-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHerradura_AEn.c
265 lines (232 loc) · 8.61 KB
/
Herradura_AEn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* Herradura AEn (HAEN)- an asymmetric, one to one, cipher based on the FSCX function and
parameters from a previous Key Exchange with Herradura KEx (HKEX).
Copyright (C) 2017-2019 Omar Alejandro Herrera Reyna
This program is free software: you can redistribute it and/or modify
it under the terms of the MIT License or the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.
Under the terms of the GNU General Public License, please also consider that:
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Example build: gcc -DINTSZ=64 -o HAEN Herradura_AEn.c */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <limits.h>
#include <assert.h>
typedef unsigned long long int INT64;
#undef VERBOSE
#ifndef INTSZ
#define INTSZ 64 // MUST be 2^n where n is an integer
#warning *** INTSZ defaulting to 64 ***
#endif
#ifndef PUBSIZE
#define PUBSIZE 16 // How much is shared by Alice, Bob (D, D2)
#warning *** PUBSIZE defaulting to 16 ***
#endif
#if INTSZ == 8
#define INTSZMASK 0x0FF
#elif INTSZ == 16
#define INTSZMASK 0x0FFFF
#elif INTSZ == 32
#define INTSZMASK 0x0FFFFFFFF
#elif INTSZ == 64
#define INTSZMASK 0xFFFFFFFFFFFFFFFF
#else
#define INTSZMASK 0
#error *** UNSUPPORTED INTSZ ***
#endif
#ifdef VERBOSE /*rlm*/
void print64b (INT64 x){
int cont;
unsigned long int y1,y2,tmp;
y1=(unsigned long int) x;
x = x >> 32;
y2=(unsigned long int) x;
for (cont=0;cont<32;cont++){
tmp= y2 & 0x80000000;
if (tmp == 0x80000000){
printf("1");
}
else{
printf("0");
}
y2 = y2<<1;
}
for (cont=0;cont<32;cont++){
tmp= y1 & 0x80000000;
if (tmp == 0x80000000){
printf("1");
}
else{
printf("0");
}
y1 = y1<<1;
}
}
#endif
/*Generate pseudorandom 64bit numbers with rand()*/
INT64 rnd64b (){
INT64 rnd64;
unsigned long int tmp,cont;
rnd64=0;
for (cont=0;cont<3;cont++){
tmp = rand();
rnd64 = rnd64+(INT64)tmp;
rnd64 = rnd64<<16;
};
tmp = rand();
rnd64 = rnd64 +(INT64) tmp;
return(rnd64);
}
unsigned int BITX(INT64 X, int pos) {
if( pos == 0 ) {
return ((X>>1)&1) ^ (X&1) ^ ((X>>(INTSZ-1))&1);
}
else if( pos == (int)INTSZ-1 ) {
return (X&1) ^ ((X>>(INTSZ-1))&1) ^ ((X>>(INTSZ-2))&1);
}
else {
return ((X>>((pos+1)%INTSZ))&1) ^ ((X>>pos)&1) ^ ((X>>((pos-1)%INTSZ))&1);
}
}
unsigned int BIT(INT64 U, INT64 D, int posU, int posD) {
unsigned int ret = BITX(U, posU) ^ BITX(D, posD);
return ret;
}
/* Full Surroundings Cyclic XOR (FSCX) */
INT64 FSCX (const INT64 *Up, INT64 *Down){
INT64 result = 0;
int count;
for(count = 0; count < (int)INTSZ; count++) {
result = result<<1;
#if INTSZ < 64
result &= INTSZMASK;
#endif
// NOTE the algo appears to work even using mismatched counts for U,D here
result += (INT64)BIT(*Up, *Down, count, count);
//result += (INT64)BIT(*Up, *Down, count, (INTSZ-1u)-count);
#if INTSZ < 64
result &= INTSZMASK;
#endif
}
return result;
}
/*FSCX iteration function using the result of the previous iteration as the first
parameter and the second parameter of the first iteration*/
INT64 FSCX_REVOLVE (INT64 *Up, INT64 *Down, unsigned long int pasos){
INT64 result;
unsigned long int cont;
result=*Up;
for (cont=0; cont<pasos; cont++){
result=FSCX(&result,Down);
}
return result;
}
#ifdef VERBOSE /*rlm*/
/* FSCX iteration function that prints each step */
INT64 FSCX_REVOLVE_PRINT (INT64 *Up, INT64 *Down, unsigned long int pasos){
INT64 result,first;
unsigned long int cont;
result=*Up;
first=result;
for (cont=0; cont<pasos; cont++){
result=FSCX(&first,Down);
printf(" FSCX_REVOLVE_PRINT UP:%llu DOWN:%llu Step %lu:%llu\n",first,*Down,cont+1,result);
first=result;
}
return (result);
}
#endif
int main (){
INT64 A,A2,B,B2,D,D2,FA,FA2,PSV,K,P,P2,E;
srand(time(0));
P=rnd64b();
A=rnd64b();
B=rnd64b();
A2=rnd64b();
B2=rnd64b();
#if INTSZ < 64u
P &= INTSZMASK;
A &= INTSZMASK;
A2 &= INTSZMASK;
B &= INTSZMASK;
B2 &= INTSZMASK;
#endif
printf("--- Herradura Key Exchange (HKEX) ---\n\n");
printf("ALICE:\n");
printf("%llx A [Secret 1]\n",A);
printf("%llx B [Secret 2]\n",B);
D=FSCX_REVOLVE(&A,&B,PUBSIZE); //63 and 32 rounds are weak; 16 seems best.
printf("%llx D [FSCX_REVOLVE(A,B,%u)] ->\n",D, PUBSIZE);
printf(" BOB:\n");
printf(" A2 %llx [Secret 3]\n",A2);
printf(" B2 %llx [Secret 4]\n",B2);
D2=FSCX_REVOLVE(&A2,&B2,PUBSIZE); //63 and 32 rounds are weak; 16 seems best.
printf(" <- D2 %llx [FSCX_REVOLVE(A2,B2,%u)]\n",D2, PUBSIZE);
printf("ALICE:\n");
FA=(FSCX_REVOLVE(&D2,&B,(INTSZ-PUBSIZE)))^A;
printf("%llx FA [FSCX_REVOLVE(D2,B,%u) xor A] \n",FA, (INTSZ-PUBSIZE));
printf(" BOB:\n");
FA2=(FSCX_REVOLVE(&D,&B2,(INTSZ-PUBSIZE)))^A2;
assert(FA == FA2);
printf(" FA2 = FA %llx [FSCX_REVOLVE(D,B2,%u) xor A2] \n",FA2, (INTSZ-PUBSIZE));
printf("\n\n--- Herradura one-to-one asymmetric Encryption - keys of same size & interactive KEX Alice,Bob(HAEN1) ---\n\n");
PSV=FA;
/*Alice's encryption key is: PSV,A,B,PUBSIZE */
printf("ALICE [ 1 to 1 assymetric key with Bob = PSV,A,B,PUBSIZE]:\n");
printf("%llx PSV [Pre-shared key value from KEX (FA)]\n",PSV);
printf("%llx A [Secret from KEX]\n",A);
printf("%llx B [Secret from KEX]\n",B);
printf("%llx P [MSG in plain text]\n",P);
K=P^PSV^A;
E=FSCX_REVOLVE(&K,&B,PUBSIZE);
printf("%llx E [Shared encrypted MSG, FSCX_REVOLVE(P xor PSV xor A, B ,%u)] ->\n",E,PUBSIZE);
/*Bob's decryption key is: PSV,A2,B2,(INTSZ - PUBSIZE) */
/* (Strictly speaking, when PSV = FA and FA comes from previous HKEX using A,B,A2,B2, you
don't need PSV to decrypt) */
printf(" BOB [ 1 to 1 assymetric key with Alice = PSV,A2,B2,(INTSZ - PUBSIZE)]:\n");
printf(" PSV %llx [Pre-shared key from KEX (FA2)]\n",PSV);
printf(" A2 %llx [Secret from KEX]\n",A2);
printf(" B2 %llx [Secret from KEX]\n",B2);
P2=(FSCX_REVOLVE(&E,&B2,INTSZ-PUBSIZE))^A2;
printf(" P2 %llx [MSG in plain text, FSCX_REVOLVE(E,B2,%u) xor A2] \n",P2,INTSZ-PUBSIZE);
assert(P == P2);
/* Note: you can use a different preshared value (i.e. not from KEX), but in that case you still
need the entangled parameters from a previous KEX: B,B2 and FA; decryption would be as follows:
P2=(FSCX_REVOLVE(&E,&B2,INTSZ-PUBSIZE))^PSV2^A2^FA2;
printf(" P2 %llx [Shared secret MSG in plain text, FSCX_REVOLVE(E,B2,%u) xor PSV2 xor A2 xor FA2] \n",P2,INTSZ-PUBSIZE);
*/
printf("\n\n--- Herradura one-to-one assymetric key encryption - keys of different size & KEX done by Bob (HAEN2) ---\n\n");
PSV=FA;
/*Here Bob performs KEX on its own, then shares the entangled key with Alice through other means */
/*Alice's encryption key is: PSV,B,PUBSIZE */
printf("ALICE [ 1 to 1 assymetric (smaller) key with Bob = PSV,B,PUBSIZE]:\n");
printf("%llx PSV [shared key by Bob (alternate channel)]\n",PSV);
printf("%llx B [shared secret by Bob (alternate channel)]\n",B);
printf("%llx P [MSG in plain text]\n",P);
K=P^PSV;
E=FSCX_REVOLVE(&K,&B,PUBSIZE);
printf("%llx E [Shared encrypted MSG, FSCX_REVOLVE(P xor PSV, B ,%u)] ->\n",E,PUBSIZE);
/*Bob's decryption key is: PSV,A,A2,B2,(INTSZ - PUBSIZE) */
/* (Strictly speaking, when PSV = FA and FA comes from previous HKEX using A,B,A2,B2, you
don't need PSV to decrypt) */
printf(" BOB [ 1 to 1 assymetric (bigger) key with Alice = PSV,A,A2,B2,(INTSZ - PUBSIZE)]:\n");
printf(" PSV %llx [Key from KEX calculated by Bob (FA2)]\n",PSV);
printf(" A %llx [Secret from KEX]\n",A);
printf(" A2 %llx [Secret from KEX]\n",A2);
printf(" B2 %llx [Secret from KEX]\n",B2);
P2=(FSCX_REVOLVE(&E,&B2,INTSZ-PUBSIZE))^A^A2;
printf(" P2 %llx [MSG in plain text, FSCX_REVOLVE(E,B2,%u) xor A xor A2] \n",P2,INTSZ-PUBSIZE);
assert(P == P2);
/* Note: you can use a different preshared value (i.e. not from KEX), but in that case you still
need the entangled parameters from a previous KEX: B,B2 and FA; decryption would be as follows:
P2=(FSCX_REVOLVE(&E,&B2,INTSZ-PUBSIZE))^PSV2^A^A2^FA2;
printf(" P2 %llx [Shared secret MSG in plain text, FSCX_REVOLVE(E,B2,%u) xor PSV2 xor A xor A2 xor FA2] \n",P2,INTSZ-PUBSIZE);
*/
return (0);
}