFlaunSpzp07J8MwrMucnZ3VqFEj9evXT506dVKuXEzSAwAAAACQHmlO0oMGDVL16tUVGhqqiRMn6ujRo4qJiVF8fLwiIyO1bt06NWzYUGPGjFG1atW0b9++rKwbAAAAAICHTppn0vPly6e//vpLhQsXTrHMy8tLzZo1U7NmzTR27FitX79eZ8+eVZ06dexaLAAAAAAAD7M0h/SgoKA0D9qyZcsMFQMAAAAAQE6W4RvHXbp0SWFhYbJYLCpVqlSqM+wAAAAAACDt0n13tyNHjqhx48by9vZW3bp19cQTT1hPdz9x4kRW1AgAAAAAQI6Qrpn0yMhI+fv7y9PTU5988okqVKggwzB09OhRffnll2rUqJH++OMPeXl5ZVW9AAAAAAA8tNIV0qdOnaqSJUtq586dcnV1tba3bNlS/fv3V8OGDTV16tR0Xb8OAAAAAAD+la7T3Tdt2qSRI0faBPRkefPm1VtvvaUNGzbYrTgAAAAAAHKSdIX0v/76S48//vhdl9euXVt//fVXposCAAAAACAnSldIv3r1qtzd3e+6PH/+/Lp27VqmiwIAAAAAICdK9yPYrl69murp7pIUGxsrwzAyXRQAAAAAADlRukK6YRgqV67cPZdbLJZMFwUAAAAAQE6UrpC+bdu2rKoDAAAAAIAcL10h3d/fP6vqAAAAAAAgx0vXjeMSEhIUFxdn0xYVFaXx48drxIgR+uWXX9K18aCgINWpU0f58+eXl5eXOnbsqBMnTtxznQULFshisdi87naNPAAAAAAAD5J0hfS+fftq0KBB1vdXr15VnTp19Nlnn2nDhg1q2rSp1q1bl+bxtm/frgEDBmjPnj3atGmTbt++raefflrXr1+/53ru7u6KiIiwvs6cOZOe3QAAAAAAwJTSdbr7zp07NXPmTOv7RYsWKTExUSdPnpSHh4dGjhypyZMnq3Xr1mkab/369TbvFyxYIC8vL/32229q3LjxXdezWCzy8fFJT+kAAAAAAJheumbSz58/r7Jly1rfb9myRZ06dZKHh4ckqWfPnjpy5EiGi4mJiZEkFSpU6J79rl27ppIlS8rX11cdOnS45zbj4uIUGxtr8wIAAAAAwIzSFdJdXV118+ZN6/s9e/aobt26NsuvXbuWoUKSkpI0ZMgQPfnkk6pSpcpd+5UvX17z5s3T6tWr9fXXXyspKUkNGjTQuXPnUu0fFBQkDw8P68vX1zdD9QEAAAAAkNXSFdJr1Kihr776SpL0888/KyoqSs2aNbMuP336tIoWLZqhQgYMGKA//vhDS5cuvWe/+vXrq0ePHqpRo4b8/f21YsUKeXp6as6cOan2DwwMVExMjPV19uzZDNUHAAAAAEBWS9c16WPGjFGrVq303XffKSIiQr169VKRIkWsy1euXKknn3wy3UUMHDhQa9eu1Y4dO1S8ePF0rZsnTx7VrFlTp06dSnW5i4uLXFxc0l0TAAAAAADZLd3PSd+/f782bdokHx8fdenSxWZ5jRo19MQTT6R5PMMw9MYbb2jlypUKDg6Wn59fesqRJCUmJurw4cNpvlkdAAAAAABmla6QLkmVKlVSpUqVUl3Wr1+/dI01YMAALVmyRKtXr1b+/PkVGRkpSfLw8FDevHklST169FCxYsUUFBQkSZowYYLq1aunMmXKKDo6WpMnT9aZM2fUp0+f9O4KAAAAAACmkq6QPmPGjFTbPTw8VK5cOdWvXz9dG581a5YkqUmTJjbt8+fPV69evSRJ4eHhypXrf5fOX7lyRX379lVkZKQKFiyoWrVqadeuXXf94gAAAAAAgAeFxTAMI62d73Y6enR0tGJiYtSgQQOtWbPmvo9Qc6TY2Fh5eHgoJiZG7u7uji4HAABk0rFJW+02VsXRze7fCQCAdEpPDk3X3d1DQ0NTfV25ckWnTp1SUlKS3nnnnUwVDwAAAABATpWukH4vpUuX1gcffKCNGzfaa0gAAAAAAHIUu4V0SSpRooT15m8AAAAAACB97BrSDx8+rJIlS9pzSAAAAAAAcox03d09NjY21faYmBj99ttvGj58uHr27GmXwgAAAAAAyGnSFdILFCggi8WS6jKLxaI+ffro7bfftkthAAAAAADkNOkK6du2bUu13d3dXWXLlpWbm5tdigIAAAAAICdKV0j39/fPqjoAAAAAAMjx0nzjuPDw8HQNfP78+XQXAwAAAABATpbmkF6nTh29+uqr2rdv3137xMTE6Msvv1SVKlW0fPlyuxQIAAAAAEBOkebT3Y8ePapJkyapefPmcnV1Va1atVS0aFG5urrqypUrOnr0qI4cOaLHH39cH330kVq3bp2VdQMAAAAA8NBJ80x64cKF9cknnygiIkIzZ85U2bJldenSJZ08eVKS9MILL+i3337T7t27CegAAAAAAGRAum4cJ0l58+ZV586d1blz56yoBwAAAACAHCvNM+kAAAAAACBrEdIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQyFNJ37NihhISEFO0JCQnasWNHposCAAAAACAnylBIb9q0qS5fvpyiPSYmRk2bNs10UQAAAAAA5EQZCumGYchisaRo/+eff5QvX75MFwUAAAAAQE6UruekP/vss5Iki8WiXr16ycXFxbosMTFRv//+uxo0aGDfCgEAAAAAyCHSFdI9PDwk/TuTnj9/fuXNm9e6zNnZWfXq1VPfvn3tWyEAAAAAADlEukL6/PnzJUmlSpXSm2++yantAAAAAADYUbpCerKxY8dKki5cuKATJ05IksqXLy8vLy/7VQYAAAAAQA6ToRvHXb16VS+99JKKFSsmf39/+fv7q1ixYnrxxRcVExNj7xoBAAAAAMgRMhTS+/Tpo19//VVr165VdHS0oqOjtXbtWu3fv1+vvvqqvWsEAAAAACBHyNDp7mvXrtWGDRvUsGFDa1uLFi305ZdfqmXLlnYrDgAAAACAnCRDM+mFCxe23un9Th4eHipYsGCmiwIAAAAAICfKUEh/5513NGzYMEVGRlrbIiMj9dZbb+ndd9+1W3EAAAAAAOQkaT7dvWbNmrJYLNb3J0+eVIkSJVSiRAlJUnh4uFxcXHTx4kWuSwcAAAAAIAPSHNI7duyYhWUAAAAAAIA0h/TkZ6MDAAAAAICskaFr0iUpOjpac+fOVWBgoC5fvixJOnDggM6fP2+34gAAAAAAyEky9Ai233//XQEBAfLw8FBYWJj69u2rQoUKacWKFQoPD9eiRYvsXScAAAAAAA+9DM2kDxs2TL169dLJkyfl6upqbW/durV27Nhht+IAAAAAAMhJMhTS9+3bl+od3IsVK2bzWDYAAAAAAJB2GQrpLi4uio2NTdH+559/ytPTM9NFAQAAAACQE2UopLdv314TJkzQ7du3JUkWi0Xh4eEaOXKkOnXqZNcCAQAAAADIKTIU0qdMmaJr167Jy8tLN2/elL+/v8qUKaP8+fNr0qRJ9q4RAAAAAIAcIUN3d/fw8NCmTZv0yy+/6Pfff9e1a9f0+OOPKyAgwN71AQAAAACQY2QopCdr2LChGjZsaK9aAAAAAADI0dId0pOSkrRgwQKtWLFCYWFhslgs8vPzU+fOnfXSSy/JYrFkRZ0AAAAAADz00nVNumEYat++vfr06aPz58+ratWqqly5ss6cOaNevXrpmWeeyao6AQAAAAB46KVrJn3BggXasWOHtmzZoqZNm9os27p1qzp27KhFixapR48edi0SAAAAAICcIF0z6d98841GjRqVIqBLUrNmzfT2229r8eLFdisOAAAAAICcJF0h/ffff1fLli3vurxVq1Y6dOhQposCAAAAACAnSldIv3z5sry9ve+63NvbW1euXMl0UQAAAAAA5ETpCumJiYnKnfvul7E7OTkpISEh00UBAAAAAJATpevGcYZhqFevXnJxcUl1eVxcnF2KAgAAAAAgJ0pXSO/Zs+d9+3BndwAAAAAAMiZdIX3+/PlZVQcAAAAAADleuq5JBwAAAAAAWYeQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAk0nx39zVr1qR50Pbt22eoGAAAAAAAcrI0h/SOHTumqZ/FYlFiYmJG6wEAAAAAIMdK8+nuSUlJaXqlJ6AHBQWpTp06yp8/v7y8vNSxY0edOHHivustW7ZMFSpUkKurq6pWrap169aleZsAAAAAAJiVQ69J3759uwYMGKA9e/Zo06ZNun37tp5++mldv379ruvs2rVL3bt3V+/evXXw4EF17NhRHTt21B9//JGNlQMAAAAAYH8WwzCMjKx4/fp1bd++XeHh4YqPj7dZNmjQoAwVc/HiRXl5eWn79u1q3Lhxqn26deum69eva+3atda2evXqqUaNGpo9e/Z9txEbGysPDw/FxMTI3d09Q3UCAADzODZpq93Gqji6md3GAgAgWXpyaJqvSb/TwYMH1bp1a924cUPXr19XoUKFdOnSJT3yyCPy8vLKcEiPiYmRJBUqVOiufXbv3q1hw4bZtLVo0UKrVq1KtX9cXJzi4uKs72NjYzNUGwAAAAAAWS1Dp7sPHTpU7dq105UrV5Q3b17t2bNHZ86cUa1atfTxxx9nqJCkpCQNGTJETz75pKpUqXLXfpGRkfL29rZp8/b2VmRkZKr9g4KC5OHhYX35+vpmqD4AAAAAALJahkJ6SEiIhg8frly5csnJyUlxcXHy9fXVRx99pFGjRmWokAEDBuiPP/7Q0qVLM7T+3QQGBiomJsb6Onv2rF3HBwAAAADAXjJ0unuePHmUK9e/+d7Ly0vh4eGqWLGiPDw8MhSCBw4cqLVr12rHjh0qXrz4Pfv6+PgoKirKpi0qKko+Pj6p9ndxcZGLi0u6awIAAAAAILtlaCa9Zs2a2rdvnyTJ399fY8aM0eLFizVkyJB7nqr+X4ZhaODAgVq5cqW2bt0qPz+/+65Tv359bdmyxaZt06ZNql+/fvp2AgAAAAAAk8lQSH///fdVpEgRSdKkSZNUsGBB9e/fXxcvXtScOXPSPM6AAQP09ddfa8mSJcqfP78iIyMVGRmpmzdvWvv06NFDgYGB1veDBw/W+vXrNWXKFB0/flzjxo3T/v37NXDgwIzsCgAAAAAAppGh091r165t/bOXl5fWr1+foY3PmjVLktSkSROb9vnz56tXr16SpPDwcOup9ZLUoEEDLVmyRO+8845GjRqlsmXLatWqVemawQcAAAAAwIwyFNKbNWumFStWqECBAjbtsbGx6tixo7ZuTdvzStPyiPbg4OAUbV26dFGXLl3StA0AAAAAAB4UGTrdPTg4WPHx8Snab926pZ9//jnTRQEAAAAAkBOlayb9999/t/756NGjNs8mT0xM1Pr161WsWDH7VQcAAAAAQA6SrpBeo0YNWSwWWSwWNWvWLMXyvHnz6tNPP7VbcQAAAAAA5CTpCumhoaEyDEOlS5fW3r175enpaV3m7OwsLy8vOTk52b1IAAAAAABygnSF9JIlS0qSkpKSsqQYAAAAAABysgzd3V2STp8+rWnTpunYsWOSpEqVKmnw4MF67LHH7FYcAAAAAAA5SYbu7r5hwwZVqlRJe/fuVbVq1VStWjX9+uuvqly5sjZt2mTvGgEAAAAAyBEyNJP+9ttva+jQofrggw9StI8cOVLNmze3S3EAAAAAAOQkGZpJP3bsmHr37p2i/ZVXXtHRo0czXRQAAAAAADlRhkK6p6enQkJCUrSHhITIy8srszUBAAAAAJAjpet09wkTJujNN99U37591a9fP/31119q0KCBJGnnzp368MMPNWzYsCwpFAAAAACAh53FMAwjrZ2dnJwUEREhT09PTZs2TVOmTNHff/8tSSpatKjeeustDRo0SBaLJcsKzqzY2Fh5eHgoJiZG7u7uji4HAABk0rFJW+02VsXRzew2FgAAydKTQ9M1k56c5y0Wi4YOHaqhQ4fq6tWrkqT8+fNnsFwAAAAAACBl4O7u/50lJ5wDAAAAAGAf6Q7p5cqVu+/p7JcvX85wQQAAAAAA5FTpDunjx4+Xh4dHVtQCAAAAAECOlu6Q/txzz/GYNQAAAAAAskC6npNu5ru2AwAAAADwoEtXSE/H09oAAAAAAEA6pet096SkpKyqAwAAAACAHC9dM+kAAAAAACDrENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCRyO7oAAADMoNZbi+wyzm+Te9hlHAAAkDMxkw4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEzCoSF9x44dateunYoWLSqLxaJVq1bds39wcLAsFkuKV2RkZPYUDAAAAABAFnJoSL9+/bqqV6+uzz77LF3rnThxQhEREdaXl5dXFlUIAAAAAED2ye3Ijbdq1UqtWrVK93peXl4qUKCA/QsCAAAAAMCBHshr0mvUqKEiRYqoefPm2rlz5z37xsXFKTY21uYFAAAAAIAZPVAhvUiRIpo9e7aWL1+u5cuXy9fXV02aNNGBAwfuuk5QUJA8PDysL19f32ysGAAAAACAtHPo6e7pVb58eZUvX976vkGDBjp9+rSmTp2qr776KtV1AgMDNWzYMOv72NhYgjoAAAAAwJQeqJCemieeeEK//PLLXZe7uLjIxcUlGysCAAAAACBjHqjT3VMTEhKiIkWKOLoMAAAAAAAyzaEz6deuXdOpU6es70NDQxUSEqJChQqpRIkSCgwM1Pnz57Vo0SJJ0rRp0+Tn56fKlSvr1q1bmjt3rrZu3aqNGzc6ahcAAAAAALAbh4b0/fv3q2nTptb3ydeO9+zZUwsWLFBERITCw8Oty+Pj4zV8+HCdP39ejzzyiKpVq6bNmzfbjAEAAAAAwIPKoSG9SZMmMgzjrssXLFhg837EiBEaMWJEFlcFAAAAAIBjPPDXpAMAAAAA8LAgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJhEbkcXADjKsUlb7TZWxdHN7DYWAAAAgJyLmXQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEzCoSF9x44dateunYoWLSqLxaJVq1bdd53g4GA9/vjjcnFxUZkyZbRgwYIsrxMAAAAAgOzg0JB+/fp1Va9eXZ999lma+oeGhqpNmzZq2rSpQkJCNGTIEPXp00cbNmzI4koBAAAAAMh6uR258VatWqlVq1Zp7j979mz5+flpypQpkqSKFSvql19+0dSpU9WiRYusKhMAAAAAgGzxQF2Tvnv3bgUEBNi0tWjRQrt3777rOnFxcYqNjbV5AQAAAABgRg9USI+MjJS3t7dNm7e3t2JjY3Xz5s1U1wkKCpKHh4f15evrmx2lAgAAAACQbg9USM+IwMBAxcTEWF9nz551dEkAAAAAAKTKodekp5ePj4+ioqJs2qKiouTu7q68efOmuo6Li4tcXFyyozwAAAAAADLlgZpJr1+/vrZs2WLTtmnTJtWvX99BFQEAAAAAYD8ODenXrl1TSEiIQkJCJP37iLWQkBCFh4dL+vdU9R49elj7v/baa/rrr780YsQIHT9+XJ9//rm+++47DR061BHlAwAAAABgVw4N6fv371fNmjVVs2ZNSdKwYcNUs2ZNjRkzRpIUERFhDeyS5Ofnpx9//FGbNm1S9erVNWXKFM2dO5fHrwEAAAAAHgoOvSa9SZMmMgzjrssXLFiQ6joHDx7MwqoAAAAAAHCMB+rGcQAAmF34hKp2G6vEmMN2GwsAADwYHqgbxwEAAAAA8DAjpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASeR2dAEAACB1T376pN3G2vnGTruNBQAAsg4z6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMwhQh/bPPPlOpUqXk6uqqunXrau/evXftu2DBAlksFpuXq6trNlYLAAAAAEDWcHhI//bbbzVs2DCNHTtWBw4cUPXq1dWiRQtduHDhruu4u7srIiLC+jpz5kw2VgwAAAAAQNZweEj/5JNP1LdvX7388suqVKmSZs+erUceeUTz5s276zoWi0U+Pj7Wl7e3dzZWDAAAAABA1nBoSI+Pj9dvv/2mgIAAa1uuXLkUEBCg3bt333W9a9euqWTJkvL19VWHDh105MiRu/aNi4tTbGyszQsAAAAAADNyaEi/dOmSEhMTU8yEe3t7KzIyMtV1ypcvr3nz5mn16tX6+uuvlZSUpAYNGujcuXOp9g8KCpKHh4f15evra/f9AAAAAADAHhx+unt61a9fXz169FCNGjXk7++vFStWyNPTU3PmzEm1f2BgoGJiYqyvs2fPZnPFAAAAAACkTW5HbvzRRx+Vk5OToqKibNqjoqLk4+OTpjHy5MmjmjVr6tSpU6kud3FxkYuLS6ZrBQAAAAAgqzk0pDs7O6tWrVrasmWLOnbsKElKSkrSli1bNHDgwDSNkZiYqMOHD6t169ZZWGnWC59Q1W5jlRhz2G5jAQAAAACyj0NDuiQNGzZMPXv2VO3atfXEE09o2rRpun79ul5++WVJUo8ePVSsWDEFBQVJkiZMmKB69eqpTJkyio6O1uTJk3XmzBn16dPHkbsBAAAAAECmOTykd+vWTRcvXtSYMWMUGRmpGjVqaP369dabyYWHhytXrv9dOn/lyhX17dtXkZGRKliwoGrVqqVdu3apUqVKjtoFAAAAAADswuEhXZIGDhx419Pbg4ODbd5PnTpVU6dOzYaqAAAAAADIXg/c3d0BAAAAAHhYEdIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAk8jt6AIedLXeWmSXcVbmt8swAAAAAIAHGDPpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTyO3oAmB/T376pN3G2vnGTruNBQAAAAC4N2bSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwidyOLgAAADw4Zg7/wW5jDZzSzm5jAQDwsGAmHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJcOM4ZAtuNAQAAAAA98dMOgAAAAAAJmGKkP7ZZ5+pVKlScnV1Vd26dbV379579l+2bJkqVKggV1dXVa1aVevWrcumSgEAAAAAyDoOD+nffvuthg0bprFjx+rAgQOqXr26WrRooQsXLqTaf9euXerevbt69+6tgwcPqmPHjurYsaP++OOPbK4cAAAAAAD7cvg16Z988on69u2rl19+WZI0e/Zs/fjjj5o3b57efvvtFP2nT5+uli1b6q233pIkvffee9q0aZNmzpyp2bNnZ2vtAAA8KLY39rfPQHXetM84AAAgVQ4N6fHx8frtt98UGBhobcuVK5cCAgK0e/fuVNfZvXu3hg0bZtPWokULrVq1KtX+cXFxiouLs76PiYmRJMXGxmay+n8lxt20yzhX8yTaZRxJSriZYLex1jV40i7j3Hx8kF3GkaR3u3Wwyzjty/WxyziS/Y4nAI7zsP8+v26noW7G3bDPQOL3OYCs0fidb+wyzmK36XYZR5JeKZDfbmNtem2T3cZC9kn+98UwjPv2dWhIv3TpkhITE+Xt7W3T7u3trePHj6e6TmRkZKr9IyMjU+0fFBSk8ePHp2j39fXNYNVZo4qjC7iLNvYaaPcue41kNxO1xp6DAYAkfp87Ar/PAWQFs/4+9xjp4egSkAlXr16Vh8e9P0OHn+6e1QIDA21m3pOSknT58mUVLlxYFovFgZXlHLGxsfL19dXZs2fl7u7u6HKALMFxjpyA4xw5Acc5cgKO8+xnGIauXr2qokWL3revQ0P6o48+KicnJ0VFRdm0R0VFycfHJ9V1fHx80tXfxcVFLi4uNm0FChTIeNHIMHd3d34J4KHHcY6cgOMcOQHHOXICjvPsdb8Z9GQOvbu7s7OzatWqpS1btljbkpKStGXLFtWvXz/VderXr2/TX5I2bdp01/4AAAAAADwoHH66+7Bhw9SzZ0/Vrl1bTzzxhKZNm6br169b7/beo0cPFStWTEFBQZKkwYMHy9/fX1OmTFGbNm20dOlS7d+/X1988YUjdwMAAAAAgExzeEjv1q2bLl68qDFjxigyMlI1atTQ+vXrrTeHCw8PV65c/5vwb9CggZYsWaJ33nlHo0aNUtmyZbVq1SpVqWLWWzvAxcVFY8eOTXHZAfAw4ThHTsBxjpyA4xw5Ace5uVmMtNwDHgAAAAAAZDmHXpMOAAAAAAD+h5AOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSIepJCUlOboEAAAAAHAYQjpM44MPPtDAgQN1+/ZtR5cCAAAAAA5BSIdpFC9eXLNnz9a7775LUAcApIonx+Jhknw8c1wDuBMhHaZgGIZefPFFLVu2TJ988oneeecd3bp1y9FlAQBM5OjRo7JYLJKkefPmaf/+/Q6uCMicK1euKC4uTlevXpVEWMfDjeM77QjpcLg7/8L6+/vrww8/1OTJk/Xxxx8rPj7egZUB5sI9G5CT/f7772rTpo2mTp2qt956S6+//roKFSrk6LKADPvqq6/UoUMHPf7442rbtq1WrVpl/RIKeFj8+OOPWrNmjSTJYrEQ1NMot6MLAJL/QVq+fLmGDx+up556SiVKlNCYMWN09epVTZw4UXny5HFwlYBjJSUlKVeuf79XXb16tU6dOiUvLy/VqlVLlSpVcnB1QNYrVKiQXnnlFU2cOFGJiYk6evSoSpcurYSEBOXOzX9n8GBZsWKF+vXrp48//lg3btxQaGionn32WQUGBmrYsGEqXLiwo0sEMu37779X165dVaxYMSUkJOjZZ5+1BnW+kLo3/lWDKZw4cUJ9+vRRUFCQXnnlFcXExGjVqlV6/fXXJUnvvfeenJ2dHVwl4BiGYVgD+siRI7Vo0SJVrlxZERERKlmypPr166eOHTs6tkggixUvXlzFihXT1atXVbRoUa1evVpDhw5V7ty5lZiYKCcnJ0eXCKTZunXr9Pzzz2vAgAHWtgYNGqhHjx66ffu2JkyYIFdXVwdWCGTOwYMH9fHHH6tPnz5KTEzUO++8I8Mw1KlTJ4J6GhDSYQqxsbEqVKiQWrRoIWdnZ3l6eqpv375KTEzU66+/rgIFCmjIkCHKmzevo0sFsl3yP2IzZszQ0qVLtXLlStWrV0/Tpk3T22+/bb2msVu3bpLEP3x4aCSfQZJ8TDdu3Fg///yzNmzYoNmzZ+vWrVsKDAwkoOOBYhiGIiIiVLRoUUn/u5TpxRdfVO7cufXCCy+ofPny6t27N7/P8cBycnJSyZIlNXjwYEnS1KlT9e6770oSQT0NuCYdpuDq6qrQ0FD99ddfkv73D1br1q3l5eWl0aNH64MPPnBkiYBDXbt2TUePHtWbb76pevXqadWqVRo3bpyGDBkiV1dXvf/++1q5cqUk8Q8eHgp3XuLxxx9/aN++fXrkkUdUt25dDRgwQJ07d9bChQv10UcfWdcJCgrSoUOHHFUycE/J1+Imf+G0bNkyHT161PpFlGEYeu655zR27FiNGTNGZ86c4fc5HjjJ/4evVq2aPv74Y1WuXFmVK1fWwIEDVb9+fb377rv6/vvvJf37d+HmzZuOLNe0LAZX7yObJX9r9t/TE59//nmFh4frk08+0RNPPCHp32AydOhQNWjQQPXr11eFChUcVTbgcH/++afy5cunmJgYtWvXTm+88YaGDBmib775Rn379lWxYsU0ffp0tWzZ0tGlAply5+zK6NGjtWzZMiUlJen27dt69tln9dZbbylXrlz67LPP9M033+jJJ5/UpUuX9Mcff+ivv/5iZh2mlpCQoGvXrqlr165ydnbW9OnT9dhjj1nvr7Bz50516tRJ69evV40aNRxdLpAhycfznf/fP3TokGbMmKHdu3dr0qRJat++vZo1a6YRI0aoTZs2Dq7YXJhJR7ZK/o/Xli1bNHLkSA0bNkxHjx6VJL3++uvy8PDQoEGDtHbtWh06dEgTJ05UcHCwnnnmGQI6cozExMRU20uXLq1ixYrp559/VpEiRdS7d29J/55S5u/vr969e+vpp5/OzlKBLJEc0D/55BP93//9n+bMmaNTp06pWbNmWrRokc6cOSMfHx8NGDBAw4cP1/nz5+Xu7q5Tp07JycmJJyHAtObPn682bdqoQIEC6t27t2JjYzV8+HCdOHHCegPE4sWLq0CBAjyKFg+sBQsWqFWrVkpISJCTk5P1LJLq1atr0KBBevLJJzVq1ChVqFBBp0+f5v8uqSCkI1tZLBZt3LhRLVq0UFhYmBYvXqxu3bpp4cKFatiwod555x1VqFBBHTp0UOfOnfX111/ru+++U4ECBRxdOpDl/v77b0myfuM8Y8YMDRgwQL1791ZERIT1P3CGYejSpUvav3+/bt++rcWLF6t+/frW2cW7hXzgQWEYhhISEvTzzz8rMDBQTZs21Q8//KAVK1Zo0qRJql+/vuLi4uTt7a3+/ftr8+bNWrJkifLkyaOEhATrafKAmRiGodu3b+uff/5RRESEunXrpl69eun69etq3bq1Fi1apO+++06vvfaaPDw8rGcVAg8SwzAUHx+vmJgYnTt3ztp2Z1Dv3r27wsLC5OnpqbCwMOvvbvwPp7sjWyTPoF+4cEHjx49X9erV1a9fP0n/nuZ+/PhxDRw4UD169FDu3Ll14sQJGYahggULytvb28HVA1kvMDBQs2fP1q+//qpy5cpp3Lhxmj59ulq1aqX9+/fr5s2bWrx4sRo3bqzffvtNw4cP119//aXcuXMrX758OnDggPLkycNNWPBQSEpKUnx8vJ566il99tlnunr1qlq3bq2PP/5Yr776quLi4vTFF1+odu3aqlevnvWY5/iHmaR2PMbExKh69epq27atZs6cKUnas2ePFi9erG+//ValSpWSp6enVq1apTx58vDkApjevY7zDh06aPr06TbLoqOj1blzZ0VEROjQoUPKnTs3j9JMBV81I1tYLBbt3btXzz77rH799VeVLVvWumzhwoWqWLGiPv30U82fP1/Xrl1T+fLlVaFCBQI6cozhw4erUqVK6tChg44cOaLw8HBt3LhRS5Ys0fHjx/X444+rS5cuCg4OVq1atTRt2jR9/PHHGjFihA4ePGj9FpqAggfRf09Pz5Url1xdXVWyZEk9++yzatWqlT777DO9+uqrkv79D+Dy5cv1+++/2xzzHP8wk9SORw8PD02ePFnbtm3T7t27JUn16tXTp59+qsOHD2vbtm1au3at9Xc6AR1md6/jfPPmzdq7d6/NsnPnzqlw4cIKCQkhoN8DIR3ZpkKFCrJYLDpw4IBCQkKsp73kyZNHixYtUrVq1RQUFGS94yOQkzz66KNau3at3N3d1apVKx06dEhubm6S/g0sq1evVv369dW1a1dt375dNWrUUNeuXfXaa69Zb8zCP3J4EN15F/fff/9dx44dU0xMjCRp5MiR8vLyUunSpdWjRw8ZhqErV66oV69eSkhIUJ8+fRxZOnBf77//vrp3764ff/zR2la9enU5Oztr3759kmQ9zdfLy0v58uWTxWJRUlISv9PxwLjXcb5nzx5J//sytkqVKvr222+tX0RxnKeOkI4s898rKdzd3bVu3To1a9ZMX331lX744QfrtbNOTk76v//7PzVv3lz+/v6OKBdwuIIFC+qnn35S1apVdfDgQV28eFHS//5hW7VqlRo2bKimTZvq4MGDNusy24IHVXJAHzFihJ599lnVrFlTr732mn766SfrTYZu376t4sWLy9/fXy1btlRUVJS2bdsmJycn7sEAU6tRo4bOnDmjcePGqWHDhtq1a5fKlSunIUOGaMyYMQoPD7eGlDtnJLmvAh4kaTnOkx81eCcC+t1xTTqyRPL1KXv37tXu3bt169Yt1ahRQy1atNDVq1fVvn173bx5U6NGjVKbNm0IGMiR7pxBvNOVK1fUunVrXb58WWvWrFH58uVtrvl6++23NWnSJP7e4IF25/G/bt06DR48WLNmzdI///yjuXPnKjExUUOGDFH79u11/vx5zZs3T05OTipSpIh69OghJycnZmHwQLh+/boOHTqkDz74QH/++aeKFy+uzp07a/HixWrXrp2GDx/O73M88DjO7YuQjiyzfPlyvf7666pZs6Y8PDy0bNkyTZo0SYGBgdagfvv2bQ0ePFjPPvssf3GRo9wZUH744QedP39epUqVUpkyZVSmTBnFxMSoefPmio2N1erVq1MEdUncUAgPhY0bN2rNmjUqXbq0hg0bJunf097Hjh2r6Ohovf766+rSpUuK9Tj+8SD475exP/zwg7Zv367PPvtMcXFxevnll/V///d/DqwQyDyOc/sjpMNu7gwQR48eVfPmzfXOO++of//+Onv2rPz8/DRs2DAFBQXJyclJsbGxaty4sTw9PbVy5Urr9bdATjJy5Eh9/vnnKl26tMLDw1W1alW98sor6tWrl2JiYtSiRQtdu3ZN3377rSpXruzocgG7CgsLU5s2bRQaGqrXXntNn3zyiXVZclC/fv26nnvuOb3yyisOrBTInP+GmIMHD2rDhg168803ORsEDw2Oc/vhghdk2g8//CBJ1hudSNLFixdVoUIF9e/fX6GhoWrQoIH69u2rjz76SE5OTjp+/Ljc3d31yy+/aO7cuQR05Bh3Xj+7b98+bd68WRs2bNChQ4e0adMmlS9fXp9++qmWLl0qDw8P/fTTT7p165YmTZrkwKoB+/jvvECpUqU0e/Zs1axZUzt27NCmTZusy6pVq6YJEybo1q1bCgkJyeZKgbT57zF9t7mvO4OLYRiqWbOm3n77bevdrQEz4zjPfoR0ZMrp06fVoUMHvfjii5L+95fz5s2bunDhgvbu3aumTZuqdevW1ueB/vLLLxo/frzOnDkjNzc3lSxZ0mH1A9nl6NGjkv53g7cPP/xQs2fPVsWKFVWvXj1JUu3atTVkyBD5+flp1apVun37tgoWLKiDBw/qq6++cljtgD0kJSVZz7aKjIzUjRs3lJiYqEaNGmnixIlycXHR7NmztXXrVus6VatW1fz58zVt2jQHVQ2kLjmkJB/Tf/31l837e/lvH2YYYVYc545DSEem+Pn5ac2aNVq/fr169uxpbS9Tpow8PT319NNPq1GjRpozZ441nKxevVoxMTHKnz+/o8oGstXQoUPVq1cv7dixw9p29epVzZ8/X7t27dL58+et7ZUrV1anTp20fPlynT17VpKUP39+7mKNB17yl7jjx49XQECAnnrqKb355pu6efOmmjZtqvHjxysyMlKfffaZtm3bZl3vscceU65cuVI8Sx1wpDvPHgwKCtI777yTpvXunIHkilOYHce54xDSkSm5cuVSq1attHDhQq1cuVI9evSQ9G9Ib9mypVxcXFSsWDEdPXpUx44d04gRI/R///d/+uijj1SoUCEHVw9kj759+youLk4ffvihgoODJUkTJ07U9OnTFRYWpgULFuiff/6x9n/sscdUpkyZFKeGcZMsPIjuDNdff/21Zs6cqWHDhunxxx/X7t271aFDB924cUMBAQEaP368Ll68qHHjxunAgQM24/BIKpjBqFGjrGcGJh+Tly9fVsWKFSXpnl8m3Xnvnh9++MHmyyjATDjOHY9/8ZBhyd+MxcbGqk2bNvrmm2+0Zs0avfDCC5L+feZt7969tW3bNlWvXl0vvfSS1q9fr61bt6pKlSqOLB3INomJiapUqZKWLVum8PBwffTRR9bTed944w1NnDhRY8eOVVBQkLZv364jR45o7Nixyp8/v8qUKePg6oHMufMmQmvXrtXff/+tGTNm6JVXXtGMGTP01ltv6cqVK2rfvr01qI8YMUKVKlVSjRo1HFs88B/nzp3T4cOHtXTpUs2fP9/aHhYWZv1S9W5fJt0ZXGbPnq0OHTpw+i9MiePcJAwgnZKSkqx/3rx5s9GyZUvj9u3bRnx8vLF27VrDw8PDeP755619zpw5YwQHBxvHjx83Lly44IiSAYdKSEgwDMMwTpw4YVSpUsVo1aqVsWXLFuvy999/37BYLIbFYjF69uxpPPvss0Z8fLxhGIaRmJjokJqBzGjVqpVx6NAh6/t9+/YZ5cqVM9zd3Y2VK1da2+Pj443ly5cbderUMZ5++mnj2rVrNuNw/MNsjh49avTs2dNo0KCBMXfuXMMwDKNDhw7G+PHjDcNI/Zi9ffu29c+zZ882ChQoYHz//ffZUzCQARznjsdMOtLsk08+0erVq22uT9m7d6/c3NyUO3du5cmTR61bt9bixYv1448/WmfUS5QoIX9/f5UvX16enp6O3AUg29x5KljyaerlypWzXms+efJk64x6YGCgPv30U0lSrVq1NG/ePOXJk0eJiYmc4osHzpkzZ1StWjVVqFDB2vbYY49p4MCBKlSokObOnWttz5Mnj9q1a6fAwEAdP35co0aNkvS/M7U4/mEWyb/TK1asqJEjR+qxxx7T3LlztXjxYpUqVUre3t46ffq0zpw5o6ioKEVGRmr37t2S/nfDrDlz5mjEiBGaO3euOnXq5LB9Ae6G49xEHP0tAR4MV65cMZ577jkjX758xvr1663tgwYNMl544QWbvomJicbatWuNRx991OjYsWN2lwo43J3fMB87dszYvXu3ERsba9y8edMwDMM4fvy4UaVKFaNly5Y2M+rvvfeeYbFYjGnTphlXrlzJ7rIBu5syZYqxbds2wzAMIzY21vj888+NqlWrGr169bLpFx8fbwQHB1vPOgHM5M7f6VFRUYZh/Htm1EsvvWTUrVvXsFgshru7u1G2bFnD29vb8PLyMry8vIz27dtbzz78/PPPDQ8PD2YWYVoc5+ZCSEeanTx50ujbt69RoEAB44cffjAMwzCGDh1q9OnTxzAMwxpADOPfU15WrFhhlChRwjh//rxD6gUc4c7LQUaPHm2UK1fOKFy4sFG9enVj6tSpRmRkpGEY/4b3qlWrGm3atDHWrVtnXeejjz4yLBaL8fnnn9uMBTxoLl26ZLRp08YoUKCAsXPnTsMwDCM6OtqYOXOmUaNGDePll19OdT2COszkzuAyYcIE49lnnzV+++03wzAM48iRI8ZLL/1/e3ceVXWd/3H8eUFAEHBfUXHXQMfdSC0myx9j45qmFYm5jWMmggmIowjumloMjIkiLulPDZdBGXHDMRdMHQJcSKVcGxesFHMBBb6/PzzcH2TO1O/XxL3wepzDOZfvcs/n6pvv/b4/y/s71PDy8jL8/f2NnJwc48aNG0ZGRoZx7tw5cyyfP3/eaNSokREfH18qn0Hk31GcWx4l6fJvFf/DTUlJMUJCQowqVaoYBw8eNCIjI42goCAjNzfXuH37tvm4y5cvG4ZhPLG+UKS8mDlzplG3bl0jKSnJMAzD6Nu3r+Hu7m786U9/Mq5du2YYxuMR9Vq1ahkTJ04skZh88MEHRmZmZqm0W+T/6sc6lU6ePGm89dZbRo0aNYxDhw4ZhvG/iXrHjh2Nfv36/cqtFPm/CQ0NNWrXrm2sXbvW+Prrr83bMzMzDT8/P8PLy8tYvXr1E+cVXduLrvsilkxxbjlMhqGH18nTFYWHyWRi7969BAUFERgYSEpKChs2bMDe3h5XV1cKCwvJzc3F2dmZhw8f4uTkxOHDh6latWopfwKRX19mZiZjxowhODiYPn36sGfPHgYOHMizzz7LuXPnGDZsGO+88w516tTh8uXLuLm5YWtrS35+vqqgilUqXsXdeDwAYP791KlTzJkzhz179vDXv/6Vbt26kZOTw9KlSzlz5gwrVqzQ2nOxaKmpqQwePJhly5bx0ksvmbcXxf2ZM2eYP38+hw8fZvHixfTu3dt8jFGs2rWIJVOcWxbdDcpTFU/QN2zYwJtvvglApUqVmDVrFhUrViQ2NpY33ngDf39/Ll68yKNHjzCZTLRo0UIJupRb9erVw9/fnx49enDw4EGGDh3KwoUL+cMf/oCPjw9r1qzh1q1bTJ8+nYYNGwKPH9WmBF2sUfEEfenSpRw4cACTyUSXLl2YMGECrVu35k9/+hOGYfDqq6+ydetWunbtyrvvvouTk5O5GKkSdbFU3377LYZh0LZtW/O2oo6oR48e0apVKyZNmkTTpk3p1atXiXOVuIi1UJxbFt0Ryr9kMpnYtGkTb775Jlu2bGHjxo2cPn2agQMHMnr0aB49esTq1asZNGhQiV43kfKsSpUq/O53v6NSpUqsXr2aV199lZEjRwLQqFEjrly5QmFhIdWrVzefU1QBXsTaFCXXkydP5uOPP2bQoEG4uLgQEhLCzZs3mTVrFp6enkydOhVbW1u6d+9ORkYGbdq0ASgx6i5iiRwcHLh69SoXL16kRo0a5tkiJpOJ5ORkqlSpgpeXF56ensDjTldd08XaKM4ti74V5alMJhNbt25l8ODBrFixgv79+3P37l2uXr0KgKenJxMnTmTIkCF4e3uze/fuUm6xiOVwcXEB4LvvvuPevXvk5+cDkJOTw6JFi4iOjsZkMqEVR1IWrF+/nk2bNrF582YiIyPp1KkTBQUFzJkzh7FjxwKPvzMmTZpEWFgYHh4e5nM1AiOWovijM4tzd3fHy8uLxYsXc+LECUwmk3l0ccGCBWzfvr3E8UpcxJIpzq2D1qTLv5SUlMStW7fMU939/f25ffs2a9asMR+TmJhIamoqr7/+Oi1btiytpopYpKCgIHbt2kWzZs24du0aOTk5nDx5EltbW03xlTKhoKCAmJgYcnNzmThxIn/729946623mDVrFo6OjowaNYrQ0FBmz55d4jzVYBBLUvx6nJSUxN27d8nLy+Ott94CYNWqVSxfvhxHR0d8fX2xtbXl448/Jjs7m9TUVMWyWAXFufVQki4/SdF0lzlz5rBt2zYOHz6Mra0tM2bMYMeOHSQmJlKjRo3SbqaIxSheRGXKlCncuHEDGxsbPvroIypUqKBpYmK1fqxA0J07d7h58ybOzs74+Pjg6+tLUFAQp06dwtvbm1u3bjFnzhwmT55cSq0WebriMR0aGsr69eupWrUqN2/epE2bNnz88cfUqFGDhIQEEhISiI+Pp3Xr1tStW5eNGzdiZ2ena7pYPMW5dVGSLj9J0R/2X/7yF6Kiojhz5gwRERHMmjWLo0eP0qFDh9JuoojFedqXmUYQxVoVH4XJzs6mevXqJWL86NGjDBs2jF27duHu7s5XX33FnDlzGDp0KM8//7xu7sSiLVy4kEWLFrF9+3Y6derE8uXLGTNmDN7e3mzYsIHatWsDj2PfycmJSpUqYTKZdE0Xq6I4tw6aZyk/S+vWralWrRrvvvsuc+fO5bPPPlOCLuXG0/o0n7a9KCH54fovfcmJtSpK0MPDw+nXrx+dO3dm7dq13LhxA3hci+HcuXOsW7eOL774gvHjx3Pz5k28vb3NjxkUsRQFBQXm1zdu3ODUqVNERUXRqVMnEhISCAoKYsaMGVy6dAlfX1+uXLkCQK1atXB2djbXFdE1XSyZ4tw6aSRdfpajR4/y3HPPYWtry7Fjx2jfvn1pN0nkV1F8BDEzMxMbGxvs7e1p0qTJE/uLKz697Ny5c9StW9dcVE7EGq1evZrQ0FAiIiLYsWMHWVlZ/P73v2fcuHE0bNiQhQsXEhoaSqNGjahSpQopKSnY2dnpObpisc6dO0eLFi3YunUr3bt359KlS7z22mtMmjSJcePGERkZSWBgIG3btmX37t3UrFmztJss8rMpzq2LRtLlZ2nXrh0zZszg1KlTStCl3Cj+iKiwsDDefPNNfvvb3zJ8+HCioqKAxyOMPxwxL56UREVFMWTIEG7duvXrNl7k/+mHcZ2Xl0dYWBijR49m69at+Pr6smfPHqKiorhx4waTJk3iiy++YO3atRw9ehQ7Ozvy8/OVoIvF2Lp1K9OnTwcgICCAkJAQ8vPzGTBgADVr1uTgwYN4eHiYi+a6uLgwcuRIPD09qVatWmk2XeQnU5xbN81bkJ/FwcGB0NBQrSuUcqUouYiIiGDp0qX893//N25ubsyfP58JEyZw7949Jk+ebE7UbWxsSiToMTExhIWF8dFHH9GwYcPS/CgiP0vxDqp169Zx48YN0tLS8PHxMR8TGhoKQHx8PCaTibFjx9KsWTOaNWsGPE7yNU1SLEVeXh5ffvkl8+bN49NPPyU1NZUjR46UiNFz585x6dIlKleuzPfff09CQgK//e1vCQwMBPR8aLF8ivMywBARkR9VWFhofv2Pf/zD6NKli7F//37DMAxj586dhouLizFgwACjUqVKxoIFC8zHPnr0yPx66dKlhqurq7F58+Zfr+Eiv4CCggLz66CgIMPV1dVo3bq1YWtra3h5eRkXLlwocfy8efMMNzc3Iyoq6lduqcjPk5uba3Tt2tUwmUzGuHHjzNvz8/MNwzCML774wqhevbrh7u5utGjRwmjdunWJ67qINVCcWzd1bYuI/Ijia8zPnDnDb37zG/r370/nzp3Zt28fb7/9NgsXLmTw4MEMGjSIkJAQ82OminqqY2JiCA4OJi4ujldffbU0P47Iz1YU/+fOneObb75h3759tGvXjtjYWNasWcPUqVOZPXs27u7uAISEhFCvXj3z1EkRS1L8mv7o0SN69OhBly5dWL16NTVr1mT69OnY2try8OFDWrVqxWeffcbGjRtxcnJi/PjxenSmWAXFedmhwnEiIj9g/OBZop999hkJCQlUrFgRe3t7Ro4cibOzM++//z729vaMGzeOEydOULlyZbZv347JZCI+Ph4/Pz/WrVunBF2s1saNG5kyZQp169Zl+/btVK1aFXjcAbV27Vrc3d2ZM2fOE8s4dJMnlqR44hIfH4+bmxsdOnSgsLCQJUuWMGvWLAIDA83rd+FxgVAPDw/z74ppsXSK87JFheNERH6gKEE/duwYhw4dYt68ebi6umJvb09eXh7p6enk5eVhb2/P/fv3yc7OZty4cSQmJprPbdeuHdu3b1eCLlatsLCQBg0akJmZyYMHD8zbx4wZw9ChQ/n666/54x//aH4EWxHd5ImlMIrVVZg8eTL+/v6cPXuWBw8e4OTkxPDhw5k6dSoffvghU6dO5d69e7zyyiu8//77Jd5HMS2WTHFe9mgkXUTkRyxZsoSUlBQePnzI+vXrsbW1NfdSz58/n6ioKHr27ElWVhb379/n+PHj2NraYhhGiS9LEWuXmJhIeHg4jo6OrFu3rsSo+QcffEBWVhbR0dGKebFo8+fPZ/HixSQmJtKuXTvs7OzM+/Ly8li2bBlBQUE0aNAAR0dHUlNTSxwjYg0U52WHknQRkR+xYMECpkyZQoMGDdizZ4+5UjXAV199xaZNm9i3bx9ubm7ExMRgZ2enaWJSphRf9vHXv/6VqKgoCgsLWbNmDQ0aNHjiuOJTLUUsSV5eHkOGDOG5554jJCSEy5cvk5mZSUxMDM888wy+vr54enqSlZXF6dOn6dOnD7a2tuTn5+vJBGI1FOdli5J0ESn3kpOTefHFF7GxsSEiIoI6deowZswYlixZwrRp0xg1ahTjx4+nfv36T30PfclJWVQ8Ud+6dSvR0dGYTCZiY2Np1KjRjx4nYkkMw+Du3bv07NmTNm3a0K1bN7Zu3crdu3cByM3NxcPDg+joaBwcHMznqdNVrInivOxRl7eIlGvXrl3j3XffxcvLC39/f+bOnYuXlxcA77zzDpMnT2bdunWsWLGCq1evms8rLCw0vzYMQwm6lEkmk4mivvwBAwbg7+9PdnY2ixYteuI4kdJmGEaJa3MRFxcXAgIC2L9/P5MnT6Z9+/ZERESQnJzMc889R05OTonEBbQ2VyyX4rx80F2liJRrtWvXZvXq1fj4+HDq1CkOHTpE27ZtefDgAY6OjgQFBWEYhnnN7dtvv02DBg1KTOtVgiJlWVGibjKZ6NevH1WrVqV79+6l3SyREnJycqhcubL5ehwdHU1WVhYFBQVMnz6d119/ne7du2MymXBzczOfd/r0aRo3blxazRb5WRTn5YdG0kWkXCrqhbaxsaFChQpUq1aNevXqERgYSG5uLo6OjuTm5gIQHBzM+PHjCQ8PZ8+ePaXZbJFfxNNWuj1te/ER9RdeeEFrz8WihIaG0qBBA7Kzs82/h4eHc/HiRfbu3YunpydpaWnUr18fNzc3cnJy2LVrF3369OHKlSv8+c9/Bp4e/yKWQHFevuhbVkTKneIFrk6dOkWdOnVITU1lzZo1fP/99/To0YO8vDwqVqxo/jILCgoiPj6eYcOGlWbTRf7fCgsLzaMwmZmZnDlzhvPnzwOYC8D9O+fOneP777//j7ZT5Kfy8/OjTZs2PP/881y5csWcnCQkJHDgwAG6du2Kj48Pn3/+OQDnz59n3rx5mEwm0tLSqFChAgUFBZoVJRZNcV6+qHCciJQrxRP0adOmkZSUxOzZs+nZsyeFhYXs37+fSZMm4ezszN69e6lYsSIjRozA29vbnKCr0IpYq+IF3sLCwti2bRvXr1+nZcuWDBo0iPHjxwM8Uam9+HlRUVHExcWRkJBQ4nFsIqXpyy+/xNfXl8uXL9OwYUPWrl1L8+bNAbh9+zbDhw8nJSWFpKQkOnToQFZWFk2bNsXGxkaFP8VqKM7LD42ki0i5UpR4TJ06ldjYWCIiIujcubN52nuPHj2IjIzkzp07NG7cGG9vb5KTk/H19TW/hxJ0sVZFiXZERARLly5l4cKF/P3vf6dx48ZMmDCBefPmAY//TopG1Isn6DExMYSFhRESEqIEXUpd8VkfzZo1Y926dXTq1Im0tDTy8vLMx1SpUoWVK1fSvXt3OnXqxNmzZ2nevLk5zpW4iCVTnJdP+t8SkXLn9OnTfPLJJ6xatQofHx/u3LlDVlYWBw8epFWrVnh7e5OQkEBcXByFhYUkJyebp4kpQRdrVDzRTk1NZceOHcTHx+Pt7c2uXbvYsmUL/fv3Z9asWdja2hIUFPTEyEtMTAzBwcGsXLmSV199tTQ/jkiJ2R5HjhzBzc2NZs2asWjRIm7dukX//v1JSUmhVq1aGIZBlSpVWL58OS1atKBZs2bm91F9BbFkivPyS9PdRaTcycjIYMiQIcTFxZGfn88nn3zC/v37uXXrFjVr1mTmzJn06dOnxDlK0MVaFb/JO3PmDE2bNmXhwoVMmDCBzz77DF9fXyIiIhg8eDCDBg1i3759TJ48mTlz5pjfoyhBj4uLY+DAgaX1UUSAkjE9ZcoUEhMTmT59Or169cLJyYmsrCz8/Py4efMmhw8fpnbt2k8s4dDUX7F0ivPyTd0qIlKm/VgRrJYtW2JjY8OoUaN4+eWXAZg7dy5HjhwhPz+f69evP3GOEnSxRoZhmG/YQkNDGTt2LA8ePOC9997DycmJdevWMXjwYN5++22qVKlCy5Yt6datGydOnDAXTYyPjycgIICVK1cqQReLUBTT06dPJy4ujkWLFuHj44OTkxMAzZs3Z8OGDVSvXp0XXniBq1evPjGSqMRFLJ3ivHzT/5yIlFnFe5SPHz9urmrdpUsX0tLSSExMpGbNmnTv3t18nKur60+qbi1iDYqmuB87doxDhw6xcOFCXF1dAcjLyyM9PZ3OnTtjb2/P/fv3yc7OZty4cbz++uvm92jXrh3bt283d2iJWILz58+zefNmYmJi6NmzJ9988w1ffvklu3fvplGjRgwePJhNmzbx4osvEhgYyMaNG0u7ySI/m+K8/FKSLiJlUvERxJCQENavX4/JZOLGjRu88cYbTJs2zTwqeO/ePW7fvs3o0aPJzc1l1KhRpdl0kV/UkiVLSElJoW7dunTq1Al43IHl4ODA4MGDiYqKYvjw4WRlZXH//n1ee+014PHfkGEYNG/e3Fw9WMRSVKhQAXt7e3Jycti7dy/r16/n888/Jy8vj/v373Pr1i3GjBnD/v37qVu3bmk3V+T/RHFefmm6u4iUSUUjiNHR0cTFxbFhwwZ2795NYmIiO3fuJCQkhEuXLgEQGxtLv379uHv3LkePHsXW1paCgoLSbL7IL+bu3bts2LCB48ePc+HCBeB/p1EWPXbt6tWrtGjRokT8m0wmFRsSi/Bjs5vq1KlDnTp1+PDDD/Hx8cHV1ZV58+aRkpJC8+bN+e677wCoX7++ruliFRTnUpxG0kWkTDt+/DgDBw6ka9euGIZBy5YtSUpK4oUXXuCZZ55hxowZDBs2DFdXV/z8/LC1tVWhFbFaycnJvPjii9jY2BAREUGdOnUIDg7G2dmZadOmsXz5csaPH0/9+vUBaNq0KSEhIYSEhJjfQ/EvlqT4sqXTp09jb2+PYRi0aNGCLVu2cPToUZydnenYsaP5nAcPHjxRR0R1RcSSKc7lh1TdXUTKjOKPmQJ49OgRvXr1on79+qxatYrCwkLy8/Oxt7dn8eLFLF26lCNHjlC9enXzOariLtbq2rVr9OjRAxcXF7y8vFi2bBlHjx6lbdu2ALz//vtERkYyevRoRo8eTb169YCSN4c//BsSKU3F4zE8PJxNmzZx//597O3tCQ0NZdiwYeZj7969a66pcO3aNf7xj3+os0msguJcfozmsYlImVBUFA4eF1rJzs7Gzs4OPz8/Nm3aRHJyMjY2NtjZ2QHg4OBAjRo1cHFxKfE+StDFWtWuXZvVq1eTlZVFbGwshw4dom3btjx48ACAoKAg/P39WbFiBStWrODKlStAyefnKkEXS1I8cVmyZAkffPABu3btolOnTgwfPpyYmBjzsWvWrMHPz4+HDx9y/PhxKlSooKm/YhUU5/JjlKSLSJlQ/Fmiffv2xcPDwzzNd8SIEYwbN46dO3dSWFhITk4OiYmJuLm5mZN2EWtVtI7RxsaGChUqUK1aNerVq0dgYCC5ubk4OjqSm5sLQHBwMOPHjyc8PJw9e/aUZrNFfpLU1FQ+/fRTNmzYQM+ePTl37hx/+9vf+P3vf8/YsWNZvnw5ACNHjmTixIns3r0bOzs78vPz1ekqVkNxLj+k6e4iYtWKT9WNj48nMDCQ6OhoTpw4wc6dO2nYsCFeXl7885//5IMPPqBJkybY2tri4ODA8ePHsbOz0xRfsVrF4//UqVNUq1YNJycnMjMzeeedd3BycuLvf/87Dg4OJeJ8y5Yt9OvXTzd3YnF+eD3++uuvWbduHQEBARw+fJi33nqLsLAwhg4dyoABA9i7dy/z588nKCjIfI6WLYmlU5zLv6MkXUTKhAMHDrB582batm3LiBEjANi2bRtRUVFUrVqV0aNHU6tWLXPxlSFDhqhInFi14gn6tGnTSEpKYvbs2fTs2ZPCwkL279/PpEmTcHZ2Zu/evVSsWJERI0bg7e1tXuOomzyxJMXj8auvvsLZ2ZnatWubY/3tt9/GycmJyMhI7Ozs+OMf/0hqaioVK1bkwIED6mwVq6A4l59C091FxOpdv36dESNGsGrVKu7cuWPe3rdvX/z9/fn2229ZsmQJeXl5/OEPf+DNN980P6pECbpYq6IEferUqcTGxhIREUHnzp3N09579OhBZGQkd+7coXHjxnh7e5OcnIyvr6/5PZSgiyX46KOPSE9PN8djaGgo/fr1w9PTk+DgYFJTUwHIyMigUqVK2NnZ8eDBA27evEl4eDgHDx7EZDKhcSexZIpz+Tk0ki4iZcKJEyd47bXXcHd3Z9GiRbRp08a8b8eOHYSEhNC7d2/mzp1biq0U+WWdPn2aAQMGEBUVhY+PD3fu3OHGjRscPHiQVq1a0bVrVy5cuEBcXByFhYVERESYCw0pQRdLcOHCBV544QV69epFcHCwealG0bKlHTt2UK9ePaZOncqhQ4eYNGkSw4cPJz09nUePHnH8+HFsbW21bEksmuJcfi4l6SJSZmRkZDB8+HA6derEhAkT8PT0NO9LSUnh2WefVWIiZUpGRgZDhgwhLi6O/Px8PvnkE/bv38+tW7eoWbMmM2fOpE+fPiXOUYIuliY9PZ1Ro0bx/PPPY2Njg4eHByNHjgQgMTGRRYsWUbVqVV5//XW++eYbtm3bhpubG0uXLsXOzk4xLVZBcS4/h6a7i0iZ0bZtW1asWEFqaiqRkZFkZmaa93Xt2tU8xV3EGhVVcS+uZcuW2NjYMGrUKF5++WUA5s6dy5EjR8jPz+f69etPnKObPLE07dq1Y9myZRw6dIiVK1fy/fffm/f17t2biRMncufOHT755BPatm3Lzp07WbFihapbi1VRnMvPoSRdRMqU9u3bExsbS3p6OtOnT+fChQsl9utLTqxR8SJxx48f5+jRoxw7doyKFSuSlpbGzJkz2bt3L3/+85/p06cPDRs2xNXV9UcTexFL1KFDB+Li4qhatSo7duzg5MmT5n19+vQhMDCQs2fPsn37dvN2wzBUV0SsiuJcfipNdxeRMunYsWMsXbqU2NhYc3IjYo2Kr0EMCQlh/fr1mEwmbty4wRtvvMG0adNo0qQJAPfu3eP27duMHj2a69evm9cxilgLLVuS8kBxLv+OknQRKbOKkpvio5Ai1io6OpqIiAgSEhKoXr06V65cYejQoXTv3p2FCxfi7u5OZGQkH3/8MU5OTiQnJ2sdo1iltLQ0Ro0aRceOHQkICMDDw6PEfsW0lAWKc/lXlKSLSJmmSqhSVgwbNgxHR0eWLl1qjuv09HReeOEFAgICmDFjBrdv32br1q34+flha2tLfn6+pkmKVUpLS2PMmDG4u7uzYMECGjduXNpNEvnFKc7laTS0JCJlmhJ0sUY/7D9/9OgR//znP8nNzTXvf/jwIe3atSM8PJwNGzbw7bffUqVKFYYPH24ukqgEXaxV+/btiY6OxsXFBXd399Jujsh/hOJcnkZJuoiIiAUpLCw0dy6dP3+e7Oxs7Ozs8PPzY9OmTSQnJ2NjY4OdnR0ADg4O1KhRAxcXlxLvo2mSYu26dOnCihUrsLGxURFEKbMU5/JjlKSLiIhYkKL6CVOmTKFv3754eHgQHByMs7MzI0aMYNy4cezcuZPCwkJycnJITEzEzc3NnLSLlCUmkwnDMFRXRMo0xbn8kObBiYiIWIDiBQ7j4+NZs2YN0dHRnDhxgp07d3L58mW8vLzo06cPvXv3pkmTJtja2uLg4MDx48fNN3la4iFljWJaygPFuRSnwnEiIiIW5MCBA2zevJm2bdsyYsQIALZt20ZUVBRVq1Zl9OjR1KpVi6NHj+Ls7MyQIUNUJE5ERKQMUZIuIiJiIa5fv0737t25efMmERERBAQEmPdt376dDz/8EFdXV0JDQ+nSpYt5nx7VIyIiUnZo4YOIiIiFqFOnDlu2bKFOnTrs2LGDkydPmvf16dOH9957jy+//JKtW7eWOE8JuoiISNmhkXQRERELk5GRwfDhw+nUqRMTJkzA09PTvC8lJYVnn31WibmIiEgZpSRdRETEAqWlpTFq1Cg6duxIQEAAHh4eJfZriruIiEjZpCRdRETEQqWlpTFmzBjc3d1ZsGABjRs3Lu0miYiIyH+Y1qSLiIhYqPbt2xMdHY2Liwvu7u6l3RwRERH5FWgkXURExMIVPf+8+LPURUREpGxSki4iImIFihJ1ERERKdvUHS8iImIFlKCLiIiUD0rSRURERERERCyEknQRERERERERC6EkXURERERERMRCKEkXERERERERsRBK0kVEREREREQshJJ0ERERMbt48SImk4n09PTSboqIiEi5pCRdRESkjDGZTP/yJzw8vLSbKCIiIk9RobQbICIiIr+sa9eumV9v3LiRsLAwzp49a97m7OxcGs0SERGRn0Aj6SIiImVMnTp1zD+VK1fGZDKZf69VqxaLFy+mfv36ODg40K5dO3bu3PnU9yooKGDEiBG0atWKy5cvA5CQkECHDh2oWLEiTZo0ISIigvz8fPM5JpOJ2NhYBgwYgJOTE82bN2fbtm3m/bdu3cLX15eaNWvi6OhI8+bNWbly5X/uH0RERMSKKEkXEREpRyIjI1m0aBELFy7kxIkT+Pj40LdvX7Kysp44Ni8vj9dee4309HQOHjxIw4YNOXjwIH5+fkyYMIHMzExiYmJYtWoVs2fPLnFuREQEgwcP5sSJE7zyyiv4+vry3XffATBt2jQyMzNJSkriiy++4KOPPqJGjRq/yucXERGxdCbDMIzSboSIiIj8Z6xatYqAgABu374NgJubG+PGjWPKlCnmY7p06ULnzp35y1/+wsWLF2ncuDEHDx4kPDycvLw8EhMTqVy5MgAvv/wyL730EqGhoebz165dS3BwMFevXgUej6RPnTqVmTNnAnDv3j2cnZ1JSkrid7/7HX379qVGjRrExcX9Sv8KIiIi1kNr0kVERMqJO3fucPXqVbp161Zie7du3cjIyCix7Y033qB+/frs27cPR0dH8/aMjAwOHz5cYuS8oKCA3Nxc7t+/j5OTEwC/+c1vzPsrVaqEq6sr2dnZAIwdO5aBAwfy+eef81//9V/079+frl27/uKfV0RExBppuruIiIg84ZVXXuHEiRMcOXKkxPa7d+8SERFBenq6+efkyZNkZWVRsWJF83F2dnYlzjOZTBQWFgLQq1cvLl26RGBgIFevXuWll15i0qRJ//kPJSIiYgWUpIuIiJQTrq6u1KtXj8OHD5fYfvjwYTw8PEpsGzt2LPPmzaNv3758+umn5u0dOnTg7NmzNGvW7IkfG5uffltRs2ZNhg0bxtq1a/nwww9ZtmzZ/+/DiYiIlBGa7i4iIlKOBAUFMX36dJo2bUq7du1YuXIl6enprFu37oljx48fT0FBAb179yYpKYnu3bsTFhZG7969adiwIYMGDcLGxoaMjAxOnTrFrFmzflIbwsLC6NixI56enuY1788888wv/VFFRESskpJ0ERGRcsTf35+cnBzee+89srOz8fDwYNu2bTRv3vxHjw8ICKCwsJBXXnmFnTt34uPjQ2JiIjNmzGD+/PnY2dnRqlUrRo0a9ZPbYG9vT2hoKBcvXsTR0ZHnn3+eDRs2/FIfUURExKqpuruIiIiIiIiIhdCadBERERERERELoSRdRERERERExEIoSRcRERERERGxEErSRURERERERCyEknQRERERERERC6EkXURERERERMRCKEkXERERERERsRBK0kVEREREREQshJJ0EREREREREQuhJF1ERERERETEQihJFxEREREREbEQ/wOXG+tww24NfgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1126,7 +1861,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/poetry.lock b/poetry.lock index 2c806b85..117f7592 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -160,6 +160,28 @@ all = ["altair-tiles (>=0.3.0)", "anywidget (>=0.9.0)", "numpy", "pandas (>=0.25 dev = ["geopandas", "hatch", "ibis-framework[polars]", "ipython[kernel]", "mistune", "mypy", "pandas (>=0.25.3)", "pandas-stubs", "polars (>=0.20.3)", "pytest", "pytest-cov", "pytest-xdist[psutil] (>=3.5,<4.0)", "ruff (>=0.5.7)", "types-jsonschema", "types-setuptools"] doc = ["docutils", "jinja2", "myst-parser", "numpydoc", "pillow (>=9,<10)", "pydata-sphinx-theme (>=0.14.1)", "scipy", "sphinx (>=8.0.0)", "sphinx-copybutton", "sphinx-design", "sphinxext-altair"] +[[package]] +name = "anyio" +version = "4.6.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.9" +files = [ + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] + [[package]] name = "appdirs" version = "1.4.4" @@ -171,6 +193,93 @@ files = [ {file = "appdirs-1.4.4.tar.gz", hash = "sha256:7d5d0167b2b1ba821647616af46a749d1c653740dd0d2415100fe26e27afdf41"}, ] +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +description = "Argon2 for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, +] + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +optional = false +python-versions = ">=3.6" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["cogapp", "pre-commit", "pytest", "wheel"] +tests = ["pytest"] + +[[package]] +name = "arrow" +version = "1.3.0" +description = "Better dates & times for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, +] + +[package.dependencies] +python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] + [[package]] name = "asgiref" version = "3.8.1" @@ -188,6 +297,38 @@ typing-extensions = {version = ">=4", markers = "python_version < \"3.11\""} [package.extras] tests = ["mypy (>=0.800)", "pytest", "pytest-asyncio"] +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + [[package]] name = "async-timeout" version = "4.0.3" @@ -218,11 +359,25 @@ docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphi tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] +[[package]] +name = "babel" +version = "2.16.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + [[package]] name = "beautifulsoup4" version = "4.12.3" description = "Screen-scraping library" -optional = true +optional = false python-versions = ">=3.6.0" files = [ {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, @@ -285,6 +440,24 @@ d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + [[package]] name = "blinker" version = "1.8.2" @@ -318,6 +491,85 @@ files = [ {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, ] +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + [[package]] name = "cfgv" version = "3.4.0" @@ -453,11 +705,28 @@ files = [ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + [[package]] name = "contourpy" version = "1.2.1" description = "Python library for calculating contours of 2D quadrilateral grids" -optional = true +optional = false python-versions = ">=3.9" files = [ {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"}, @@ -715,7 +984,7 @@ build = ["cmake (>=3.22.4)"] name = "cycler" version = "0.12.1" description = "Composable style cycles" -optional = true +optional = false python-versions = ">=3.8" files = [ {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, @@ -726,6 +995,37 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] +[[package]] +name = "debugpy" +version = "1.8.6" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, +] + [[package]] name = "decorator" version = "5.1.1" @@ -737,6 +1037,17 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + [[package]] name = "dill" version = "0.3.8" @@ -781,6 +1092,48 @@ six = ">=1.9.0" gmpy = ["gmpy"] gmpy2 = ["gmpy2"] +[[package]] +name = "exceptiongroup" +version = "1.2.2" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +files = [ + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + [[package]] name = "fastparquet" version = "2024.5.0" @@ -853,7 +1206,7 @@ typing = ["typing-extensions (>=4.12.2)"] name = "fonttools" version = "4.53.1" description = "Tools to manipulate font files" -optional = true +optional = false python-versions = ">=3.8" files = [ {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, @@ -914,6 +1267,17 @@ ufo = ["fs (>=2.2.0,<3)"] unicode = ["unicodedata2 (>=15.1.0)"] woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] +[[package]] +name = "fqdn" +version = "1.5.1" +description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +optional = false +python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] + [[package]] name = "frozendict" version = "2.4.4" @@ -1357,6 +1721,103 @@ protobuf = ">=3.20.2,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4 [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"] +[[package]] +name = "greenlet" +version = "3.1.1" +description = "Lightweight in-process concurrent programming" +optional = false +python-versions = ">=3.7" +files = [ + {file = "greenlet-3.1.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:0bbae94a29c9e5c7e4a2b7f0aae5c17e8e90acbfd3bf6270eeba60c39fce3563"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fde093fb93f35ca72a556cf72c92ea3ebfda3d79fc35bb19fbe685853869a83"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36b89d13c49216cadb828db8dfa6ce86bbbc476a82d3a6c397f0efae0525bdd0"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94b6150a85e1b33b40b1464a3f9988dcc5251d6ed06842abff82e42632fac120"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93147c513fac16385d1036b7e5b102c7fbbdb163d556b791f0f11eada7ba65dc"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da7a9bff22ce038e19bf62c4dd1ec8391062878710ded0a845bcf47cc0200617"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2795058c23988728eec1f36a4e5e4ebad22f8320c85f3587b539b9ac84128d7"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ed10eac5830befbdd0c32f83e8aa6288361597550ba669b04c48f0f9a2c843c6"}, + {file = "greenlet-3.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:77c386de38a60d1dfb8e55b8c1101d68c79dfdd25c7095d51fec2dd800892b80"}, + {file = "greenlet-3.1.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:e4d333e558953648ca09d64f13e6d8f0523fa705f51cae3f03b5983489958c70"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fc016b73c94e98e29af67ab7b9a879c307c6731a2c9da0db5a7d9b7edd1159"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5e975ca70269d66d17dd995dafc06f1b06e8cb1ec1e9ed54c1d1e4a7c4cf26e"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b2813dc3de8c1ee3f924e4d4227999285fd335d1bcc0d2be6dc3f1f6a318ec1"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e347b3bfcf985a05e8c0b7d462ba6f15b1ee1c909e2dcad795e49e91b152c383"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9e8f8c9cb53cdac7ba9793c276acd90168f416b9ce36799b9b885790f8ad6c0a"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:62ee94988d6b4722ce0028644418d93a52429e977d742ca2ccbe1c4f4a792511"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1776fd7f989fc6b8d8c8cb8da1f6b82c5814957264d1f6cf818d475ec2bf6395"}, + {file = "greenlet-3.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:48ca08c771c268a768087b408658e216133aecd835c0ded47ce955381105ba39"}, + {file = "greenlet-3.1.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:4afe7ea89de619adc868e087b4d2359282058479d7cfb94970adf4b55284574d"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f406b22b7c9a9b4f8aa9d2ab13d6ae0ac3e85c9a809bd590ad53fed2bf70dc79"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3a701fe5a9695b238503ce5bbe8218e03c3bcccf7e204e455e7462d770268aa"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2846930c65b47d70b9d178e89c7e1a69c95c1f68ea5aa0a58646b7a96df12441"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99cfaa2110534e2cf3ba31a7abcac9d328d1d9f1b95beede58294a60348fba36"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1443279c19fca463fc33e65ef2a935a5b09bb90f978beab37729e1c3c6c25fe9"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b7cede291382a78f7bb5f04a529cb18e068dd29e0fb27376074b6d0317bf4dd0"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:23f20bb60ae298d7d8656c6ec6db134bca379ecefadb0b19ce6f19d1f232a942"}, + {file = "greenlet-3.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:7124e16b4c55d417577c2077be379514321916d5790fa287c9ed6f23bd2ffd01"}, + {file = "greenlet-3.1.1-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:05175c27cb459dcfc05d026c4232f9de8913ed006d42713cb8a5137bd49375f1"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935e943ec47c4afab8965954bf49bfa639c05d4ccf9ef6e924188f762145c0ff"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:667a9706c970cb552ede35aee17339a18e8f2a87a51fba2ed39ceeeb1004798a"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b8a678974d1f3aa55f6cc34dc480169d58f2e6d8958895d68845fa4ab566509e"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efc0f674aa41b92da8c49e0346318c6075d734994c3c4e4430b1c3f853e498e4"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0153404a4bb921f0ff1abeb5ce8a5131da56b953eda6e14b88dc6bbc04d2049e"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:275f72decf9932639c1c6dd1013a1bc266438eb32710016a1c742df5da6e60a1"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c4aab7f6381f38a4b42f269057aee279ab0fc7bf2e929e3d4abfae97b682a12c"}, + {file = "greenlet-3.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:b42703b1cf69f2aa1df7d1030b9d77d3e584a70755674d60e710f0af570f3761"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1695e76146579f8c06c1509c7ce4dfe0706f49c6831a817ac04eebb2fd02011"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7876452af029456b3f3549b696bb36a06db7c90747740c5302f74a9e9fa14b13"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ead44c85f8ab905852d3de8d86f6f8baf77109f9da589cb4fa142bd3b57b475"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8320f64b777d00dd7ccdade271eaf0cad6636343293a25074cc5566160e4de7b"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6510bf84a6b643dabba74d3049ead221257603a253d0a9873f55f6a59a65f822"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:04b013dc07c96f83134b1e99888e7a79979f1a247e2a9f59697fa14b5862ed01"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:411f015496fec93c1c8cd4e5238da364e1da7a124bcb293f085bf2860c32c6f6"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47da355d8687fd65240c364c90a31569a133b7b60de111c255ef5b606f2ae291"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98884ecf2ffb7d7fe6bd517e8eb99d31ff7855a840fa6d0d63cd07c037f6a981"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1d4aeb8891338e60d1ab6127af1fe45def5259def8094b9c7e34690c8858803"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db32b5348615a04b82240cc67983cb315309e88d444a288934ee6ceaebcad6cc"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dcc62f31eae24de7f8dce72134c8651c58000d3b1868e01392baea7c32c247de"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1d3755bcb2e02de341c55b4fca7a745a24a9e7212ac953f6b3a48d117d7257aa"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b8da394b34370874b4572676f36acabac172602abf054cbc4ac910219f3340af"}, + {file = "greenlet-3.1.1-cp37-cp37m-win32.whl", hash = "sha256:a0dfc6c143b519113354e780a50381508139b07d2177cb6ad6a08278ec655798"}, + {file = "greenlet-3.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:54558ea205654b50c438029505def3834e80f0869a70fb15b871c29b4575ddef"}, + {file = "greenlet-3.1.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:346bed03fe47414091be4ad44786d1bd8bef0c3fcad6ed3dee074a032ab408a9"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfc59d69fc48664bc693842bd57acfdd490acafda1ab52c7836e3fc75c90a111"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21e10da6ec19b457b82636209cbe2331ff4306b54d06fa04b7c138ba18c8a81"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37b9de5a96111fc15418819ab4c4432e4f3c2ede61e660b1e33971eba26ef9ba"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ef9ea3f137e5711f0dbe5f9263e8c009b7069d8a1acea822bd5e9dae0ae49c8"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85f3ff71e2e60bd4b4932a043fbbe0f499e263c628390b285cb599154a3b03b1"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95ffcf719966dd7c453f908e208e14cde192e09fde6c7186c8f1896ef778d8cd"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:03a088b9de532cbfe2ba2034b2b85e82df37874681e8c470d6fb2f8c04d7e4b7"}, + {file = "greenlet-3.1.1-cp38-cp38-win32.whl", hash = "sha256:8b8b36671f10ba80e159378df9c4f15c14098c4fd73a36b9ad715f057272fbef"}, + {file = "greenlet-3.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:7017b2be767b9d43cc31416aba48aab0d2309ee31b4dbf10a1d38fb7972bdf9d"}, + {file = "greenlet-3.1.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:396979749bd95f018296af156201d6211240e7a23090f50a8d5d18c370084dc3"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9d0ff5ad43e785350894d97e13633a66e2b50000e8a183a50a88d834752d42"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f6ff3b14f2df4c41660a7dec01045a045653998784bf8cfcb5a525bdffffbc8f"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94ebba31df2aa506d7b14866fed00ac141a867e63143fe5bca82a8e503b36437"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73aaad12ac0ff500f62cebed98d8789198ea0e6f233421059fa68a5aa7220145"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:63e4844797b975b9af3a3fb8f7866ff08775f5426925e1e0bbcfe7932059a12c"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7939aa3ca7d2a1593596e7ac6d59391ff30281ef280d8632fa03d81f7c5f955e"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d0028e725ee18175c6e422797c407874da24381ce0690d6b9396c204c7f7276e"}, + {file = "greenlet-3.1.1-cp39-cp39-win32.whl", hash = "sha256:5e06afd14cbaf9e00899fae69b24a32f2196c19de08fcb9f4779dd4f004e5e7c"}, + {file = "greenlet-3.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:3319aa75e0e0639bc15ff54ca327e8dc7a6fe404003496e3c6925cd3142e0e22"}, + {file = "greenlet-3.1.1.tar.gz", hash = "sha256:4ce3ac6cdb6adf7946475d7ef31777c26d94bccc377e070a7986bd2d5c515467"}, +] + +[package.extras] +docs = ["Sphinx", "furo"] +test = ["objgraph", "psutil"] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + [[package]] name = "html5lib" version = "1.1" @@ -1378,6 +1839,52 @@ chardet = ["chardet (>=2.2)"] genshi = ["genshi"] lxml = ["lxml"] +[[package]] +name = "httpcore" +version = "1.0.6" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<1.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "identify" version = "2.6.1" @@ -1403,6 +1910,112 @@ files = [ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.28.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +files = [ + {file = "ipython-8.28.0-py3-none-any.whl", hash = "sha256:530ef1e7bb693724d3cdc37287c80b07ad9b25986c007a53aa1857272dac3f35"}, + {file = "ipython-8.28.0.tar.gz", hash = "sha256:0d0d15ca1e01faeb868ef56bc7ee5a0de5bd66885735682e8a322ae289a13d1a"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5.13.0" +typing-extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx-registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing-extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +files = [ + {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, + {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.12,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.12,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "isoduration" +version = "20.11.0" +description = "Operations with ISO 8601 durations" +optional = false +python-versions = ">=3.7" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] + +[package.dependencies] +arrow = ">=0.15.0" + [[package]] name = "isort" version = "5.13.2" @@ -1417,6 +2030,25 @@ files = [ [package.extras] colors = ["colorama (>=0.4.6)"] +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + [[package]] name = "jinja2" version = "3.1.4" @@ -1434,6 +2066,39 @@ MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "json5" +version = "0.9.25" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8" +files = [ + {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, + {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + [[package]] name = "jsonschema" version = "4.23.0" @@ -1447,9 +2112,17 @@ files = [ [package.dependencies] attrs = ">=22.2.0" +fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} jsonschema-specifications = ">=2023.03.6" referencing = ">=0.28.4" +rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} rpds-py = ">=0.7.1" +uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] @@ -1469,11 +2142,271 @@ files = [ [package.dependencies] referencing = ">=0.31.0" +[[package]] +name = "jupyter" +version = "1.1.1" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +optional = false +python-versions = "*" +files = [ + {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, + {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +jupyterlab = "*" +nbconvert = "*" +notebook = "*" + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +description = "Jupyter terminal console" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, + {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, +] + +[package.dependencies] +ipykernel = ">=6.14" +ipython = "*" +jupyter-client = ">=7.0.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +prompt-toolkit = ">=3.0.30" +pygments = "*" +pyzmq = ">=17" +traitlets = ">=5.4" + +[package.extras] +test = ["flaky", "pexpect", "pytest"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-events" +version = "0.10.0" +description = "Jupyter Event System library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"}, + {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"}, +] + +[package.dependencies] +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} +python-json-logger = ">=2.0.4" +pyyaml = ">=5.3" +referencing = "*" +rfc3339-validator = "*" +rfc3986-validator = ">=0.1.1" +traitlets = ">=5.3" + +[package.extras] +cli = ["click", "rich"] +docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +jupyter-server = ">=1.1.2" + +[[package]] +name = "jupyter-server" +version = "2.14.2" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd"}, + {file = "jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b"}, +] + +[package.dependencies] +anyio = ">=3.1.0" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" +jupyter-client = ">=7.4.4" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-events = ">=0.9.0" +jupyter-server-terminals = ">=0.4.4" +nbconvert = ">=6.4.4" +nbformat = ">=5.3.0" +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} +pyzmq = ">=24" +send2trash = ">=1.8.2" +terminado = ">=0.8.3" +tornado = ">=6.2.0" +traitlets = ">=5.6.0" +websocket-client = ">=1.7" + +[package.extras] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +description = "A Jupyter Server Extension Providing Terminals." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, +] + +[package.dependencies] +pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} +terminado = ">=0.8.3" + +[package.extras] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.2.5" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab-4.2.5-py3-none-any.whl", hash = "sha256:73b6e0775d41a9fee7ee756c80f58a6bed4040869ccc21411dc559818874d321"}, + {file = "jupyterlab-4.2.5.tar.gz", hash = "sha256:ae7f3a1b8cb88b4f55009ce79fa7c06f99d70cd63601ee4aa91815d054f46f75"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.1.0" +tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, +] + +[package.dependencies] +babel = ">=2.10" +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, + {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, +] + [[package]] name = "kiwisolver" version = "1.4.5" description = "A fast implementation of the Cassowary constraint solver" -optional = true +optional = false python-versions = ">=3.7" files = [ {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, @@ -1910,52 +2843,98 @@ tests = ["mock", "pytest"] [[package]] name = "matplotlib" -version = "3.8.0" +version = "3.9.2" description = "Python plotting package" -optional = true +optional = false python-versions = ">=3.9" files = [ - {file = "matplotlib-3.8.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:c4940bad88a932ddc69734274f6fb047207e008389489f2b6f77d9ca485f0e7a"}, - {file = "matplotlib-3.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a33bd3045c7452ca1fa65676d88ba940867880e13e2546abb143035fa9072a9d"}, - {file = "matplotlib-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ea6886e93401c22e534bbfd39201ce8931b75502895cfb115cbdbbe2d31f287"}, - {file = "matplotlib-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d670b9348e712ec176de225d425f150dc8e37b13010d85233c539b547da0be39"}, - {file = "matplotlib-3.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7b37b74f00c4cb6af908cb9a00779d97d294e89fd2145ad43f0cdc23f635760c"}, - {file = "matplotlib-3.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:0e723f5b96f3cd4aad99103dc93e9e3cdc4f18afdcc76951f4857b46f8e39d2d"}, - {file = "matplotlib-3.8.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5dc945a9cb2deb7d197ba23eb4c210e591d52d77bf0ba27c35fc82dec9fa78d4"}, - {file = "matplotlib-3.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b5a1bf27d078453aa7b5b27f52580e16360d02df6d3dc9504f3d2ce11f6309"}, - {file = "matplotlib-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f25ffb6ad972cdffa7df8e5be4b1e3cadd2f8d43fc72085feb1518006178394"}, - {file = "matplotlib-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee482731c8c17d86d9ddb5194d38621f9b0f0d53c99006275a12523ab021732"}, - {file = "matplotlib-3.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:36eafe2128772195b373e1242df28d1b7ec6c04c15b090b8d9e335d55a323900"}, - {file = "matplotlib-3.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:061ee58facb3580cd2d046a6d227fb77e9295599c5ec6ad069f06b5821ad1cfc"}, - {file = "matplotlib-3.8.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3cc3776836d0f4f22654a7f2d2ec2004618d5cf86b7185318381f73b80fd8a2d"}, - {file = "matplotlib-3.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6c49a2bd6981264bddcb8c317b6bd25febcece9e2ebfcbc34e7f4c0c867c09dc"}, - {file = "matplotlib-3.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23ed11654fc83cd6cfdf6170b453e437674a050a452133a064d47f2f1371f8d3"}, - {file = "matplotlib-3.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dae97fdd6996b3a25da8ee43e3fc734fff502f396801063c6b76c20b56683196"}, - {file = "matplotlib-3.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:87df75f528020a6299f76a1d986c0ed4406e3b2bd44bc5e306e46bca7d45e53e"}, - {file = "matplotlib-3.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:90d74a95fe055f73a6cd737beecc1b81c26f2893b7a3751d52b53ff06ca53f36"}, - {file = "matplotlib-3.8.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c3499c312f5def8f362a2bf761d04fa2d452b333f3a9a3f58805273719bf20d9"}, - {file = "matplotlib-3.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:31e793c8bd4ea268cc5d3a695c27b30650ec35238626961d73085d5e94b6ab68"}, - {file = "matplotlib-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d5ee602ef517a89d1f2c508ca189cfc395dd0b4a08284fb1b97a78eec354644"}, - {file = "matplotlib-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5de39dc61ca35342cf409e031f70f18219f2c48380d3886c1cf5ad9f17898e06"}, - {file = "matplotlib-3.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:dd386c80a98b5f51571b9484bf6c6976de383cd2a8cd972b6a9562d85c6d2087"}, - {file = "matplotlib-3.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:f691b4ef47c7384d0936b2e8ebdeb5d526c81d004ad9403dfb9d4c76b9979a93"}, - {file = "matplotlib-3.8.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:0b11f354aae62a2aa53ec5bb09946f5f06fc41793e351a04ff60223ea9162955"}, - {file = "matplotlib-3.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f54b9fb87ca5acbcdd0f286021bedc162e1425fa5555ebf3b3dfc167b955ad9"}, - {file = "matplotlib-3.8.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:60a6e04dfd77c0d3bcfee61c3cd335fff1b917c2f303b32524cd1235e194ef99"}, - {file = "matplotlib-3.8.0.tar.gz", hash = "sha256:df8505e1c19d5c2c26aff3497a7cbd3ccfc2e97043d1e4db3e76afa399164b69"}, + {file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"}, + {file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"}, + {file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"}, + {file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"}, + {file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"}, + {file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"}, + {file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"}, + {file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"}, + {file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"}, + {file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"}, + {file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"}, + {file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"}, + {file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"}, + {file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"}, ] [package.dependencies] contourpy = ">=1.0.1" cycler = ">=0.10" fonttools = ">=4.22.0" -kiwisolver = ">=1.0.1" -numpy = ">=1.21,<2" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" packaging = ">=20.0" -pillow = ">=6.2.0" +pillow = ">=8" pyparsing = ">=2.3.1" python-dateutil = ">=2.7" -setuptools_scm = ">=7" + +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "matplotlib-venn" +version = "1.1.1" +description = "Functions for plotting area-proportional two- and three-way Venn diagrams in matplotlib." +optional = false +python-versions = "*" +files = [ + {file = "matplotlib-venn-1.1.1.tar.gz", hash = "sha256:d885bc015f5091a4b8a8138ff20a7ed166c33b5c36dbc0489f95a5cbc76a2ae5"}, +] + +[package.dependencies] +matplotlib = "*" +numpy = "*" +scipy = "*" + +[package.extras] +shapely = ["shapely"] [[package]] name = "mdurl" @@ -1968,6 +2947,17 @@ files = [ {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, ] +[[package]] +name = "mistune" +version = "3.0.2" +description = "A sane and fast Markdown parser with useful plugins and renderers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, + {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, +] + [[package]] name = "mpmath" version = "1.3.0" @@ -2125,6 +3115,97 @@ pandas = ["pandas (>=0.25.3)"] polars = ["polars (>=0.20.3)"] pyarrow = ["pyarrow (>=11.0.0)"] +[[package]] +name = "nbclient" +version = "0.10.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, + {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.16.4" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "!=5.0.0" +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.1" + +[package.extras] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + [[package]] name = "nodeenv" version = "1.9.1" @@ -2136,6 +3217,46 @@ files = [ {file = "nodeenv-1.9.1.tar.gz", hash = "sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f"}, ] +[[package]] +name = "notebook" +version = "7.2.2" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "notebook-7.2.2-py3-none-any.whl", hash = "sha256:c89264081f671bc02eec0ed470a627ed791b9156cad9285226b31611d3e9fe1c"}, + {file = "notebook-7.2.2.tar.gz", hash = "sha256:2ef07d4220421623ad3fe88118d687bc0450055570cdd160814a59cf3a1c516e"}, +] + +[package.dependencies] +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" + +[package.extras] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +files = [ + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, +] + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] + [[package]] name = "numpy" version = "1.26.4" @@ -2197,6 +3318,17 @@ rsa = ["cryptography (>=3.0.0)"] signals = ["blinker (>=1.4.0)"] signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] +[[package]] +name = "overrides" +version = "7.7.0" +description = "A decorator to automatically detect mismatch when overriding a method." +optional = false +python-versions = ">=3.6" +files = [ + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, +] + [[package]] name = "packaging" version = "24.1" @@ -2281,6 +3413,32 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.9.2)"] +[[package]] +name = "pandocfilters" +version = "1.5.1" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + [[package]] name = "pathspec" version = "0.12.1" @@ -2302,6 +3460,20 @@ files = [ {file = "peewee-3.17.6.tar.gz", hash = "sha256:cea5592c6f4da1592b7cff8eaf655be6648a1f5857469e30037bf920c03fb8fb"}, ] +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + [[package]] name = "pillow" version = "10.4.0" @@ -2523,6 +3695,34 @@ nodeenv = ">=0.11.1" pyyaml = ">=5.1" virtualenv = ">=20.10.0" +[[package]] +name = "prometheus-client" +version = "0.21.0" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.8" +files = [ + {file = "prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166"}, + {file = "prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e"}, +] + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + [[package]] name = "proto-plus" version = "1.24.0" @@ -2560,6 +3760,35 @@ files = [ {file = "protobuf-5.27.3.tar.gz", hash = "sha256:82460903e640f2b7e34ee81a947fdaad89de796d324bcbc38ff5430bcdead82c"}, ] +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + [[package]] name = "psycopg2-binary" version = "2.9.9" @@ -2641,6 +3870,31 @@ files = [ {file = "psycopg2_binary-2.9.9-cp39-cp39-win_amd64.whl", hash = "sha256:f7ae5d65ccfbebdfa761585228eb4d0df3a8b15cfb53bd953e713e09fbb12957"}, ] +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + [[package]] name = "pyarrow" version = "17.0.0" @@ -2717,6 +3971,17 @@ files = [ [package.dependencies] pyasn1 = ">=0.4.6,<0.7.0" +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + [[package]] name = "pycryptodome" version = "3.20.0" @@ -2795,7 +4060,7 @@ windows-terminal = ["colorama (>=0.4.6)"] name = "pyparsing" version = "3.1.2" description = "pyparsing module - Classes and methods to define and execute parsing grammars" -optional = true +optional = false python-versions = ">=3.6.8" files = [ {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, @@ -2819,6 +4084,17 @@ files = [ [package.dependencies] six = ">=1.5" +[[package]] +name = "python-json-logger" +version = "2.0.7" +description = "A python library adding a json log formatter" +optional = false +python-versions = ">=3.6" +files = [ + {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, + {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, +] + [[package]] name = "pytz" version = "2024.1" @@ -2853,6 +4129,21 @@ files = [ {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] +[[package]] +name = "pywinpty" +version = "2.0.13" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pywinpty-2.0.13-cp310-none-win_amd64.whl", hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56"}, + {file = "pywinpty-2.0.13-cp311-none-win_amd64.whl", hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99"}, + {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"}, + {file = "pywinpty-2.0.13-cp38-none-win_amd64.whl", hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d"}, + {file = "pywinpty-2.0.13-cp39-none-win_amd64.whl", hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b"}, + {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"}, +] + [[package]] name = "pyyaml" version = "6.0.2" @@ -2915,6 +4206,127 @@ files = [ {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + [[package]] name = "referencing" version = "0.35.1" @@ -2969,6 +4381,31 @@ requests = ">=2.0.0" [package.extras] rsa = ["oauthlib[signedtoken] (>=3.0.0)"] +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, + {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, + {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, +] + [[package]] name = "rich" version = "13.7.1" @@ -3114,41 +4551,157 @@ files = [ pyasn1 = ">=0.1.3" [[package]] -name = "setuptools" -version = "73.0.1" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = true -python-versions = ">=3.8" +name = "scikit-learn" +version = "1.5.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.9" files = [ - {file = "setuptools-73.0.1-py3-none-any.whl", hash = "sha256:b208925fcb9f7af924ed2dc04708ea89791e24bde0d3020b27df0e116088b34e"}, - {file = "setuptools-73.0.1.tar.gz", hash = "sha256:d59a3e788ab7e012ab2c4baed1b376da6366883ee20d7a5fc426816e3d7b1193"}, + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:299406827fb9a4f862626d0fe6c122f5f87f8910b86fe5daa4c32dcd742139b6"}, + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2d4cad1119c77930b235579ad0dc25e65c917e756fe80cab96aa3b9428bd3fb0"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c412ccc2ad9bf3755915e3908e677b367ebc8d010acbb3f182814524f2e5540"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a686885a4b3818d9e62904d91b57fa757fc2bed3e465c8b177be652f4dd37c8"}, + {file = "scikit_learn-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:c15b1ca23d7c5f33cc2cb0a0d6aaacf893792271cddff0edbd6a40e8319bc113"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03b6158efa3faaf1feea3faa884c840ebd61b6484167c711548fce208ea09445"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1ff45e26928d3b4eb767a8f14a9a6efbf1cbff7c05d1fb0f95f211a89fd4f5de"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f763897fe92d0e903aa4847b0aec0e68cadfff77e8a0687cabd946c89d17e675"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8b0ccd4a902836493e026c03256e8b206656f91fbcc4fde28c57a5b752561f1"}, + {file = "scikit_learn-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:6c16d84a0d45e4894832b3c4d0bf73050939e21b99b01b6fd59cbb0cf39163b6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f932a02c3f4956dfb981391ab24bda1dbd90fe3d628e4b42caef3e041c67707a"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:3b923d119d65b7bd555c73be5423bf06c0105678ce7e1f558cb4b40b0a5502b1"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"}, + {file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca64b3089a6d9b9363cd3546f8978229dcbb737aceb2c12144ee3f70f95684b7"}, + {file = "scikit_learn-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:3bed4909ba187aca80580fe2ef370d9180dcf18e621a27c4cf2ef10d279a7efe"}, + {file = "scikit_learn-1.5.2.tar.gz", hash = "sha256:b4237ed7b3fdd0a4882792e68ef2545d5baa50aca3bb45aa7df468138ad8f94d"}, ] +[package.dependencies] +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" + [package.extras] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-design (>=0.6.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] [[package]] -name = "setuptools-scm" -version = "8.1.0" -description = "the blessed package to manage your versions by scm tags" -optional = true +name = "scipy" +version = "1.14.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, + {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, + {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, + {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, + {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, + {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, + {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"}, + {file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"}, + {file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"}, + {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false python-versions = ">=3.8" files = [ - {file = "setuptools_scm-8.1.0-py3-none-any.whl", hash = "sha256:897a3226a6fd4a6eb2f068745e49733261a21f70b1bb28fce0339feb978d9af3"}, - {file = "setuptools_scm-8.1.0.tar.gz", hash = "sha256:42dea1b65771cba93b7a515d65a65d8246e560768a66b9106a592c8e7f26c8a7"}, + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, ] [package.dependencies] -packaging = ">=20" -setuptools = "*" -tomli = {version = ">=1", markers = "python_version < \"3.11\""} +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "send2trash" +version = "1.8.3" +description = "Send file to trash natively under Mac OS X, Windows and Linux" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, +] + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "73.0.1" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-73.0.1-py3-none-any.whl", hash = "sha256:b208925fcb9f7af924ed2dc04708ea89791e24bde0d3020b27df0e116088b34e"}, + {file = "setuptools-73.0.1.tar.gz", hash = "sha256:d59a3e788ab7e012ab2c4baed1b376da6366883ee20d7a5fc426816e3d7b1193"}, +] [package.extras] -docs = ["entangled-cli (>=2.0,<3.0)", "mkdocs", "mkdocs-entangled-plugin", "mkdocs-material", "mkdocstrings[python]", "pygments"] -rich = ["rich"] -test = ["build", "pytest", "rich", "typing-extensions", "wheel"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] [[package]] name = "six" @@ -3172,17 +4725,142 @@ files = [ {file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "soupsieve" version = "2.6" description = "A modern CSS selector implementation for Beautiful Soup." -optional = true +optional = false python-versions = ">=3.8" files = [ {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, ] +[[package]] +name = "sqlalchemy" +version = "2.0.36" +description = "Database Abstraction Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "SQLAlchemy-2.0.36-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:59b8f3adb3971929a3e660337f5dacc5942c2cdb760afcabb2614ffbda9f9f72"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:37350015056a553e442ff672c2d20e6f4b6d0b2495691fa239d8aa18bb3bc908"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8318f4776c85abc3f40ab185e388bee7a6ea99e7fa3a30686580b209eaa35c08"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c245b1fbade9c35e5bd3b64270ab49ce990369018289ecfde3f9c318411aaa07"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:69f93723edbca7342624d09f6704e7126b152eaed3cdbb634cb657a54332a3c5"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f9511d8dd4a6e9271d07d150fb2f81874a3c8c95e11ff9af3a2dfc35fe42ee44"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-win32.whl", hash = "sha256:c3f3631693003d8e585d4200730616b78fafd5a01ef8b698f6967da5c605b3fa"}, + {file = "SQLAlchemy-2.0.36-cp310-cp310-win_amd64.whl", hash = "sha256:a86bfab2ef46d63300c0f06936bd6e6c0105faa11d509083ba8f2f9d237fb5b5"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:fd3a55deef00f689ce931d4d1b23fa9f04c880a48ee97af488fd215cf24e2a6c"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f5e9cd989b45b73bd359f693b935364f7e1f79486e29015813c338450aa5a71"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0ddd9db6e59c44875211bc4c7953a9f6638b937b0a88ae6d09eb46cced54eff"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2519f3a5d0517fc159afab1015e54bb81b4406c278749779be57a569d8d1bb0d"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59b1ee96617135f6e1d6f275bbe988f419c5178016f3d41d3c0abb0c819f75bb"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:39769a115f730d683b0eb7b694db9789267bcd027326cccc3125e862eb03bfd8"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-win32.whl", hash = "sha256:66bffbad8d6271bb1cc2f9a4ea4f86f80fe5e2e3e501a5ae2a3dc6a76e604e6f"}, + {file = "SQLAlchemy-2.0.36-cp311-cp311-win_amd64.whl", hash = "sha256:23623166bfefe1487d81b698c423f8678e80df8b54614c2bf4b4cfcd7c711959"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f7b64e6ec3f02c35647be6b4851008b26cff592a95ecb13b6788a54ef80bbdd4"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:46331b00096a6db1fdc052d55b101dbbfc99155a548e20a0e4a8e5e4d1362855"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdf3386a801ea5aba17c6410dd1dc8d39cf454ca2565541b5ac42a84e1e28f53"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac9dfa18ff2a67b09b372d5db8743c27966abf0e5344c555d86cc7199f7ad83a"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:90812a8933df713fdf748b355527e3af257a11e415b613dd794512461eb8a686"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1bc330d9d29c7f06f003ab10e1eaced295e87940405afe1b110f2eb93a233588"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-win32.whl", hash = "sha256:79d2e78abc26d871875b419e1fd3c0bca31a1cb0043277d0d850014599626c2e"}, + {file = "SQLAlchemy-2.0.36-cp312-cp312-win_amd64.whl", hash = "sha256:b544ad1935a8541d177cb402948b94e871067656b3a0b9e91dbec136b06a2ff5"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b5cc79df7f4bc3d11e4b542596c03826063092611e481fcf1c9dfee3c94355ef"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3c01117dd36800f2ecaa238c65365b7b16497adc1522bf84906e5710ee9ba0e8"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9bc633f4ee4b4c46e7adcb3a9b5ec083bf1d9a97c1d3854b92749d935de40b9b"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e46ed38affdfc95d2c958de328d037d87801cfcbea6d421000859e9789e61c2"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b2985c0b06e989c043f1dc09d4fe89e1616aadd35392aea2844f0458a989eacf"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4a121d62ebe7d26fec9155f83f8be5189ef1405f5973ea4874a26fab9f1e262c"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-win32.whl", hash = "sha256:0572f4bd6f94752167adfd7c1bed84f4b240ee6203a95e05d1e208d488d0d436"}, + {file = "SQLAlchemy-2.0.36-cp313-cp313-win_amd64.whl", hash = "sha256:8c78ac40bde930c60e0f78b3cd184c580f89456dd87fc08f9e3ee3ce8765ce88"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:be9812b766cad94a25bc63bec11f88c4ad3629a0cec1cd5d4ba48dc23860486b"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aae840ebbd6cdd41af1c14590e5741665e5272d2fee999306673a1bb1fdb4d"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4557e1f11c5f653ebfdd924f3f9d5ebfc718283b0b9beebaa5dd6b77ec290971"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:07b441f7d03b9a66299ce7ccf3ef2900abc81c0db434f42a5694a37bd73870f2"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:28120ef39c92c2dd60f2721af9328479516844c6b550b077ca450c7d7dc68575"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-win32.whl", hash = "sha256:b81ee3d84803fd42d0b154cb6892ae57ea6b7c55d8359a02379965706c7efe6c"}, + {file = "SQLAlchemy-2.0.36-cp37-cp37m-win_amd64.whl", hash = "sha256:f942a799516184c855e1a32fbc7b29d7e571b52612647866d4ec1c3242578fcb"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3d6718667da04294d7df1670d70eeddd414f313738d20a6f1d1f379e3139a545"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:72c28b84b174ce8af8504ca28ae9347d317f9dba3999e5981a3cd441f3712e24"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b11d0cfdd2b095e7b0686cf5fabeb9c67fae5b06d265d8180715b8cfa86522e3"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e32092c47011d113dc01ab3e1d3ce9f006a47223b18422c5c0d150af13a00687"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6a440293d802d3011028e14e4226da1434b373cbaf4a4bbb63f845761a708346"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c54a1e53a0c308a8e8a7dffb59097bff7facda27c70c286f005327f21b2bd6b1"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-win32.whl", hash = "sha256:1e0d612a17581b6616ff03c8e3d5eff7452f34655c901f75d62bd86449d9750e"}, + {file = "SQLAlchemy-2.0.36-cp38-cp38-win_amd64.whl", hash = "sha256:8958b10490125124463095bbdadda5aa22ec799f91958e410438ad6c97a7b793"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dc022184d3e5cacc9579e41805a681187650e170eb2fd70e28b86192a479dcaa"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b817d41d692bf286abc181f8af476c4fbef3fd05e798777492618378448ee689"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4e46a888b54be23d03a89be510f24a7652fe6ff660787b96cd0e57a4ebcb46d"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4ae3005ed83f5967f961fd091f2f8c5329161f69ce8480aa8168b2d7fe37f06"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:03e08af7a5f9386a43919eda9de33ffda16b44eb11f3b313e6822243770e9763"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:3dbb986bad3ed5ceaf090200eba750b5245150bd97d3e67343a3cfed06feecf7"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-win32.whl", hash = "sha256:9fe53b404f24789b5ea9003fc25b9a3988feddebd7e7b369c8fac27ad6f52f28"}, + {file = "SQLAlchemy-2.0.36-cp39-cp39-win_amd64.whl", hash = "sha256:af148a33ff0349f53512a049c6406923e4e02bf2f26c5fb285f143faf4f0e46a"}, + {file = "SQLAlchemy-2.0.36-py3-none-any.whl", hash = "sha256:fddbe92b4760c6f5d48162aef14824add991aeda8ddadb3c31d56eb15ca69f8e"}, + {file = "sqlalchemy-2.0.36.tar.gz", hash = "sha256:7f2767680b6d2398aea7082e45a774b2b0767b5c8d8ffb9c8b683088ea9b29c5"}, +] + +[package.dependencies] +greenlet = {version = "!=0.4.17", markers = "python_version < \"3.13\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} +typing-extensions = ">=4.6.0" + +[package.extras] +aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] +aioodbc = ["aioodbc", "greenlet (!=0.4.17)"] +aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] +asyncio = ["greenlet (!=0.4.17)"] +asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] +mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5,!=1.1.10)"] +mssql = ["pyodbc"] +mssql-pymssql = ["pymssql"] +mssql-pyodbc = ["pyodbc"] +mypy = ["mypy (>=0.910)"] +mysql = ["mysqlclient (>=1.4.0)"] +mysql-connector = ["mysql-connector-python"] +oracle = ["cx_oracle (>=8)"] +oracle-oracledb = ["oracledb (>=1.0.1)"] +postgresql = ["psycopg2 (>=2.7)"] +postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] +postgresql-pg8000 = ["pg8000 (>=1.29.1)"] +postgresql-psycopg = ["psycopg (>=3.0.7)"] +postgresql-psycopg2binary = ["psycopg2-binary"] +postgresql-psycopg2cffi = ["psycopg2cffi"] +postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] +pymysql = ["pymysql"] +sqlcipher = ["sqlcipher3_binary"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + [[package]] name = "starknet-py" version = "0.22.0" @@ -3272,6 +4950,56 @@ files = [ doc = ["reno", "sphinx"] test = ["pytest", "tornado (>=4.5)", "typeguard"] +[[package]] +name = "terminado" +version = "0.18.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, +] + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tinycss2" +version = "1.3.0" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["pytest", "ruff"] + [[package]] name = "toml" version = "0.10.2" @@ -3334,6 +5062,32 @@ notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241003" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +files = [ + {file = "types-python-dateutil-2.9.0.20241003.tar.gz", hash = "sha256:58cb85449b2a56d6684e41aeefb4c4280631246a0da1a719bdbe6f3fb0317446"}, + {file = "types_python_dateutil-2.9.0.20241003-py3-none-any.whl", hash = "sha256:250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d"}, +] + [[package]] name = "typing-extensions" version = "4.12.2" @@ -3371,6 +5125,20 @@ files = [ {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] +[[package]] +name = "uri-template" +version = "1.3.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.7" +files = [ + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, +] + +[package.extras] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] + [[package]] name = "urllib3" version = "2.2.2" @@ -3455,17 +5223,70 @@ files = [ [package.extras] watchmedo = ["PyYAML (>=3.10)"] +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webcolors" +version = "24.8.0" +description = "A library for working with the color formats defined by HTML and CSS." +optional = false +python-versions = ">=3.8" +files = [ + {file = "webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a"}, + {file = "webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d"}, +] + +[package.extras] +docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] +tests = ["coverage[toml]"] + [[package]] name = "webencodings" version = "0.5.1" description = "Character encoding aliases for legacy web content" -optional = true +optional = false python-versions = "*" files = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +files = [ + {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, + {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, +] + [[package]] name = "yarl" version = "1.9.4" @@ -3597,10 +5418,24 @@ requests = ">=2.31" nospam = ["requests-cache (>=1.0)", "requests-ratelimiter (>=0.3.1)"] repair = ["scipy (>=1.6.3)"] +[[package]] +name = "zmq" +version = "0.0.0" +description = "You are probably looking for pyzmq." +optional = false +python-versions = "*" +files = [ + {file = "zmq-0.0.0.tar.gz", hash = "sha256:6b1a1de53338646e8c8405803cffb659e8eb7bb02fff4c9be62a7acfac8370c9"}, + {file = "zmq-0.0.0.zip", hash = "sha256:21cfc6be254c9bc25e4dabb8a3b2006a4227966b7b39a637426084c8dc6901f7"}, +] + +[package.dependencies] +pyzmq = "*" + [extras] liquidation = ["matplotlib", "tqdm", "yfinance"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "e14fff7b4d22997c4c6b859e2e89ee333305a502da067fa7db83c9be7a74e3c0" +content-hash = "8a2e1b826268d7bd1ae0967e514f10bc63d1eeb007232b409d8099d86a08e435" diff --git a/pyproject.toml b/pyproject.toml index 49faac98..93d739fe 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -15,13 +15,21 @@ plotly = "^5.22.0" fastparquet = "^2024.5.0" google-cloud-storage = "^2.16.0" psycopg2-binary = "^2.9.9" -matplotlib = { version = "3.8.0", optional = true } +matplotlib = "^3.9.2" tqdm = { version = "4.65.0", optional = true } yfinance = { version = "0.2.38", optional = true } dill = "^0.3.8" gcsfs = "^2024.6.1" pre-commit = "^3.8.0" +jupyter = "^1.1.1" +notebook = "^7.2.2" +zmq = "^0.0.0" +pyzmq = "^26.2.0" +seaborn = "^0.13.2" +matplotlib-venn = "^1.1.1" +sqlalchemy = "^2.0.36" +scikit-learn = "^1.5.2" [tool.poetry.group.dev.dependencies] black = "^24.8.0" isort = "^5.13.2"