forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer_test.py
204 lines (165 loc) · 7.01 KB
/
layer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test that the definitions of ResNet layers haven't changed.
These tests will fail if either:
a) The graph of a resnet layer changes and the change is significant enough
that it can no longer load existing checkpoints.
b) The numerical results produced by the layer change.
A warning will be issued if the graph changes, but the checkpoint still loads.
In the event that a layer change is intended, or the TensorFlow implementation
of a layer changes (and thus changes the graph), regenerate using the command:
$ python3 layer_test.py -regen
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import resnet_model
from official.utils.testing import reference_data
DATA_FORMAT = "channels_last" # CPU instructions often preclude channels_first
BATCH_SIZE = 32
BLOCK_TESTS = [
dict(bottleneck=True, projection=True, resnet_version=1, width=8,
channels=4),
dict(bottleneck=True, projection=True, resnet_version=2, width=8,
channels=4),
dict(bottleneck=True, projection=False, resnet_version=1, width=8,
channels=4),
dict(bottleneck=True, projection=False, resnet_version=2, width=8,
channels=4),
dict(bottleneck=False, projection=True, resnet_version=1, width=8,
channels=4),
dict(bottleneck=False, projection=True, resnet_version=2, width=8,
channels=4),
dict(bottleneck=False, projection=False, resnet_version=1, width=8,
channels=4),
dict(bottleneck=False, projection=False, resnet_version=2, width=8,
channels=4),
]
class BaseTest(reference_data.BaseTest):
"""Tests for core ResNet layers."""
@property
def test_name(self):
return "resnet"
def _batch_norm_ops(self, test=False):
name = "batch_norm"
g = tf.Graph()
with g.as_default():
tf.set_random_seed(self.name_to_seed(name))
input_tensor = tf.get_variable(
"input_tensor", dtype=tf.float32,
initializer=tf.random_uniform((32, 16, 16, 3), maxval=1)
)
layer = resnet_model.batch_norm(
inputs=input_tensor, data_format=DATA_FORMAT, training=True)
self._save_or_test_ops(
name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
correctness_function=self.default_correctness_function
)
def make_projection(self, filters_out, strides, data_format):
"""1D convolution with stride projector.
Args:
filters_out: Number of filters in the projection.
strides: Stride length for convolution.
data_format: channels_first or channels_last
Returns:
A CNN projector function with kernel_size 1.
"""
def projection_shortcut(inputs):
return resnet_model.conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
return projection_shortcut
def _resnet_block_ops(self, test, batch_size, bottleneck, projection,
resnet_version, width, channels):
"""Test whether resnet block construction has changed.
Args:
test: Whether or not to run as a test case.
batch_size: Number of points in the fake image. This is needed due to
batch normalization.
bottleneck: Whether or not to use bottleneck layers.
projection: Whether or not to project the input.
resnet_version: Which version of ResNet to test.
width: The width of the fake image.
channels: The number of channels in the fake image.
"""
name = "batch-size-{}_{}{}_version-{}_width-{}_channels-{}".format(
batch_size,
"bottleneck" if bottleneck else "building",
"_projection" if projection else "",
resnet_version,
width,
channels
)
if resnet_version == 1:
block_fn = resnet_model._building_block_v1
if bottleneck:
block_fn = resnet_model._bottleneck_block_v1
else:
block_fn = resnet_model._building_block_v2
if bottleneck:
block_fn = resnet_model._bottleneck_block_v2
g = tf.Graph()
with g.as_default():
tf.set_random_seed(self.name_to_seed(name))
strides = 1
channels_out = channels
projection_shortcut = None
if projection:
strides = 2
channels_out *= strides
projection_shortcut = self.make_projection(
filters_out=channels_out, strides=strides, data_format=DATA_FORMAT)
filters = channels_out
if bottleneck:
filters = channels_out // 4
input_tensor = tf.get_variable(
"input_tensor", dtype=tf.float32,
initializer=tf.random_uniform((batch_size, width, width, channels),
maxval=1)
)
layer = block_fn(inputs=input_tensor, filters=filters, training=True,
projection_shortcut=projection_shortcut, strides=strides,
data_format=DATA_FORMAT)
self._save_or_test_ops(
name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
correctness_function=self.default_correctness_function
)
def test_batch_norm(self):
self._batch_norm_ops(test=True)
def test_block_0(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[0])
def test_block_1(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[1])
def test_block_2(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[2])
def test_block_3(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[3])
def test_block_4(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[4])
def test_block_5(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[5])
def test_block_6(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[6])
def test_block_7(self):
self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[7])
def regenerate(self):
"""Create reference data files for ResNet layer tests."""
self._batch_norm_ops(test=False)
for block_params in BLOCK_TESTS:
self._resnet_block_ops(test=False, batch_size=BATCH_SIZE, **block_params)
if __name__ == "__main__":
reference_data.main(argv=sys.argv, test_class=BaseTest)