-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_reward_model.py
301 lines (250 loc) · 13.3 KB
/
train_reward_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import wandb
import argparse
import os
import transformers
import numpy as np
from tqdm import tqdm
from time import time
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR
from huggingface_hub import list_repo_refs
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from accelerate import Accelerator
from datasets import load_dataset
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", default="reciprocate/gpt2-tiny", type=str)
parser.add_argument("--revision", default=None, type=str)
parser.add_argument("--tokenizer_path", default=None, type=str)
parser.add_argument("--dataset", default="reciprocate/number-pairs", type=str)
parser.add_argument("--lr", default=6e-4, type=float)
parser.add_argument("--min_lr", default=None, type=float)
parser.add_argument("--weight_decay", default=0.1, type=float)
parser.add_argument("--batch_size", default=20, type=int)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--seq_length", default=1024, type=int)
parser.add_argument("--num_unfrozen_layers", default=None, type=int)
parser.add_argument("--gradient_checkpointing", action="store_true")
parser.add_argument("--load_in_4bit", action="store_true")
parser.add_argument("--downscale_weight", action="store_true")
parser.add_argument("--checkpoint_dir", default="checkpoints", type=str)
parser.add_argument("--eval_interval", default=100, type=int)
parser.add_argument("--only_eval", action="store_true")
parser.add_argument("--add_oasst_tokens", action="store_true")
parser.add_argument("--calibration_datasets", default=[], nargs="+", type=str)
args = parser.parse_args()
def plot_calibration(model_name: str, dataset_name: str, delta_scores: np.ndarray) -> str:
space = np.linspace(0, 4, 32)
perfect_calibration = 1 / (1 + np.exp(-space))
epsilon = 1 / 4
probs = []
for center in space:
ixs = (center - epsilon < abs(delta_scores)) & (abs(delta_scores) < center + epsilon)
if not ixs.any():
prob = 0.5
else:
prob = np.mean(delta_scores[ixs] > 0)
probs.append(prob)
import matplotlib
from matplotlib import pyplot
textcolor = "#333"
matplotlib.style.use("ggplot")
matplotlib.rcParams.update({
"font.family": "sans-serif",
"font.size": 15,
"text.color": textcolor,
"axes.labelcolor": textcolor,
"axes.labelpad": 12,
"xtick.color": textcolor,
"ytick.color": textcolor,
"xtick.labelsize": 22,
"ytick.labelsize": 22,
"figure.titlesize": 14,
"figure.figsize": (12, 8),
})
pyplot.plot(space, perfect_calibration, label="perfect calibration", c="grey")
pyplot.plot(space, probs, label=model_name)
ax = pyplot.gca()
ax.tick_params(top=False, labeltop=False, bottom=False, labelbottom=True, left=False, labelleft=True)
ax.set_facecolor("#fff")
ax.set_title(f"Calibration on {dataset_name}", size=26, y=1.02, fontdict={"fontweight": "normal"})
ax.set_xlabel("Score difference", size=26)
ax.set_ylabel("Accuracy", size=26)
pyplot.legend(loc="best", fontsize=20, title_fontproperties={"weight": "normal", "style": "normal"}, fancybox=False, frameon=False)
pyplot.tight_layout()
os.makedirs("calibrations", exist_ok=True)
image_path = os.path.join("calibrations", f"{model_name}@{dataset_name}.png".replace("/", "_"))
pyplot.savefig(image_path, dpi=64)
pyplot.clf()
return image_path
if __name__ == "__main__":
seed = int(os.environ.get("RANK", 0))
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if args.revision is None:
if os.path.exists(args.model_path):
revision = "local"
else:
revision = list_repo_refs(args.model_path).branches[0].target_commit[:8]
model_name = f"{args.model_path}:{revision}"
accelerator = Accelerator(log_with="wandb")
accelerator.init_trackers(
project_name="autocrit",
config=vars(args),
init_kwargs={"wandb": {"name": f"{model_name}@{args.dataset}"}},
)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path or args.model_path)
if args.add_oasst_tokens:
tokenizer.add_tokens(["<|assistant|>", "<|prefix_begin|>", "<|prefix_end|>", "<|prompter|>", "<|system|>"])
tokenizer.add_special_tokens({"pad_token": "<|padding|>"})
tokenizer.padding_side = "right"
tokenizer.truncation_side = "left"
def tokenize(prompt, selected, rejected, tokenizer):
return {
"selected_input_ids": tokenizer(prompt + selected + tokenizer.eos_token, truncation=True, max_length=args.seq_length).input_ids,
"rejected_input_ids": tokenizer(prompt + rejected + tokenizer.eos_token, truncation=True, max_length=args.seq_length).input_ids,
}
def collate_fn(batch):
input_ids = sum([[x["rejected_input_ids"], x["selected_input_ids"]] for x in batch], [])
return tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt")
dataset = load_dataset(args.dataset)
if "chosen" in dataset["train"].column_names:
dataset = dataset.rename_column("chosen", "selected")
if "replies" in dataset["train"].column_names:
dataset = dataset.map(lambda x: {"selected": x["replies"][0], "rejected": x["replies"][1]}, remove_columns=["replies"])
accelerator.print(args.dataset, dataset)
def to_vicuna_format(sample):
prompt = sample["prompt"].strip()
prompt = prompt.replace("\n\nHuman: ", "</s>USER: ") \
.replace("\n\nAssistant: ", " ASSISTANT: ") \
.replace("\n\nAssistant:", " ASSISTANT:")
if prompt.startswith("Human: "):
prompt = prompt.replace("Human: ", "USER: ")
if prompt.startswith("</s>"):
prompt = prompt[4:]
selected = " " + sample["selected"].strip()
rejected = " " + sample["rejected"].strip()
return {"prompt": prompt, "selected": selected, "rejected": rejected}
def to_oa_format(sample):
prompt = sample["prompt"].strip()
prompt = prompt.replace("\n\nHuman: ", "</s><|prompter|>") \
.replace("\n\nAssistant: ", "</s><|assistant|>") \
.replace("\n\nAssistant:", "</s><|assistant|>")
if prompt.startswith("Human: "):
prompt = prompt.replace("Human: ", "<|prompter|>")
selected = sample["selected"].strip()
rejected = sample["rejected"].strip()
return {"prompt": prompt, "selected": selected, "rejected": rejected}
if args.add_oasst_tokens:
dataset = dataset.map(to_oa_format)
else:
dataset = dataset.map(to_vicuna_format)
eval_dataloaders = []
for name in args.calibration_datasets:
calibration_dataset = load_dataset(name)
if "test" in calibration_dataset:
calibration_dataset = calibration_dataset["test"]
else:
calibration_dataset = calibration_dataset["train"]
accelerator.print(name, calibration_dataset)
tokenized = calibration_dataset.map(tokenize, input_columns=["prompt", "selected", "rejected"], fn_kwargs=dict(tokenizer=tokenizer), desc="Tokenizing")
dataloader = torch.utils.data.DataLoader(tokenized, shuffle=False, batch_size=args.batch_size, collate_fn=collate_fn)
eval_dataloaders.append(dataloader)
tokenized = dataset.map(tokenize, input_columns=["prompt", "selected", "rejected"], fn_kwargs=dict(tokenizer=tokenizer), desc="Tokenizing")
dataloader = torch.utils.data.DataLoader(tokenized["train"], shuffle=True, batch_size=args.batch_size, collate_fn=collate_fn)
eval_dataloaders.append(torch.utils.data.DataLoader(tokenized["test"], shuffle=False, batch_size=args.batch_size, collate_fn=collate_fn))
if transformers.__version__ >= "4.30.0":
kwargs = {"load_in_4bit": args.load_in_4bit}
else:
kwargs = {}
model = AutoModelForSequenceClassification.from_pretrained(args.model_path, revision=args.revision, num_labels=1, **kwargs)
model.config.pad_token_id = tokenizer.pad_token_id
model.resize_token_embeddings(len(tokenizer))
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
if args.downscale_weight:
model.score.weight.data *= 0.1
if args.num_unfrozen_layers is not None and args.num_unfrozen_layers > 0:
frozen = False
try:
for layer in model.transformer.h[:-args.num_unfrozen_layers]:
layer.requires_grad_(False)
frozen = True
except AttributeError:
pass
try:
for layer in model.model.layers[:-args.num_unfrozen_layers]:
layer.requires_grad_(False)
frozen = True
except AttributeError:
pass
if not frozen:
raise ValueError("Could not freeze layers, modify the code to support your architecture.")
if args.only_eval:
model, *eval_dataloaders = accelerator.prepare(model, *eval_dataloaders)
else:
opt = torch.optim.AdamW(model.parameters(), lr=args.lr, betas=(0.9, 0.95), eps=1e-08, weight_decay=args.weight_decay)
scheduler = CosineAnnealingLR(opt, T_max=len(dataloader) * args.epochs, eta_min=args.min_lr or args.lr)
model, opt, scheduler, dataloader, *eval_dataloaders, = accelerator.prepare(model, opt, scheduler, dataloader, *eval_dataloaders)
best_accuracy = 0
step = 0
tbar = tqdm(range(args.epochs * len(dataloader)), disable=not accelerator.is_main_process or args.only_eval)
for iepoch in range(args.epochs):
for batch in dataloader:
if step % args.eval_interval == 0 or step == tbar.total - 1:
for dataset_name, eval_dataloader in zip(args.calibration_datasets + [args.dataset], eval_dataloaders):
model.eval()
all_scores, all_delta_scores, all_tokens = [], [], []
for batch in tqdm(eval_dataloader, desc=f"Evaluating on {dataset_name}", disable=not accelerator.is_main_process, leave=args.only_eval):
with torch.no_grad():
scores = model(**batch)[0]
delta_scores = scores.reshape(-1, 2).diff().view(-1)
delta_scores = accelerator.gather_for_metrics(delta_scores)
all_delta_scores.extend(delta_scores.tolist())
all_scores.extend(scores.view(-1).tolist())
all_tokens.extend(batch["input_ids"].tolist())
delta_scores = np.hstack(all_delta_scores)
accuracy = (delta_scores > 0).mean()
if accelerator.is_main_process:
image_path = plot_calibration(model_name, dataset_name, delta_scores)
texts = [text.replace(tokenizer.pad_token, "") for text in tokenizer.batch_decode(all_tokens)]
samples = wandb.Table(["text", "score"], rows=list(zip(texts, all_scores))[:128])
postfix = "" if dataset_name == args.dataset else f"@{dataset_name.split('/')[-1]}"
accelerator.log({
f"accuracy{postfix}": accuracy,
f"samples{postfix}": samples,
f"delta_scores{postfix}": delta_scores,
f"calibration{postfix}": wandb.Image(image_path),
}, step=step)
if accuracy > best_accuracy and dataset_name == args.dataset:
best_accuracy = accuracy
accelerator.log({"best_accuracy": best_accuracy}, step=step)
if args.only_eval:
exit()
else:
path = f"{model_name}_{args.dataset}_{args.lr}".replace("/", "_").replace(":", "_").replace("@", "_")
accelerator.unwrap_model(model).save_pretrained(
os.path.join(args.checkpoint_dir, path),
save_function=accelerator.save,
is_main_process=accelerator.is_main_process,
state_dict=accelerator.get_state_dict(model),
)
if accelerator.is_main_process:
tokenizer.save_pretrained(os.path.join(args.checkpoint_dir, path))
accelerator.print(f"Checkpointing -> {os.path.join(args.checkpoint_dir, path)}")
if dataset_name == args.dataset:
tbar.set_postfix(accuracy=accuracy, best_accuracy=best_accuracy)
accelerator.wait_for_everyone()
model.train()
with accelerator.accumulate(model):
scores = model(**batch, use_cache=not args.gradient_checkpointing)[0]
loss = -F.logsigmoid(scores.reshape(-1, 2).diff()).mean()
accelerator.backward(loss)
opt.step()
opt.zero_grad()
scheduler.step()
tbar.update()
tbar.set_description(f"Training {args.model_path} on {args.dataset}; loss: {loss.item():.4f}")
accelerator.log({"loss": loss.item(), "lr": float(scheduler.get_last_lr()[0])}, step=step)
step += 1